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Abstract

In this work an adaptive method for accurate and robust grouping of local features belong-
ing to planes of interior scenes and object planar surfaces is presented. For arbitrary set of
images acquired from different views, the method organizes a huge number of local SIFT
features to fill the gap between low-level vision (front end) and high level vision, i.e.,
domain specific reasoning about geometric structures. The proposed method consists of
three steps: exploration, selection, and merging with verification. The exploration is a data
driven technique that proposes a set of hypothesis clusters. To select the final hypotheses a
matrix of preferences is introduced. It evaluates each of the hypothesisin terms of number
of features, error of transformation, and feature duplications and is applied in quadratic
form in the process of maximization. Then, merging process combines the information
from multiple views to reduce the redundancy and to enrich the selected representations.
As demonstrated by experimental results, the proposed method is an example of unsuper-
vised learning of planar parts of the scene and objects with planar surfaces.

1 Introduction

The use of local features is becoming increasingly popular for solving different vision tasks.
Recently SIFT descriptor has been proposed for describing distinctive scale-invariant features
in images [4]. SIFT features can be used to perform reliable matching between different im-
ages of an object or scene. The invariance to image translation, scaling, and rotation makes
them appropriate for stereo matching, tracking applications and also suitable for mobile robot
localization. SIFT features are good natural visual landmarks appropriate for tracking over
a long period of time from different views, e.g., in [5] authors propose to use SIFT features
for building 3D maps. It has also been demonstrated that SIFTfeatures are appropriate for
recognizing general object classes [3].

In this work we present a method for accurate and robust grouping of local features be-
longing to planes of interior scenes such as walls, floor, andplanar surfaces of objects. For
arbitrary set of images acquired from different views, the method organizes a huge number of
local SIFT features to fill the gap between low-level vision (front end), i.e. outputs of vari-
ous filtering operations and high level vision, i.e., domainspecific reasoning about geometric



structures. The proposed method consists of three steps: exploration, selection, and merging
with verification. The exploration is a data driven technique that proposes a set of hypothesis
clusters. To select the final hypotheses a matrix of preferences is introduced. It evaluates each
of the hypothesis in terms of number of features, error-of-transformation, and feature duplica-
tions and is applied in quadratic form in the process of maximization. Since the set of local
features vary from view to view, the goal of the merging process is to combine the informa-
tion from multiple views to reduce the redundancy and to enrich the selected representations.
As demonstrated by experimental results, the proposed method is an example of unsupervised
learning of planar parts of the scene and objects with planarsurfaces.

2 Step 1: Exploration

Given a set of descriptors of local patches of interior scenethe goal is to group them in clusters
in accordance with some geometric property or a model. Here we examine the planar surfaces.

Let us assume that we have a set of imagesI = {I1, I2, ...IN} of particular interior scene.
The first step of our approach is the detection of DoG points and the computation of SIFT de-
scriptor for each local region [4] (Figure 1). Next, for eachpair of images,{(Ii, Ij)|i < j, i =
1, . . . , N − 1, j = 2, . . . , N}, a set of matching features is determined. The matches are
obtained on the basis of Euclidean distance between SIFT descriptors. Each SIFT feature in
imageIi is compared to all SIFT features in imageIj. The feature has a match, if the Euclidean
distance to the closest SIFT feature is at least 4 times shorter than the Euclidean distance to
the next closest SIFT feature. LetSij denote a set of SIFT features ofIi having a match inIj

(Figure 2).

Figure 1: Illustration of feature extraction. Each circle corresponds to one DoG point. The
circle defines the size of local region described by SIFT descriptor.

Figure 2: The best matches between two images.



Now, the task is to find inSij the features that belong to planar parts of the scene and to
group them in accordance with the plane they belong to. For this purpose we apply a plane to
plane homography [2]. The computation of the plane to plane homography requires at least
four features in two images of the same plane. For a larger setof points the system is over de-
termined and the plane to plane homography is estimated by homogeneous estimation method.
A reliable solution, imposes to start the process of plane searching with a large set of small
SIFT feature clusters, i.e., initial hypotheses. The features ofSij, here represented by their
coordinates,{f t

i ; f
t
i = (xt

i, y
t
i), t = 1, 2, . . . , |Sij|}, are clustered by thek-mean clustering al-

gorithm. The algorithm is performed several times, each time starting with different arbitrarily
initial set of cluster centers. The valuek denotes the number of clusters obtained by one itera-
tion and depends on the number of features|Sij|. It is as large asmax{round(|Sij|/30), 3}.

Figure 3: Clusters obtained by one call ofk-mean clustering algorithm.

Obtained clusters of features define a set of initial hypothesesHij = {H1
ij, H

2
ij, . . . , H

n
ij}.

For each hypothesisH l
ij a plane to plane homographyP l

ij from Ii to Ij is computed by applying
the RANSAC algorithm (Algorithm 1). If the algorithm fails tofind a solution the portions of
features denoted byD andK are decreased by a factor 0.95 and the RANSAC is proceeded
again.

Next, the coordinates of all matching features ofSij are transformed to imageIj in ac-
cordance with transformationP l

ij. Displacement errorsd(f t
j , f

t
i P

l
ij); t = 1, 2, . . . , |Sij| are

computed as Euclidean distances. All features with displacement error below a pre-specified
tolerance are included in the hypothesis (Figure 4). Note that features of the initial hypothesis
can also be excluded from the hypothesis. Then, a plane to plane homography is recomputed
and new features are included in the hypothesis. The processis repeated until there exist
features that can be added to the hypothesis. This is demonstrated by Figure 5.

3 Step 2: Selection

Redundant set of clusters results in many ‘overlapping’ hypotheses. To reduce the redun-
dancy and to keep the hypotheses that efficiently group the data a matrix of preferenceQ is
introduced. It is preferred to have hypothesis with large number of features and small error-of-
transformation. Duplication of features in hypotheses also has to be penalized. The selection of
hypothesis is performed by maximization of an objective function of quadratic formhQhT [6].
h is a binary vector of lengthn and denotes a set of selected hypotheses. A value 1 at position i



Algorithm 1 Random Sample Consensus Algorithm.
Assume:
The parameters are estimated fromD data items.
There areT data items in total. (In our experimentsD = 0.7 × T .)
Tolerancet corresponds to the distance of maximal allowable displacement between features in a match-
ing pair when transformed to the same image plane and is set to 1 pixel.

1. SelectD data items at random.

2. Estimate parametersp.

3. Find how many data items ofT fit the model with parametersp within a tolerancet. Call this
K.

4. If K is big enough exit with success. (In our experimentsK = 0.8 × T .)

5. Repeat steps from 1 to 4L times. (In our experimentsL=100.)

6. Fail if you get here.

(a) (b)

Figure 4: (a) Features of one cluster (left) and their matches (right). (b) The hypothesis is
enlarged by adding all the features that satisfy the prespecified tolerance of plane to plane
homographyP .

(a) (b)

Figure 5: (a) One of the initial hypotheses. (b) The top most feature pair do not satisfy the
tolerance criterium of plane to plane homographyP , therefore, it is removed from the initial
hypothesis.

indicates the presence of thei-th hypothesis and a 0 its absence.Q is an×n symmetric matrix.
The elements ofQ are defined asqcc = K1|Zc| − K2ξc,c; andqcr = −K1|Zc∩Zr|+K2ξc,r

2
; c 6= r.

|Zc| is the number of features in thec-th hypothesisHc
ij, i.e., |Zc| = sum(Hc

ij). ξc,r, so called



the error-of-transformation, is defined as max(
∑

f∈|Zc∩Zr| d(f, fP c
ij)

2,
∑

f∈|Zc∩Zr| d(f, fP r
ij)

2).
The constantsK1 andK2 are the weights determined experimentally. (In our experiments
K1 = 4 andK2 = 1.)

To maximize the objective functionhQhT we use the tabu search [1].h that maximizes
the objective function represents the final selection. Figure 6 depicts the hypotheses selected
by maximization process. Note that each of them describes one plane.

(a) Hypothesis 1 (front site of the printer)

(b) Hypothesis 2 (wall newspaper)

(c) Hypothesis 3 (coat hanger)

Figure 6: The final set of hypotheses. Each of the selected hypothesis describes one plane.

3.1 Hypothesis rejection

Due to a small difference in camera locations for some acquired image pairs,(Ii, Ij), the
computed plane to plane homography lacks the sensitivity and therefore groups together SIFT
features which do not lie on the same plane. See for example Figure 7. To refuse such hy-
potheses the rejection process is applied to the set of final hypotheses. For each hypothesisHk

ij

we find all image pairs that contain matches determined by thehypothesis. The plane to plane
homography is determined for each such image pair. If for at least one image pair the plane to
plane homography does not satisfy most of the matches, the hypothesisHk

ij is removed from
further consideration.



Figure 7: Refused hypothesis. If inI there exists an image pair for which the features of
selectedHk do not lie on the same plane,Hk is removed from further consideration.

4 Step 3: Merging

Selections on pairs of images{(Ii, Ij)|i < j, i = 1, . . . , N − 1, j = 2, . . . , N} end up with
a set of final hypothesesH = {H1, . . . , Hm}. Each hypothesis determines a cluster of SIFT
features. A SIFT feature is represented as a structure of feature coordinates(x, y), a SIFT
vector, and a weight which determines the importance of the feature. At the beginning all
weights are set to 1.

In I, there are images representing the same parts of the scene acquired from different
locations and viewing directions. Hence, many hypotheses determine the same parts of the
scene. To reduce the redundancy and to enrich the final representation we apply toH a merging
process.

SIFT descriptors are highly distinctive local parts of the scene therefore, even a small num-
ber of SIFT features uniquely determines the particular part of the scene. If inHi andHj there
exists a subset of common matching features the hypotheses are candidates for merging. It is
still possible thatHi andHj describe two different planar parts or different parts of slightly
bending surface. To refuse such cases features in both hypotheses are examined in the fol-
lowing way. First, we divide the features ofHi and Hj in three subsets:A = Hi ∩ Hj,
B = Hi \ Hj, andC = Hj \ Hi. Next, we find all image pairs that contain matches from all
three above determined subsets. We require at least one suchimage pair to do the merging.
By applying a plane to plane homography to each such image pairwe test, if the matching
features from subsetsA,B, andC lie on the same plane. If for all such image pairs the test
is positive, we mergeHi andHj. Features of both hypotheses are transformed to the same
image, for features inHi andHj the weights are summed, and all SIFT descriptors are kept.
The process of merging is repeated (also on newly generated hypotheses) until there is no pair
of hypotheses with sufficient number of matching features. The weights of features give us
information about feature stability. Features with high weights are more stable while feature
with low weights are very likely outliers.

The reader has to keep in mind that the merged hypotheses are still only hypotheses. By ac-
quiring new images of the scene new information is obtained and the rejection of a hypothesis
is still possible.



5 Experiments

he results are presented for two experiments. In the first experiment the scene is fixed. In the
second the configuration of objects in the scene is differentfor the acquired set of images. In
both experiments we deal with gray images of resolution640 × 480.

In the first experiment the feature clustering was generatedfrom 15 images leading to 86
final hypotheses. After the process of merging we end up with 8different planes (Fig. 8).

In the second experiment 10 different images were acquired.The process ends up with
54 hypotheses (Fig. 9). Some hypotheses of feature clusters, belonging to the some plane,
were not merged due to the sparse nature of SIFT features and insufficient number of acquired
images. Since the scene is altered from image to image, the results can show the location of
features belonging to one cluster, even though the planar part is occluded by other objects.

Figure 8: Experiment with a fixed scene. The method finds sevenclusters of SIFT features
belonging to seven different planar parts of the scene.

6 Conclusion

In the work we represent a method for clustering the SIFT features belonging to planar sur-
faces. The clusters obtained through the phases of exploration, selection and merging can be
used as initial structures for building higher level scene representations. The proposed method
can also be understood as unsupervised learning of objects with planar parts, what is demon-
strated by the second experiment. The attached weights to the SIFT descriptors can also be
exploit to detect changes in the interior scene, e.g., changes on wall newspaper, a coat hanger,
and would together with time parameter allow continuous long time learning.



Figure 9: Scene is altered from view to view. Eleven different clusters are found belonging to
five different planar parts of the scene. Only six clusters are displayed.
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