Grouping of co-planar local features
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Abstract

In this work an adaptive method for accurate and robust grouping afffeatures belong-
ing to planes of interior scenes and object planar surfaces is presEoteatbitrary set of
images acquired from different views, the method organizes a huge naifribeal SIFT
features to fill the gap between low-level vision (front end) and highl eiggon, i.e.,
domain specific reasoning about geometric structures. The proposeddetisists of
three steps: exploration, selection, and merging with verification. Thertjgo is a data
driven technique that proposes a set of hypothesis clusters. Totbeldinal hypotheses a
matrix of preferences is introduced. It evaluates each of the hypothdsisns of number
of features, error of transformation, and feature duplications andpigedpin quadratic
form in the process of maximization. Then, merging process combines thenaiion
from multiple views to reduce the redundancy and to enrich the selectesbegpations.
As demonstrated by experimental results, the proposed method is an exdonpdeper-
vised learning of planar parts of the scene and objects with planar ssrfac

1 Introduction

The use of local features is becoming increasingly popuasdlving different vision tasks.
Recently SIFT descriptor has been proposed for describstmdiive scale-invariant features
in images [4]. SIFT features can be used to perform reliatd&ching between different im-
ages of an object or scene. The invariance to image trams)atcaling, and rotation makes
them appropriate for stereo matching, tracking applicetiand also suitable for mobile robot
localization. SIFT features are good natural visual landwmappropriate for tracking over
a long period of time from different views, e.g., in [5] autB@ropose to use SIFT features
for building 3D maps. It has also been demonstrated that $&iures are appropriate for
recognizing general object classes [3].

In this work we present a method for accurate and robust gngupf local features be-
longing to planes of interior scenes such as walls, floor, @adar surfaces of objects. For
arbitrary set of images acquired from different views, thettmd organizes a huge number of
local SIFT features to fill the gap between low-level visidroiit end), i.e. outputs of vari-
ous filtering operations and high level vision, i.e., domgpecific reasoning about geometric



structures. The proposed method consists of three stepkration, selection, and merging
with verification. The exploration is a data driven techmdbat proposes a set of hypothesis
clusters. To select the final hypotheses a matrix of pret&®rs introduced. It evaluates each
of the hypothesis in terms of number of features, errorafigformation, and feature duplica-
tions and is applied in quadratic form in the process of ma&aton. Since the set of local
features vary from view to view, the goal of the merging psscis to combine the informa-
tion from multiple views to reduce the redundancy and toamtine selected representations.
As demonstrated by experimental results, the proposedanétian example of unsupervised
learning of planar parts of the scene and objects with plandaces.

2 Step 1. Exploration

Given a set of descriptors of local patches of interior s¢tkagjoal is to group them in clusters
in accordance with some geometric property or a model. Herexamine the planar surfaces.

Let us assume that we have a set of images {1, I, ...Iy } of particular interior scene.
The first step of our approach is the detection of DoG pointkstaa computation of SIFT de-
scriptor for each local region [4] (Figure 1). Next, for eguir of images{(Z;, [;)|i < j,i =
1,...,N =1, j = 2,...,N}, a set of matching features is determined. The matches are
obtained on the basis of Euclidean distance between SIFdrigess. Each SIFT feature in
image!; is compared to all SIFT features in imagfje The feature has a match, if the Euclidean
distance to the closest SIFT feature is at least 4 timeseahitran the Euclidean distance to
the next closest SIFT feature. L8}; denote a set of SIFT features hfhaving a match i
(Figure 2).

Figure 1: lllustration of feature extraction. Each circlaresponds to one DoG point. The
circle defines the size of local region described by SIFT dietss.

Figure 2: The best matches between two images.



Now, the task is to find ir5;; the features that belong to planar parts of the scene and to
group them in accordance with the plane they belong to. keptirpose we apply a plane to
plane homography [2]. The computation of the plane to plasradgraphy requires at least
four features in two images of the same plane. For a largafgetints the system is over de-
termined and the plane to plane homography is estimatedinpgeneous estimation method.
A reliable solution, imposes to start the process of plameckeng with a large set of small
SIFT feature clusters, i.e., initial hypotheses. The festwfS;;, here represented by their
coordinates{ f}; f} = (al,yl),t = 1,2,...,|S;;|}, are clustered by the-mean clustering al-
gorithm. The algorithm is performed several times, eacle starting with different arbitrarily
initial set of cluster centers. The valkalenotes the number of clusters obtained by one itera-
tion and depends on the number of featygg. It is as large asax{round(|S;;|/30), 3}.

Figure 3: Clusters obtained by one calllefnean clustering algorithm.

Obtained clusters of features define a set of initial hypeebel;; = {H);, H,..., H]}}.
For each hypothesi&/; a plane to plane homograpl#y; from I; to I; is computed by applying
the RANSAC algorithm (Algorithm 1). If the algorithm fails fond a solution the portions of
features denoted b¥ and K are decreased by a factor 0.95 and the RANSAC is proceeded

again.
Next, the coordinates of all matching featuresSpf are transformed to imagg in ac-
cordance with transformatio®);. Displacement erroré(f!, f{P););t = 1,2,...,|S;| are

computed as Euclidean distances. All features with digphent error below a pre-specified
tolerance are included in the hypothesis (Figure 4). Naéefdatures of the initial hypothesis
can also be excluded from the hypothesis. Then, a plane te plamography is recomputed
and new features are included in the hypothesis. The prosegpeated until there exist
features that can be added to the hypothesis. This is deratetsby Figure 5.

3 Step 2: Selection

Redundant set of clusters results in many ‘overlapping’ bypses. To reduce the redun-
dancy and to keep the hypotheses that efficiently group tteeaanatrix of preference is
introduced. Itis preferred to have hypothesis with largeber of features and small error-of-
transformation. Duplication of features in hypotheses hiss to be penalized. The selection of
hypothesis is performed by maximization of an objectivection of quadratic fornrhQh” [6].

h is a binary vector of length and denotes a set of selected hypotheses. A value 1 at pasitio



Algorithm 1 Random Sample Consensus Algorithm.

Assume:

The parameters are estimated fréndata items.

There arél" data items in total. (In our experimenis= 0.7 x T'.)

Tolerance corresponds to the distance of maximal allowable displacement betweersata match-
ing pair when transformed to the same image plane and is set to 1 pixel.

1. SelectD data items at random.
2. Estimate parameters

3. Find how many data items @f fit the model with parametens within a tolerance. Call this
K.

4. If K is big enough exit with success. (In our experimeiits= 0.8 x T.)
5. Repeat steps from 1 to/4times. (In our experiments=100.)

6. Fail if you get here.

(b)

Figure 4: (a) Features of one cluster (left) and their madhight). (b) The hypothesis is
enlarged by adding all the features that satisfy the préspedolerance of plane to plane
homographyP.

(b)

Figure 5: (a) One of the initial hypotheses. (b) The top meature pair do not satisfy the
tolerance criterium of plane to plane homograghytherefore, it is removed from the initial
hypothesis.

indicates the presence of théh hypothesis and a 0 its absen€gis an x n symmetric matrix.
The elements of) are defined ag,. = K1|Z.| — Kaf..; andg,, = 202t ater o
| Z| is the number of features in theth hypothesid?f;, i.e.,|Z.| = sum(H;). &, SO called




the error-of-transformation, is defined as r®%c 7.z, d(f, fP)*, 2 teizonz, A f, fP);)?).
The constantd(; and K, are the weights determined experimentally. (In our expenis
K, =14 andK2 = 1)

To maximize the objective functiohQh” we use the tabu search [T} that maximizes
the objective function represents the final selection. fedudepicts the hypotheses selected
by maximization process. Note that each of them describepltame.

(c) Hypothesis 3 (coat hanger)

Figure 6: The final set of hypotheses. Each of the selectedthgpis describes one plane.

3.1 Hypothesisrgection

Due to a small difference in camera locations for some aequimage pairs(/;, /;), the
computed plane to plane homography lacks the sensitiviytlaerefore groups together SIFT
features which do not lie on the same plane. See for examgled=i7. To refuse such hy-
potheses the rejection process is applied to the set of fypaitheses. For each hypotheﬂg
we find all image pairs that contain matches determined biagpethesis. The plane to plane
homography is determined for each such image pair. If foeadtl one image pair the plane to
plane homography does not satisfy most of the matches, t}b\@tlh\@/Slsng is removed from
further consideration.



Figure 7: Refused hypothesis. If i there exists an image pair for which the features of
selectedH,. do not lie on the same plan#&y is removed from further consideration.

4 Step 3: Merging

Selections on pairs of imag€$/;, [;)[i < j,i =1,...,N —1,7 = 2,..., N} end up with

a set of final hypothesed = {H,, ..., H,,}. Each hypothesis determines a cluster of SIFT
features. A SIFT feature is represented as a structure tiréeaoordinatesgz,y), a SIFT
vector, and a weight which determines the importance of ¢la¢ufe. At the beginning all
weights are setto 1.

In Z, there are images representing the same parts of the scgueeacfrom different
locations and viewing directions. Hence, many hypothesésrohine the same parts of the
scene. To reduce the redundancy and to enrich the final esgeg®n we apply t@¢{ a merging
process.

SIFT descriptors are highly distinctive local parts of therse therefore, even a small num-
ber of SIFT features uniquely determines the particular gfahe scene. If infd; andH; there
exists a subset of common matching features the hypothesesuwadidates for merging. Itis
still possible thatd; and H; describe two different planar parts or different parts afrdly
bending surface. To refuse such cases features in bothheges are examined in the fol-
lowing way. First, we divide the features éf; and H; in three subsetsA = H; N H;,

B = H;\ H;,andC = H; \ H,. Next, we find all image pairs that contain matches from all
three above determined subsets. We require at least onamsagk pair to do the merging.

By applying a plane to plane homography to each such imagengatest, if the matching
features from subsetd, B, andC' lie on the same plane. If for all such image pairs the test
is positive, we merge!; and H;. Features of both hypotheses are transformed to the same
image, for features it/; and H; the weights are summed, and all SIFT descriptors are kept.
The process of merging is repeated (also on newly genergpaatheses) until there is no pair

of hypotheses with sufficient number of matching featurelse Weights of features give us
information about feature stability. Features with highgids are more stable while feature
with low weights are very likely outliers.

The reader has to keep in mind that the merged hypothesetillayelg hypotheses. By ac-
quiring new images of the scene new information is obtaimetithe rejection of a hypothesis
is still possible.



5 EXxperiments

he results are presented for two experiments. In the firsggraxyent the scene is fixed. In the
second the configuration of objects in the scene is diffdi@rthe acquired set of images. In
both experiments we deal with gray images of resoluti¢i x 480.

In the first experiment the feature clustering was generated 15 images leading to 86
final hypotheses. After the process of merging we end up witiff@ent planes (Fig. 8).

In the second experiment 10 different images were acquifdek process ends up with
54 hypotheses (Fig. 9). Some hypotheses of feature clustelenging to the some plane,
were not merged due to the sparse nature of SIFT featuresamificient number of acquired
images. Since the scene is altered from image to image, sitsean show the location of
features belonging to one cluster, even though the plamaispaccluded by other objects.

Figure 8: Experiment with a fixed scene. The method finds seltesters of SIFT features
belonging to seven different planar parts of the scene.

6 Conclusion

In the work we represent a method for clustering the SIFTurest belonging to planar sur-
faces. The clusters obtained through the phases of exiploraelection and merging can be
used as initial structures for building higher level scearesentations. The proposed method
can also be understood as unsupervised learning of objéttplanar parts, what is demon-
strated by the second experiment. The attached weight®t8IfT descriptors can also be
exploit to detect changes in the interior scene, e.g., aigog wall newspaper, a coat hanger,
and would together with time parameter allow continuouglttme learning.



Figure 9: Scene is altered from view to view. Eleven différdnsters are found belonging to
five different planar parts of the scene. Only six clusteesthsplayed.
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