Visual Learning and Recognition of a Probabilistic Spatio-Temporal Model of
Cyclic Human Locomotion

Miha Peternel and AleS Leonardis
University of Ljubljana, Faculty of Computer and Information Science
Trzaska 25, 1000 Ljubljana, Slovenia
miha.peternel,ales.leonardis @fri.uni-1j.si

Abstract

We present a novel representation of cyclic human loco-
motion based on a set of spatio-temporal curves of tracked
points on the surface of a person. We start by extracting
a set of continuous, phase aligned spatio-temporal curves
from trajectories of random points tracked over several cy-
cles of locomotion in a monocular video sequence. We
analyze a PCA representation of a set of cyclic curves,
pointing out properties of the representation which can be
used for spatio-temporal alignment in tracking and recog-
nition tasks. We model the curve distribution density by a
mixture of Gaussians using expectation-maximization algo-
rithm. For recognition, we use maximum a posteriori esti-
mate combined with linear data adaptation. We tested the
algorithms on CMU MoBo database with favourable results
for the recognition of people “by walking” from monocular
video sequences captured from the side view.

1. Introduction

Several methods have been developed in the field of
computer vision for view based tracking and identification
of human locomotion: [9, 6, 2, 5] etc. The approaches can
roughly be divided into top-down and bottom-up. The top-
down approaches typically assume a spatial model and es-
timate temporal evolution of configuration parameters. The
bottom-up approaches attempt to build a spatial model from
a set of primitives and continue with temporal evolution.

Spatial models found in the literature are generally im-
age based or geometry based, either 2D or 3D. Cardboard
models put 2D image templates in a geometrical structure.
For gait recognition, several authors merely track some pre-
determined features and do not model the entire view space.
There have been several attempts of using image based sub-
space methods [2] and image statistics [10] to decrease the
dimensionality of spatial representation, but these methods

tend to lose local description power. Most of the methods
are limited in representation of objects that deviate from the
assumptions about the spatial configuration.

Temporal evolution is typically represented by a time se-
ries of parameters or by state transitions usually modeled
by hidden Markov models. State based methods can easily
represent a multitude of different motions, but they are not
especially suited to capture details of motion, because too
many states would be required to model all possible config-
urations and local variation.

A lot of work on human motion analysis was performed
on data accumulated from motion capture of markers at-
tached to human actors. Cedras and Shah [3] discuss exper-
iments by Johansson and others showing that people suc-
cessfully recognize human motion from a very small set of
markers even in the presence of noise.

There have been few attempts of markerless bottom-up
structure-free learning of locomotion. Niyogi et al.[8] used
spatio-temporal manifold produced by evolution of edges of
human silhouette over time, however they do not model mo-
tion inside silhouette, neither do they model vertical com-
ponent of motion explicitly. Torresani et al.[11] attempt to
learn moving shape from video.

To the best of our knowledge, there have been no at-
tempts to model human locomotion as a space-time man-
ifold of the whole observable surface. The main advantage
of such a model is an ability to probabilistically represent
structure and motion in a single framework, with the possi-
bility to include local and global variation.

We assume that the appearance of motion of an articulate
object can adequately be represented by a set of trajecto-
ries of points on the surface on the object, if the number of
tracked points is adequate to approximate the moving sur-
faces with sufficient degrees of freedom. We focus on cyclic
human locomotion, for which a number of databases have
been accumulated and natural physical constraints allow us
to use a simple point-tracking algorithm and filter out non-
optimal trajectories.

We present a novel method for representation of articu-



late cyclic motion based on a set of spatio-temporal trajec-
tories of continuously tracked points on the surface of the
observed object. We apply the method to visual learning
and recognition of human locomotion. We assume no prior
information about the distribution of trajectories. The main
advantage of the method is that it probabilistically models
the motion over both full view space and time. At this point
our method only includes continuously trackable surface
points, but in principle the model can include any trackable
feature.

The main contribution of this paper is a method for learn-
ing and recognition of the spatio-temporal distribution of a
set of spatio-temporal curves over a number of iterations of
cyclic motion. We generalize spatio-temporal trajectories
over iterations using principal component analysis. Finally,
we approximate the distribution using a mixture of Gaus-
sians. The recognition is implemented with a combination
of maximum a posteriori estimate and linear data adapta-
tion.

The paper is organized as follows: Section 2 outlines ex-
traction and representation of a set of phase aligned spatio-
temporal curves, Section 3 introduces PCA decomposition
of ST-curves and a Gaussian mixture model for probabilis-
tic presentation for learning of a set of ST-curves, Section 4
describes classification for recognition, Section 5 presents
experiments on the CMU MoBo database and the last sec-
tion contains conclusions and outlines work in progress.

2. Curve extraction

We start by performing random point tracking on the
moving object extracted from a monocular video sequence
by background subtraction, shadow suppression, and mor-
phological filtering. Each tracked point produces a trajec-
tory which is not necessarily connected and sometimes er-
roneously jumps among parts of the object.

We define one cycle to be the interval which contains two
human steps. We detect cycles in short sequences (around
10 cycles) of locomotion by searching for maxima of auto-
correlation of trajectories and voting.

Figure 1. Extraction of a set of phase aligned
spatio-temporal curves

We extract only the connected parts of trajectories start-
ing from the beginnings of the detected cycles. The re-
sult is a set of phase aligned nearly cyclical spatio-temporal
curves (see Fig. 1). We then linearly stitch the curves
to make them all cyclic and piece-wise linearly interpo-
late them to a common size L. We subtract the centroid
of the curve from the point coordinates. The intermedi-
ate ST-curve representation consists of the curve centroid
o = (04, 0,) and the centroid-subtracted curve shape vec-
tor € = [1,Y1, .., L, YL].

3. Probabilistic spatio-temporal model

In this section we describe learning of a probabilistic
spatio-temporal model of a set of ST-curves. The learning
procedure is divided in PCA decomposition of the curve
shape vectors and subsequent modeling of curve distribu-
tion in a subspace by a mixture of Gaussians.

3.1. Curve set in a PCA subspace

Let X be the data matrix with NV curve shape vectors
x,, of size D = 2L in ordered columns. We perform PCA
decomposition according to Anderson [1]:

1 N
r = [Mla "'7MD]T = N an ’
n=1
X = X -—plixy, (1)
c - ~xx'

By performing eigenvalue decomposition of the covariance
matrix C we diagonalize it C = UAU T in such a way that
the orthonormal matrix U contains eigenvectors [w1...up]
in its columns and diagonal matrix A contains eigenvalues
A; on its diagonal, and the eigenvalues and corresponding
eigenvectors are arranged in descending order of the eigen-
values. Thus, the most variability of the set of curves is
contained in the first few eigenvectors, also called the prin-
cipal vectors. We use matrix U to remap curve shape vec-
tors X on the principal axes: P = UTX. The properties
of the transform guarantee us that by reducing the repre-
sentation of the curve shape vector to the first few d < D
principal components we minimize the reconstruction error
in terms of mean square error. The curve representation us-
ing a PCA subspace to represent spatio-temporal variation
becomes 7 = [0, 0y, P1, .., Pa] (0 is not transformed).

We analyzed the diagrams of the principal vectors. In
all of the cases of a side view the first principal vector is
nearly cyclical and contains significant oscillation along the
direction of locomotion (see Fig. 2). This feature is further
used for phase alignment of curves.
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Figure 2. The first 4 principal vectors (left to
right)
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Figure 3. Average variance contained in the
first d eigenvectors

Figure 4. 3D mappings of ST-curve set

3.2. Gaussian mixture model of curve distribution

We approximate the density of the curve distribution
with a mixture of Gaussians O,
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K is the number of Gaussians and w; is the weight of Gaus-
sian ¢ with ZZK:1 w; = 1 and Vi : w; > 0. We use diagonal
3l; with 0;...0x on diagonal.

We initialize the means of Gaussians by setting them to
a random subset of data vectors. We initialize variances to
a random fraction of observed data interval.

We use an iterative expectation-maximization [4] proce-
dure to update GMM:
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The final model of observed motion thus consists of prin-
cipal vectors [u1...u4] modeling spatio-temporal variation

of trajectories and a set of GMM parameters {w;, ;, 0; },
i = 1..K modeling distribution density of trajectories
in combined 2-dimensional view space and d-dimensional
spatio-temporal curve shape subspace.

4. Recognition

The curve extraction steps for recognition are the same
as for learning. From that point on we continue with spatio-
temporal alignment and maximum a posteriori estimate for
classification.

4.1. Spatio-temporal alignment

Given a set of new observation trajectories, we first align
them temporally by computing the first principal vector and
choose the phase that maximizes correlation with principal
vector of the prior model. We account for both original and
negated principal vectors, yielding 2 possible results for the
phase offset, since we cannot determine the orientation of a
principal vector.

We assume that an approximate spatial alignment can be
attained by other methods, therefore we can use exhaustive
search in a relatively small area of interest, which we per-
form by linear adaptation of data vectors.

4.2. Classification

We start with the spatio-temporally aligned trajectories
from the previous step and recompute a new data matrix of
observation vectors Y = [y;...y 5] in the remapped space
with principal axes from each prior model c.

We want to find the model ¢; that maximizes posterior
probability p(c;|Y") given a set of curves Y. We use the
Bayes rule:

p(Y)

Assuming equally likely models ¢; and noting that p(Y") is
the same for all models, the classification simplifies to

argmax p(c;|Y) = 4)

argmax p(Y|c;) . 5)

Assuming independence between observations, the final
recognition rule is simplified to:

N N
arg max H p(y,|ci) = arg max Z logp(y,|ci) - (6)
n=1 n=1
The model c¢; that maximizes (6) is selected as the most
likely candidate.
Note that computing p(y,,|c;) requires y,, be remapped
to the principal subspace of c¢; for recognition, practically



requiring spatio-tem]goral remapping of data matrix Y and
computation of Y~ logp(y,|c;) for each class sepa-
rately. For the purposes of tracking we may merely be in-
terested in the posterior probability of a single class.

5. Experiments

We used a subset of walk sequences from the CMU
MoBo database [7] for experiments. We concentrated on
the walk sequences of 25 people captured from the side
view, because the trajectories captured from this view ex-
hibit most spatial dynamics potentially useful for recogni-
tion. The sequences contain 300-340 frames. Using the de-
scribed methods we processed the sequences and analyzed
their principal vectors (see Fig. 2) and the quantity of vari-
ance contained by the first few principal vectors (see Fig. 3).
We noticed that the first principal vector contains 38.2%-
86.6% of variance, the first 4 vectors contain 84.7%-96.9%
of variance and the first 16 vectors contain more than 99.4%
of variance. Figure 4 illustrates subspace projections.

We performed curve extraction. The estimated cycle size
varied from 28 to 39 frames. We used piece-wise linear in-
terpolation to make all curves of equal length which we de-
fined to be 32 points. We divided the sequences in half, the
second half was used for training and the first half was used
for testing. We performed PCA and kept 4 principal com-
ponents to represent spatio-temporal variation. The data
vectors thus contained 2 spatial parameters and 4 spatio-
temporal parameters. We trained a diagonal GMM with 15
Gaussians using EM algorithm initialized on a random sub-
set of data vectors with random variance scaled from data
interval. We used 30 EM iterations on 10 random initializa-
tions and kept the best GMM that maximized expectation
for each set of the training vectors. We chose the number of
Gaussians and iterations empirically.

We tested the classification of 99 test sequences against
99 training sequences using MAP estimate. We tested clas-
sification success both within modes and for mixed modes.
We phase aligned the sequences by maximizing correla-
tion of the first principal vectors of both sequences. We
remapped observation vectors to prior space using only 4
principal components. We tested for different spatial offsets
by performing exhaustive search in range [—32...32] for z

Table 1. Summary of recognition results

recognition order of
walk mode | sequences errors correct class
fast 25 1 2nd
slow 25 0
incline 25 1 2nd
ball 24 0
all 99 2

and [—16...16] for y axis with a step size of 4.

Our method correctly classified most of the sequences as
summarized in Table 1. When we inspected the misclassi-
fied sequences, we noticed that one misclassified sequence
contained deviant arm gestures in the training part of the
sequence, while the other misclassified sequence varied in
cycle length and included significant positional variations.
Mixing modes introduced no additional misclassifications.

6. Conclusions

We proposed a novel spatio-temporal model for repre-
sentation of cyclic human locomotion in monocular view
space, together with methods for learning and recognition.

The results for motion based human recognition on a set
of 25 people are encouraging. Further tests are required to
discount for biases in point tracking and cycle extraction,
and to estimate the impact of natural variations in more re-
alistic settings.

The method is currently not scale invariant, but scale can
be estimated from the silhouette. In the future we intend
to improve the recognition method for scale invariance and
varying cycle size.
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