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Abstract

Support vector machines are often considered to be black
box learning algorithms. We show that for linear kernels
it is possible to open this box and visually depict the con-
tent of the SVM classifier in high-dimensional space in the
interactive format of a nomogram. We provide a cross-
calibration method for obtaining probabilistic predictions
from any SVM classifier, which control for the generaliza-
tion error. If we employ logistic regression for calibration,
the effect of each attribute can be represented on the log
odds ratio scale. We also describe an approach to captur-
ing nonlinear effects of continuous attributes with an ordi-
nary linear kernel, and adapt the nomogram so that these
nonlinear effects can be graphically rendered.

1. Introduction

Within predictive data mining, methods that build clas-
sification models have received much attention recently.
These methods consider a set of class-labelled data in-
stances and induce classification models that should both
predict well and, preferably and through the model inspec-
tion, can uncover interesting relations and patterns. The
latter is particularly important when predictive data mining
is used for knowledge discovery, where presentation of the
classification model should help the user to answer ques-
tions such as “Which are the most important factors that
determine the class of the instance?”, and “What is the mag-
nitude of the effect of these?”, and “How do various factors
interact?”, and alike.

A support vector machine [18] (SVM) is a recently
very popular and much applied supervised machine learn-
ing method. It is known for good predictive performance,
but may be at a disadvantage in terms of intuitive presen-
tation of the classifier, particularly when compared to some
other supervised learning techniques like classification trees
and rules. While an SVM model can be presented as a

weighted list of support vectors, e.g., a subset of learning
instances that defines the decision boundary, this only re-
duces the number of instances to consider in the interpreta-
tion but does not answer any of the questions posed above
directly.

In the paper, we propose a new approach for visualiza-
tion of SVM models. The main advantage of our approach
is that it captures a complete classification model in a single,
easy-to-interpret graph and provides means to easily study
the effects of predictive factors. The approach is limited to
SVM models with linear kernel functions, which, despite
the simplicity when compared to those that use more com-
plex kernels, have shown useful in a number of practical
applications.

The particular model visualization we use is called a
nomogram. Nomograms were invented by French mathe-
matician Maurice d’Ocagne in 1891 to graphically repre-
sent a class of mathematical functions. To visualize a lo-
gistic regression model, the use of nomograms was first
proposed by Lubsen and coauthors [14]. With an excel-
lent implementation of logistic regression nomograms in
S-Plus and R statistical packages by Harrell [5], the idea
has recently been picked up and the nomograms have been
used much to present probabilistic classification models in,
for instance, clinical medicine and oncology (e.g., [12]; see
also http://www.baylorcme.org/nomogram/modules.cfm).

The nomograms for support vector machines that we in-
troduce in the paper use a similar presentation as those of
Harrell for logistic regression. To illustrate the general idea,
consider the nomogram in Figure 1 which represents a lin-
ear SVM model induced from the Boston Housing data set
(StatLib, http://lib.stat.cmu.edu/datasets/, also see [6]). The
Housing data set consists of 506 different instances (areas),
where about 50% of them have median value of housing
price lower than $21000. For convenience of this presen-
tation we use only four representative attributes: the av-
erage number of rooms per dwelling (Rooms), weighted
distances to five Boston employment centers (Employ-
mentdis), pupil-teacher ratio by town (Pupil-teacher, dis-



cretized to two nominal values), and proportion of lower
status population (Low status, discretized to four nominal
values). We induced an SVM model with a linear kernel for
classifying the median value into two groups: the expen-
sive areas with the median values above $21000, and the
cheap areas. Furthermore, we employed cross-calibration
(described in Section 2.2) based on univariate logistic re-
gression to obtain probabilistic estimates of the classes.

Figure 1. A nomogram of the SVM model that
predicts the probability of costly housing in a
given Boston area. The probability estimate
for a specific instance is indicated by dots.

To make a prediction using a nomogram, the contri-
butions of attributes on the scale of the log odds ratios
[10] (topmost axis of the nomogram), are summed up and
used to determine the probability whether price is less than
$21000 (bottommost axis of the nomogram). For instance,
an area with 6 rooms per average dwelling, where the dis-
tance from employment centers is unknown, with a high
pupil-teacher ratio and a high rate of lower status popu-
lation, the overall sum of contributions is0.21 + 0.00 +
0.49 + 0.5 = 1.20. This sum is then projected from the
‘Log OR Sum’ axis to the bottommost ‘P(<= 21)’ prob-
ability axis, where the final probability of the target class
is approximately 0.76. On the other hand, if the town was
known to be far away from employment centers (12.5),Em-
ploymentdiscontribution to final sum would be around 1.5
instead of 0. Accounting for this change in the overall sum,
the final probability would be higher than 0.93.

Besides prediction, nomograms provide a clear and com-
prehensive presentation of the underlying model. Our SVM
nomogram from Fig. 1, for instance, clearly exposes that
housing values in Boston from a particular data set are most
associated with the average number of rooms. The cor-
responding line in the nomogram is the longest, and try-
ing to predict housing values for a certain area simply with
the information that the average number of rooms is small
(3.2), the probability for price under $21000 jumps from
a priori 0.5 to over 0.9 a posteriori. The other three at-

tributes carry less importance, especially the pupil-teacher
ratio. Our nomogram also exposes how different attribute
values affect the outcome; for instance, the value of hous-
ing goes up when the employment centers are close. Note
that we can include continuous as well as discrete attributes
in the nomogram. The nomogram also clearly exposes the
“neutral” values of the attributes, e.g. values which do not
affect the probability of the outcome from the prior. If a
particular attribute value is not given for the test instance,
those neutral values will be effectively imputed.

Nomograms – like the one from our example – are used
to assess the probability of the observed outcome, where the
effects of the attributes are independent given the class and
are added up to form the final prediction. For some instance
i, described by a set of attributesA = {a1, a2, . . . , ak}, and
a labely, the nomogram can visualize a probability function
of the type

P̂ (y|i) = F
(
b +

∑

j

fj(aj(i))
)

(1)

whereb is a constant delineating the prior probability in the
absence of any attributes,fj is aneffectfunction that maps
the value of an attributeaj into a point score, andF is a
function that maps theresponseto the instance into the out-
come probability. Notice that the class of models based on
the above model type are the generalized additive models
(GAM, [7, 8]).

We start our paper by showing how certain support vec-
tor machines can be decomposed into the above additive
model. To enable the use of the nomograms for support
vector machines, we need them to predict outcome proba-
bilities. The basic SVM alone does not attempt to model
the probability, just the distance of an instance to a sepa-
rating hyperplane in the instance space, each side of which
represents a different class. Therefore, the effect functions
need to be calibrated and thus placed on the log odds ratio
scale, which is used by the nomogram representation. The
benefits of this visualization technique and its application
on several data sets are given in the discussion. Beyond
the study of SVM models, we also show that nomograms
are suitable when these are compared to other generalized
additive models, such as the naı̈ve Bayesian classifier. In
the discussion, we also experimentally assess our underly-
ing assumption that distance to the separating hyperplane
can provide a good estimate of outcome probabilities.

2. Methodology

2.1. Obtaining the Effect Functions from an SVM

Not every support vector machine is appropriate for vi-
sualization using a nomogram. For that purpose, we will de-
scribe a restricted formulation. The first restriction is based



on the ability to additively separate the individual contribu-
tion of each attribute towards the response as in (1). This
is made feasible by using a linear kernel, based on the dot
product. The second restriction is linked to how we rep-
resent the lack of information: ideally, zero value of the
transformed attribute should indicate the lack of informa-
tion about an attribute.

For support vector machines, as with logistic regression,
all the attributes need to be transformed into real-valued
variables before a model can be trained. Support vector ma-
chines are not disturbed neither by attribute spaces of high
dimensionality, nor by collinear or coplanar placement of
instances. We standardize continuous attributes so that zero
implies the mean, and±1 implies one standard deviation
distance from the mean. AK-valued discrete attributea
is transformed into a set ofk variablesx1, x2, . . . , xK , so
that given the value ofa = v, xv = 1 andxi = 0, v 6= i.
This way, the transformation function can represent each
attribute value with its own dimension and also provides
ground to handle the missing values by setting all corre-
spondingxi to zero. Altogether, the transformation will be
captured by thetransformationfunctiont(i). The range of
the label is usually<y = {−1, 1}.

GivenN training instancesxj , j = 1, 2, . . . , N , the re-
sulting support vector model can be described with a weight
vectorα and the biasb. We will not describe the actual
learning procedure and its criteria, which are better de-
scribed elsewhere, e.g., [18]. The responseδ(i) for an in-
stance, given a kernel functionK(xi, xj) can be described
as:

δ(i) = b +
N∑

j=1

y(xj)αiK(t(i),xj) (2)

Here, P̂ (y|i) = F (δ(i)). While b in (2) and (1) corre-
spond exactly, the effect functions need to be calculated. If
the kernel functionK is a dot product, we can decompose
this equation into the form of (1). Assume each continuous
attributeal and eachvalueof a discrete attributeal corre-
spond to thek-th component of the transformed instance
x = t(i)k. Thereby, for a continuous attributeal, x will in-
dicate the standardized value ofal. For a discrete attribute
al, xi will take the value of 0 or 1, depending on whether
al = i. The effect function in all cases is simply linear
fk(x) = βkx, and the factor is calculated as:

βk =
N∑

j=1

y(xj)αjxjk (3)

From this, it is easy to see thatδ(i) = b +
∑

k βkt(i)k.

2.2. Cross-Calibration

In general, the responseδ(i) to an instance in SVM is
the (signed) distance of instance to the bounding hyper-

plane. Obtaining the function that maps the label poste-
rior probability into a response is a requirement for using
the nomogram-based visualization of a model, as the scale
of the visualized effect functions is based on probability.
While the link function is simply the logit transform for lo-
gistic regression, there is no direct mapping for SVM, but
there are methods for performing this transformation. In-
stead of special-purpose algorithms such as [17], we can
interpret the task of obtaining the probability of a particu-
lar instance’s label given the instance’s response simply as
a calibration learning problem considering the response as
the single continuous attribute in this problem. In that sense,
all generalized additive models can be seen as constructive
induction methods that yield a single continuous attribute
useful for predicting the label. In the work we report on
here, we have applied the univariate logistic regression.

It is also possible to formulate the learning problem so
that the error arising from generalization is accounted for.
Namely, a classifier might achieve perfect separation on the
training set, but not on a separate test set. One can moderate
the predictions by using Bayesian priors or regularization,
but a particularly simple and powerful approach is based
on an analogy with the wrapper approach [13]. Therefore,
if we calibrate on data that was not used for training the
response, we capture the uncertainty associated with gener-
alization to unseen data. We can perform this procedure for
all learning algorithms, but care must be taken to prevent
the arbitrariness of the response function range. For that
reason, we use the training data to find a scalarτ so that
maxi τδ(i)−mini τδ(i) = 1.

There are two parameters to such a calibration proce-
dure. The first parameter is the data hiding protocol used
for separating training from test data. For example, for 10-
fold cross-calibration, 90% of the data is used for training
and 10% remains hidden for calibration. The more data we
hide, the more conservative are our predictions. The second
parameter is the number of replications. A single cross-
calibration depends on a particular shuffling of instances.
To remove this dependence, the cross-calibration procedure
should be replicated as many times as it is practical.

If we use univariate logistic regression as the calibration
learning algorithmC, the end result can be represented as
P̂ (y(i) = 1|δ(i)) = (1 + exp(b′ + β′τδ(i)))−1, where
b′, β′ andτ represent the maximum likelihood logistic re-
gression model learned by calibration. The inverse link
function is here defined asF (δ′) = (1 + exp(δ′))−1, and
the calibrated response function on the log odds ratio scale
is δ′(i) = b′ + β′τδ(i). It is then simple to transform the
effect functions and the bias in (3), so that they match the lo-
gistic regression coefficients precisely. This way we obtain
the zero threshold̂b which marks both the outcome proba-
bility of 0.5 and the log odds ratio of0.0, and theβ̂k which
indicates the effect of a particular nominal attribute value, or



R← ∅ {Calibration training set.}
for all r : 1 ≤ r ≤ R do {for each replication}
F1 ∪ F2 ∪ . . . ∪ FX ← T {Generate folds.}
for all x : 1 ≤ x ≤ X do {for each fold}

δ̂ ← L
(⋃

i 6=x Fi

)
{Train.}

τ̂ ←
(
maxi,j∈T (δ̂(i)− δ̂(j))

)−1

{Range.}
for all i ∈ Fx do {for each test instance}
R ← R∪{〈τ̂ δ̂(i), y(i)〉} {Record the response.}

end for
end for

end for
δ ← L(T ) {Response function.}
τ ← (maxi,j∈T (δ(i)− δ(j)))−1 {Range.}
P̂ (y(i) = 1|τδ(i)) ← C(R) {Probability function.}

Algorithm 1: A general scheme of a cross-calibration pro-
cedure, based onX folds, R replications, the response
learning algorithmL, the calibration learning algorithmC,
and the training dataT .

the change in the effect of a particular continuous attribute
when it increases by 1:

b̂ = b′ + β′τb (4)

β̂k = β′τβk (5)

Both b̂ and β̂k are now on log odds ratio scale, and it is
obvious how they can be visually presented in a nomogram.

2.3. Nonlinear Effects for Continuous Attributes

The above learning algorithms are primarily appropriate
for nominal attributes. Both logistic regression and linear
SVM have linear effect functions, and are therefore gen-
eralized linear models for continuous attributes. Unfortu-
nately, in real-life data many attributes have non-linear ef-
fects on the outcome. For example, trying to predict health
status from body temperature, both high and low temper-
atures indicate trouble, and this pattern cannot be captured
by a single real-valued variable. Non-linear kernels in SVM
can capture these effects, but we cannot use nomograms for
visualizing them. Instead, we can allow for the nonlinear
effect function of a single attribute, but using ordinary lin-
ear SVM. A general solution that applies to all these meth-
ods isdiscretization. If a continuous attribute is converted
into a nominal attribute based on intervals, we obtain an ex-
tremely simple method for handling nonlinear effects. The
knowledge that a particular nominal attribute is based on a
continuous one can be profitably employed in the presenta-
tion of the results.

3. Experiments

In this section, we address two questions. The first one
is on performance of support vector machines with linear
kernels and with probability estimation and calibration as
proposed in this paper. To address this, we present an exper-
imental analysis and compare the nomogram-based proba-
bility estimations with those obtained from SVM with RBF
kernel (Did we lose anything assuming the linearity?) and
two popular methods for probabilistic classification, namely
logistic regression and naı̈ve Bayesian classifier (What is
the overall performance in class probability prediction?).
The second question addresses the utility of visualization,
and we show that besides revealing the structure of the
SVM classifier, nomograms may well be used as a data
mining tool to depict different properties of problem do-
mains. Also, as applicable to other generalized linear mod-
els, nomograms may be used to study the differences be-
tween various modelling methods. For the later, we present
a nomogram-based comparison of a linear-kernelled SVM
and the näıve Bayesian classifier model.

3.1. Classification Performance

All experiments were performed within the Orange
toolkit [4]. We employed LIBSVM [2] with default settings
for training the SVM classifiers, and iteratively re-weighted
least squares fitting [15] of the logistic regression model,
as implemented in the Orange extensions package [11]. We
experimented on 16 well-known UCI [9] data sets with a bi-
nary outcome. For data sets with more than 1000 examples
(‘mushroom’ and ‘spam base’) we have selected a stratified
random subset of 1000 examples which were used through-
out the experiments.

We evaluated each method on three criteria: classifica-
tion accuracy, outcome probability estimation (as measured
by Brier score, the mean square error of predicted class
probabilities given the true class probabilities for each in-
stance [1]), and instance ranking with respect to the out-
come (as measured by the area under the receiver operating
characteristic). Table 1 compares the naı̈ve Bayesian classi-
fier (NB), logistic regression (LR), support vector machines
with RBF kernels (SVM), and support vector machines with
a linear kernel (dot and dot’) on each of these three criteria.
The first six data sets (the upper part of the table) include no
continuous attributes. Elsewhere, the continuous attributes
were discretized for NB and dot’ into 10 intervals with ap-
proximately equal number of examples for each value, as
to provide the capacity for handling nonlinear effects. In
computation of the Brier score, the predicted probabilities
were calibrated for all methods, except for logistic regres-
sion (which is considered not to require calibration). Note
that Brier score measures the loss, so lower values are better



Classification accuracy Brier score Area under ROC
NB LR RBF dot dot’ NB LR RBF dot dot’ NB LR RBF dot dot’

breast (lju) 0.73 0.70 0.73 0.69 0.40 0.42 0.38 0.39 0.70 0.67 0.56 0.58
breast (wsc) 0.97 0.93 0.98 0.96 0.05 0.15 0.05 0.06 0.98 0.91 0.98 0.96

mushroom 1.00 1.00 0.99 1.00 0.02 0.01 0.03 0.01 1.00 0.99 0.99 1.00
shuttle 0.93 0.99 0.93 0.96 0.08 0.02 0.11 0.10 1.00 0.99 0.94 0.96
titanic 0.78 0.78 0.79 0.78 0.33 0.33 0.32 0.35 0.71 0.76 0.68 0.70
voting 0.90 0.96 0.95 0.95 0.13 0.06 0.07 0.07 0.97 0.99 0.96 0.95

australian 0.86 0.85 0.86 0.85 0.84 0.21 0.30 0.22 0.24 0.24 0.92 0.85 0.86 0.86 0.85
german 0.77 0.76 0.73 0.76 0.76 0.33 0.33 0.36 0.34 0.34 0.79 0.79 0.59 0.68 0.69

hepatitis 0.86 0.83 0.84 0.85 0.83 0.21 0.26 0.23 0.24 0.27 0.86 0.85 0.70 0.76 0.71
horse-colic 0.79 0.82 0.82 0.82 0.79 0.32 0.29 0.26 0.28 0.30 0.81 0.86 0.80 0.80 0.77

housing 0.81 0.86 0.87 0.86 0.83 0.27 0.19 0.19 0.22 0.25 0.89 0.94 0.87 0.86 0.83
ionosphere 0.91 0.83 0.94 0.81 0.90 0.15 0.26 0.13 0.31 0.17 0.92 0.84 0.92 0.77 0.89

liver 0.65 0.69 0.71 0.68 0.73 0.43 0.42 0.41 0.44 0.41 0.69 0.72 0.68 0.66 0.70
pima 0.75 0.78 0.76 0.78 0.75 0.32 0.31 0.34 0.33 0.35 0.83 0.83 0.70 0.73 0.72

post-op 0.66 0.68 0.73 0.70 0.69 0.40 0.49 0.39 0.40 0.39 0.41 0.36 0.50 0.48 0.48
spam base 0.91 0.91 0.91 0.92 0.92 0.16 0.19 0.14 0.20 0.12 0.94 0.89 0.90 0.91 0.91

avg rank (cont) 3.3 3.5 2.2 2.6 3.4 2.8 3.1 2.3 3.7 3.1 1.9 2.6 3.4 3.4 3.7
F = 1.24, p = 0.31 F = 1.04, p = 0.40 F = 2.51, p = 0.06

avg rank (all) 2.7 2.7 2.0 2.6 2.5 2.5 2.0 3.0 1.6 2.3 3.1 3.1
F = 0.95, p = 0.42 F = 1.67, p = 0.19 F = 6.19, p = 0.00

Table 1. Comparison of the na ı̈ve Bayesian classifier (NB), logistic regression (LR), SVM with the RBF
kernel (RBF), SVM with the linear kernel (dot) and linear SVM with discretization (dot’) on several UCI
data sets.

than higher.

The observed methods perform similarly, with few ex-
ceptions. For instance, linear SVM performs poorly on
‘ionosphere’ unless the attributes are discretized, apparently
indicating non-linear attribute effects (which will be studied
further in Sect. 3.2). The SVM using the RBF kernel cap-
tures this nonlinearity better than any method based on dis-
cretization. An unexpectedly good performer is the naı̈ve
Bayesian classifier, which achieved very good probability
estimation results, probably helped by calibration, and the
best ranking results.

Since our paper shows how to visualize SVM with linear
kernels, it is of interest how much performance needs to be
given up by not using the more powerful RBF kernels. As
expected, SVM with RBF kernels generally performs best
of all methods in classification and probability estimation,
but not in ranking. Nonetheless, for classification alone,
SVM without discretization is quite good. The difference
in classification accuracy between RBF and dot kernels is
only a few percent (except in the already mentioned ‘iono-
sphere’), with RBF kernels being better on 5 and linear on
6 data sets. Results with respect to the other two criteria
are similar, with 6 (RBF) vs 5 (linear) wins on Brier score,
and 3 vs 3 on area under ROC. By Wilcoxon signed ranks
tests none of these results contradicts the null hypothesis of

equivalence between the methods.

We also assumed that discretization could be used to al-
leviate the linear restrictions of the model. Experimental
results (dot vs dot’) do not confirm that. With exception of
‘ionosphere’ data set, discretization does not seem to have
a large and consistent effect on linear SVM, and Wilcoxon
test again fails to reject the null hypothesis. This question
should, however, be further investigated. It is possible that
our data sets do not contain larger non-linear relations, and
that this is the reason that discretization had little benefi-
cial effect on the results. Furthermore, a more sophisticated
discretization algorithm might affect the results: our dis-
cretization is quite granular.

To test whether the differences between the tested algo-
rithms are statistically significant, we used non-parametric
statistical tests. We computed average ranks of the meth-
ods on all and, separately, on data sets that included con-
tinuous attributes. Neither Friedman test nor the stronger
Iman-Davenport variation of it [3] detected any significant
differences in any of the three performance criteria, except
in the area under the ROC. The Iman-Davenport statistic is
illustrated asF in the Table 1, and the associatedp-value
asp. Two average ranks over all the domains with contin-
uous attributes in the AUC group are significantly different
(p = 0.10) if their difference is greater than 1.3. Two av-



Figure 2. An SVM nomogram for the ‘Housing’
data set with a 2-dimensional presentation of
ordered variables.

erage ranks over all the data sets are significantly different
(p = 0.05) if their difference is greater than 0.9. Thereby,
the AUC of NBC is significantly different from that of all
SVM classifiers.

3.2. Examples of Nomograms

We here try to justify the value of nomograms by provid-
ing some practical examples where nomograms depict inter-
esting features from the data that would otherwise remain
hidden. We start by showing a two-dimensional graphical
depiction of effect functions. Next, we show the difference
between linear and discretized attributes, where the nomo-
gram exhibits some of the problems that are known for lin-
ear SVM’s assumption of effect linearity. In the end of this
section we compare the SVM and the naı̈ve Bayesian clas-
sifier on the ‘Titanic’ data set using nomograms. We will
show how and why these two methods differ and explain
why they have comparable classification accuracy, but dif-
ferent when observing Brier score.

3.2.1 Two-Dimensional Depiction of Effect Functions

The effects of a discretized continuous attribute are not very
clear from the nomogram in Fig. 1, with labels appearing
in the same line. An alternative approach is illustrated in
Fig. 2, where the effect of a discrete attribute is presented
in the form of a two-dimensional graph. The vertical di-
mension is used to list different discrete values and the hor-

Figure 3. An SVM Nomogram induced from
the ‘BUPA’ data set.

izontal dimension shows the effect of the value on the out-
come. This graph reveals how the attribute’s impact on the
outcome probability gradually changes as its value changes
from the lowest to the highest interval. This kind of presen-
tation is suitable for ordered discrete attributes, as vertically
ordering unordered attribute values would imply structure
that does not exist in the data. It is also easy to see that con-
tinuous attributes can also be rendered in such a way, but
SVM’s linear effect functions are not particularly illuminat-
ing.

3.2.2 Linear vs. Non-Linear SVM

In the experimental comparison of SVM to other machine
learning techniques, we showed that the linear SVM is as
good as non-linear SVM using the RBF kernel on most
data sets. Linear SVM, however, has difficulties when deal-
ing with nonlinearities in attributes. The problems may be
solved without non-linear kernels simply by discretizing the
problematic attribute before employing linear SVM. In this
section we will compare both approaches in the ‘BUPA liver
disorder’ data set [9]. The first five attributes are the blood
tests which are thought to detect liver disorders. On the
other hand, liver disorders themselves might arise from ex-
cessive alcohol consumption, and thedrinksattribute corre-
sponds to number of half-pint equivalents of alcoholic bev-
erages drunk per day.

Fig. 3 shows an SVM nomogram with continuous at-
tributes in the original form. The nomogram is quite trans-
parent and shows that a high value ofsgpt indicates al-
most a certain presence of liver disorder, while lowsgot
implies that the person has very probably good liver health.
We have discretized thedrinksandgammagtattributes and
Fig. 4 shows the resulting SVM nomogram of these at-
tributes alone. The thickness of each bar represents the



Figure 4. An SVM nomogram of two dis-
cretized attributes the ‘BUPA’ data set, with
a two-dimensional graph presentation of the
effect functions.

number of instances in the corresponding interval. The in-
teresting point of comparison between the two nomograms
in Fig. 3 and Fig. 4 is the attributedrinks. Whilst the first
model assumed the linearity of influence of this attribute, it
is clear from the second model that drinking less than cer-
tain amount of alcohol a day (5.5) has a low effect on liver
health. However, when drinking more than this amount, the
effect of alcohol may have drastic consequences.

The attributegammagtas depicted in Fig. 4 manifests an-
other possible problem that we might encounter when deal-
ing with linear models. Notice that the attributegammagtin
Fig. 3 has a strong positive impact on liver health progno-
sis, but a comparison to the same attribute in the first nomo-
gram (Fig. 4) shows that the impact ofgammagtreaches a
plateau at the value of around 35, while the linear model
continues to extrapolate the growth of the impact in spite of
the data. This is a very nice example of over-emphasizing
effect when using linear SVM and other linear models.

3.2.3 Support Vector Machines vs. the Näıve Bayesian
Classifier

Judging from the experimental comparison of SVM to other
machine learning techniques, SVM sometimes achieves
worse results on Brier score while having comparable clas-
sification accuracy at the same time. ‘Shuttle’ and ‘Titanic’
are examples of such data sets. The reason for the prob-

Figure 5. A na ı̈ve Bayesian nomogram for the
‘Titanic’ data set.

Figure 6. An SVM nomogram for the ‘Titanic’
data set.

lem can be easily explained with a nomogram. We will
compare the naı̈ve Bayesian classifier (NBC) and SVM to
predict the probability for passenger’s survival of the HMS
Titanic disaster. The NBC nomogram [16] on Fig. 5 (the
data set was obtained at http://hesweb1.med.virginia.edu-
/biostat/s/data/), includes three attributes: the passengersta-
tus(first, second, and third class, or a crew member), theage
(adult or child), and thesexof the passenger. For NBC, the
attribute with the biggest potential influence on the proba-
bility of survival is gender of the passenger: being female
increases the chances of survival most (log odds of 1.7),
while being male decreases the odds (log odds of about
−0.6). Of the three attributes, the age is apparently the
least influential, although children had a higher probabil-
ity of survival. Most lucky were the passengers of the first
class for which – considering the status only – the prob-



ability of survival was much higher than the prior. Com-
paring this nomogram to the SVM nomogram in Fig. 6 of
‘Titanic’, we observed a very interesting difference between
them. SVM, as it is known, aims to optimize the classifica-
tion accuracy and considering this it induced a model that
predicts survival of a passenger by considering only thesex
attribute. Both methods, NBC and SVM, consider this at-
tribute as very important, but unlike NBC, SVM disposes
of age and status as completely irrelevant attributes. Using
only the sex attribute, SVM achieves comparable classifi-
cation accuracy, but the fidelity of the outcome probability
estimates are slightly worse, as measured by Brier score.

4. Discussion

We have shown that support vector machines with linear
kernels are not black box models even in spaces of high di-
mensionality, counter to the popular belief. We have pro-
vided the algorithm for converting such a support vector
machine into a form of a generalized additive model. Fur-
thermore, we have given a novel calibration algorithm based
on logistic regression which captures the generalization er-
ror of any additive model. Finally, we have extended the
form of a nomogram with two-dimensional graph represen-
tations of a nonlinear effect function. With the examples of
Sect. 3.2, we pointed out that nomograms may be the right
tool for experimental comparison of different models and
modelling techniques, as it allows to easily spot the simi-
larities and differences in the structure of the model. Fur-
thermore, we can use nomograms to outline possible weak-
nesses of models, such as those of linear models by com-
paring them to the models obtained on discretized data.

Using linear kernels in SVM does reduce the perfor-
mance slightly in comparison with more powerful kernels,
but the differences were not statistically significant. Al-
though RBF kernels are slightly better than linear ones,
the differences in performance are small, and a minor im-
provement from the RBF kernel is rarely worth the result-
ing opaqueness of the model. Nonetheless, we have de-
scribed how nonlinearity can be attained using a linear ker-
nel through attribute discretization, remedying the perfor-
mance in certain nonlinear data sets, such as ‘ionosphere’.
A further approach would be to seek and allow for interac-
tions, which can be represented as joint effect functions of
two attributesf(a, b).

Our methodology can be improved. The normalization
(which is a part of calibration) can be sensitive to outliers,
and a more robust approach could be based on the per-
centiles of the response function range, rather than its min-
imum and maximum values. The nomogram could be gen-
eralized from using log odds ratio scale so that other ap-
proaches calibration could be supported; calibration with
logistic regression is quite restrictive, and may be inappro-

priate for imbalanced or skewed data sets. Finally, our dis-
cretization method is a baseline one and was not tuned for
performance which would improve with better algorithms.
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