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2), http://dx.doi.org/10.1016/j.neuco
a b s t r a c t

In recent years there has been a growing interest in hardware neural networks, which express many

benefits over conventional software models, mainly in applications where speed, cost, reliability, or

energy efficiency are of great importance. These hardware neural networks require many resource-,

power- and time-consuming multiplication operations, thus special care must be taken during their

design. Since the neural network processing can be performed in parallel, there is usually a requirement

for designs with as many concurrent multiplication circuits as possible.

One option to achieve this goal is to replace the complex exact multiplying circuits with simpler,

approximate ones. The present work demonstrates the application of approximate multiplying circuits

in the design of a feed-forward neural network model with on-chip learning ability. The experiments

performed on a heterogeneous PROBEN1 benchmark dataset show that the adaptive nature of the neural

network model successfully compensates for the calculation errors of the approximate multiplying

circuits. At the same time, the proposed designs also profit from more computing power and increased

energy efficiency.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Artificial neural networks can be implemented in many dif-
ferent ways. For the majority of research and commercial needs it
is now common to implement them as software for general-
purpose processors. However, there are many niche applications,
for example real-time systems requiring very large computational
power, fault-tolerant systems for the processing of safety-critical
tasks, energy-efficient solutions for mobile devices, and massively
produced price-sensitive consumer electronic products, for which
the software solutions are not satisfactory.

In contrast to the mainly sequential software neural network
models, the hardware implementations or hardware neural net-
works can take advantage of the neural network model architecture.
In comparison to the ordinary approaches, the hardware designs can
be better tailored to the processing needs, which can result in much
higher performance and/or smaller power consumption.

Hardware neural networks are built using many different tech-
nologies ranging from digital, analogue, and hybrid microchips to
even optical computing [1–3]. Focusing on microchips, the design of
the application-specific integrated circuits (ASICs) is time consuming
and requires a lot of resources. An interesting low-budget alternative
has been found in reconfigurable devices, among which the field
programmable gate array (FPGA) technology is the most widely
ll rights reserved.
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known [4,3]. It consists of pre-built logic blocks and programmable
routing resources that can be arbitrarily configured to implement
custom hardware functionality. Although smaller and slower than
ASIC solutions, the FPGA chips provide hardware-timed speed and
reliability and rapid-prototyping capabilities. Moreover, their concept
of independent building blocks allows us to build autonomous
circuits leading to massively parallel designs.

Although the digital designs of hardware neural networks
usually result in larger circuit sizes compared to the analogue ones,
they have many advantages over them. They are less susceptible to
noise and temperature variations and so the computation is repea-
table and exact to the required precision. It is also possible to
perform on-chip learning and store the obtained weights in the chip
memory. Moreover, the digital design enables a straightforward
integration of the hardware neural network module into the more
complex digital designs [2,5,6].

The choice of technology dictates the usage of a neural
network model and vice versa. Besides the implementations of
models like feed-forward neural networks, radial bases function
models, and Kohonen maps, new models are emerging, for
example spiking, cellular and neuromorphic neural networks to
mention just a few [2]. To clearly demonstrate our ideas, we have
confined our work to the well-known feed-forward neural net-
work with a sigmoid activation function and the integrated on-
chip back-propagation learning ability.

The basic neural network processing unit is an artificial
neuron. In the most commonly used McCulloch and Pitts model,
the activation potential, calculated as the weighted sum of the
ate multipliers in hardware neural networks, Neurocomputing
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neuron inputs, is passed to the non-linear activation function to
get the neuron output. This processing involves a lot of multi-
plications and additions as well as a computation of non-linear
functions. Many attempts were made to simplify and speed-up
the above operations. Skrbek [7] presented an optimized imple-
mentation of multiplication, square root, logarithm, exponent and
non-linear activation functions by using only linear approxima-
tions, which in hardware design simplify to shift registers and
adders only. A lot of work has also been done on the calculation
and mapping of the activation functions [5–8].

To make efficient use of the parallelism that is inherently
present in neural network models, the designs which enable
concurrent use of a large number of multiplication circuits are
desired. When resources are limited, the number of multiplication
circuits can be increased only if the circuits are implemented by
using fewer resources. Due to the complexity of the circuits
needed for the floating-point operations, the first idea is to
constrain the designs to the fixed-point implementations, which
can make use of simpler integer adders and multipliers [9,10]. For
an exact fixed-point multiplication a matrix multiplier is usually
used. Unfortunately, it typically requires a lot of space on the chip,
i.e., the m-bit matrix multiplier is composed of m�2 m-bit carry-
save adders and one m-bit carry-propagate adder. Therefore,
special care must be taken to minimize the bit precision of the
inputs and weights in order to reduce its size [11].

For further optimization, ideas similar to the work of Skrbek
[7] can be applied directly to the multipliers. Many approximate
multiplication circuits exist, for example truncated and logarith-
mic multipliers [12–15], which consume fewer resources and less
power and are faster than the exact multipliers. When using
them, calculation errors might cause a serious degradation of the
neural network’s performance, if the teaching is performed off-
chip. However, if the neural network learning is performed on-
chip, the models should compensate for erroneous calculations
during the learning phase, leading to simpler designs without
considerably affecting the learning capability.

Truncated multipliers are extensively used in digital signal
processing, where the importance of the multiplication speed as
well as the resource and power consumption prevail over a high
computation accuracy. The basic idea of these techniques is to
discard some of the less significant partial products and to introduce
a compensation circuit to reduce the approximation error [14].

Yet another approximate way to perform multiplication is to use
a logarithmic approximation [12]. Logarithmic multiplication intro-
duces an operand conversion from the integer number system into
the logarithm number system. The multiplication of two operands
is performed in three phases: calculating the operand logarithms,
the addition of the operand logarithms and the calculation of the
antilogarithm. The main advantage of this method is the substitu-
tion of the multiplication with addition. However, this simple idea
has a substantial weakness—the logarithm and anti-logarithm
cannot be calculated exactly. In the well-known Mitchell algorithm
[12] for logarithmic multiplication, a significant error is caused
by the first-order Taylor series expansion of the logarithm and the
antilogarithm functions; therefore, an error-correction circuit is
preferred.

The one stage iterative logarithmic multiplier [15] follows
the ideas of Mitchell, but uses different error-correction cir-
cuits. The final hardware implementation involves only one
adder and a few shifters, resulting in the reduced usage of logic
resources and power consumption. As the 16-bit multiplier
with one error correction circuit proposed by Babic et al. [15]
showed substantial resource and power savings, while keeping
the average relative error under 1%, we decided to investigate
the applicability of such a multiplier in a hardware realization
of neural networks.
Please cite this article as: U. Lotrič, P. Bulić, Applicability of approxim
(2012), http://dx.doi.org/10.1016/j.neucom.2011.09.039
The remainder of the paper is organized as follows. In the next
section an approximate iterative logarithmic multiplier is pre-
sented in detail. In the third section the highly parallel neural
processing unit used in our experiments is briefly described. Its
design, specially suited for feed-forward neural networks, allows
it to be used in the forward pass as well as the backward pass.
In Section 4 the performance of the proposed solution is tested
on many classification and regression benchmark problems.
The performance figures are given in comparison to the hardware
implementation using exact matrix multipliers as well as a
floating-point implementation. The main findings on the applic-
ability of approximate multipliers in hardware network designs
are summarized at the end.
2. Iterative logarithmic multiplier

The iterative logarithmic multiplier (ILM) was proposed by
Babic et al. in [15]. It simplifies the logarithm approximation
introduced in [12] and introduces an iterative algorithm with
various possibilities for achieving an error as small as required
and the possibility of achieving an exact result.

2.1. Mathematical formulation

The logarithm of the product of two non-negative integer
numbers, N1 and N2 can be written as the sum of the logarithms

log2ðN1 � N2Þ ¼ log2 N1þ log2 N2: ð1Þ

By denoting k1 ¼ blog2 N1c and k2 ¼ blog2 N2c, the logarithm of
the product can be approximated as k1þk2. In this case the
calculation of the approximate product,

N1 � N2 � 2k1þk2 ð2Þ

requires only one add and one shift operation, but it has a
large error.

To decrease this error, the following procedure is proposed in
[15]. A non-negative integer number N can be written as

N¼ 2k
þNð1Þ, ð3Þ

where k is a characteristic number, indicating the place of the
leftmost 1 or the leading 1 bit in its binary representation, and the
number Nð1Þ ¼N�2k is the remainder of the number N after the
removal of the leading 1.

Following the notation in Eq. (3), the product of two numbers
can be written as

Ptrue ¼N1 � N2 ¼ ð2
k1þNð1Þ1 Þ � ð2

k2þNð1Þ2 Þ

¼ 2k1þk2þNð1Þ1 � 2
k2þNð1Þ2 � 2

k1þNð1Þ1 � N
ð1Þ
2

¼ Pð0ÞapproxþEð0Þ: ð4Þ

While the first approximation of the product

Pð0Þapprox ¼ 2k1þk2þNð1Þ1 � 2
k2þNð1Þ2 � 2

k1 ð5Þ

can be calculated by applying only a few shift and add operations,
the term

Eð0Þ ¼Nð1Þ1 � N
ð1Þ
2 , Eð0Þ40, ð6Þ

representing the absolute error of the first approximation,
requires multiplication.

Similarly, the proposed multiplication procedure can be per-
formed on multiplicands from Eq. (6) such that

Eð0Þ ¼ Cð1Þ þEð1Þ, ð7Þ

where Cð1Þ is the approximate value of Eð0Þ, and Eð1Þ is the
corresponding absolute error. The combination of Eqs. (4) and
ate multipliers in hardware neural networks, Neurocomputing

dx.doi.org/10.1016/j.neucom.2011.09.039
dx.doi.org/10.1016/j.neucom.2011.09.039
dx.doi.org/10.1016/j.neucom.2011.09.039
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(7) gives

Ptrue ¼ Pð0ÞapproxþCð1Þ þEð1Þ ¼ Pð1ÞapproxþEð1Þ: ð8Þ

By repeating the described procedure we can obtain an arbitrarily
precise approximation of the product by summing up iteratively
the obtained correction terms CðjÞ

PðiÞapprox ¼ Pð0Þapproxþ
Xi

j ¼ 1

CðjÞ: ð9Þ

The number of iterations required for an exact result is equal to
the number of bits with the value of 1 in the operand with the
smaller number of bits with the value of 1. Babic et al. [15]
showed that in the worst-case scenario the relative error intro-
duced by the proposed multiplier EðiÞr ¼ EðiÞ=N1N2 decays exponen-
tially with the rate 2�2ðiþ1Þ. Table 1 presents the average and
maximal relative errors with respect to the number of considered
iterations.

The proposed method assumes non-negative numbers. To
apply the method on signed numbers, it is most appropriate to
specify them in a sign and magnitude representation. In that case,
the sign of the product is calculated as the EXOR (exclusive or)
operation between the sign bits of both multiplicands.

2.2. Hardware implementation

The implementation of the proposed multiplier is described in
[15]. The multiplier with one error correction circuit, which is
used in the rest of the paper and shown in Fig. 1, is composed of
two pipelined basic blocks, of which the first one calculates an

approximate product Pð0Þapprox, while the second one calculates the

error-correction term Cð1Þ. The task of the basic block is to calculate
one approximate product according to Eq. (5). To decrease the
Table 1
Average and maximal relative errors for 16-bit iterative multiplier [15].

Number of iterations i 0 1 2 3

Average EðiÞr (%) 9.4 0.98 0.11 0.01

Max EðiÞr (%) 25.0 6.25 1.56 0.39
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Papprox
(0)

N1

N2
STAGE 1

STAGE 2

STAGE 3

STAGE 4

+

STAGE 1

STAGE 2

STAGE 3

STAGE 4

N1
(1)

N2
(1)

N1
(2)

N2
(2)

Papprox
(1)

C (1)

BASIC BLOCK

BASIC BLOCK

Fig. 1. Block diagram of a pipelined iterative logarithmic multiplier with one

error-correction circuit.
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maximum combinational delay in the basic block, pipelining is used
to implement the basic block. The pipelined implementation of the
basic block is shown in Fig. 2 and has four stages. Stage 1 calculates
the two characteristic numbers, k1, k2, and the two residues, Nð1Þ1 ,
Nð1Þ2 . The residues are outputted in stage 2, which also calculates
k1þk2, Nð1Þ1 � 2

k2 and Nð1Þ2 � 2
k1 . Stage 3 calculates 2k1þk2 and

Nð1Þ1 � 2
k2þNð1Þ2 � 2

k1 , which are summed up to the approximation
of the product Pð0Þapprox in stage 4. After the initial latency of five clock
periods the proposed iterative logarithmic multiplier enables the
products to be calculated in each clock period. The estimated device
utilization in terms of programmable hardware components, i.e.,
slices and lookup tables, and dynamic power consumption at a
frequency of 40 MHz for the 16-bit pipelined implementations of
the proposed multiplier with one error-correction circuit and the
classical matrix multiplier, are compared in Table 2. For the design
entry, we used the Xilinx ISE 12.3-WebPACK and designed with
VHDL. The design was synthesized with the Xilinx Xst Release 12.3.
To analyze the power consumptions in the multipliers we used the
Xilinx XPower Analyzer 12.3. The power consumption is estimated
at a clock frequency of 40 MHz with a signal (toggle) rate of 12.5%
and an output load of 5 pF. We have estimated only the dynamic
(logic and signals) power, as the quiescent (leakage) power and the
IOBs power are practically equal for both multipliers.
3. Multilayer perceptron with a highly parallel neural unit

One of the most widely used neural networks is the multilayer
perceptron, which gained its popularity with the development of
the back-propagation learning algorithm [16]. Despite its simple
idea the learning phase still presents a hard nut to crack when
hardware implementations of the model are in question.
3.1. Multilayer perceptron

A multilayer perceptron is a feed-forward neural network
consisting of a set of source nodes forming the input layer, one
or more hidden layers of computation nodes, and an output layer
of computation nodes. A computation node or a neuron n in a
layer l computes its output as

xl
n ¼jðv

l
nÞ with vl

n ¼
X

i

ol
nix

l�1
i , ð10Þ

where jðvl
nÞ is usually some non-linear activation function, and

vn
l is an activation potential given as a scalar product of neuron

weights ol
ni and outputs from the previous layer xl�1

i . According
to Eq. (10), the inputs to the model are denoted as x0

i .
The objective of a learning algorithm is to find such a set of

weights that minimizes the performance function, usually defined
as a squared error between the calculated outputs and the target
values. For the back-propagation learning rule, the weight update
equation in its simplest form becomes

ol
ni ¼ Zd

l
nxl

i, ð11Þ

where Z is a learning parameter whilst dl
n for the output layer and

the hidden layers are given as

dl
n ¼j

0ðvl
nÞðtn�xl

nÞ and dl
n ¼j

0ðvl
nÞ
X

o

dlþ1
o wlþ1

no , ð12Þ

respectively. In the above equation tn denotes the n-th element of a
target output. For the efficiency of the hardware implementation,
we decided to update the weights after presenting each input
sample to the model and not to use more advanced update rules.
ate multipliers in hardware neural networks, Neurocomputing
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Fig. 2. Block diagram of a pipelined basic block.

Table 2
Device utilization and power consumption of multipliers obtained on the Xilinx

Spartan 3 XC3S1500-5FG676 FPGA circuit.

Multiplier Slices Lookup Power (mW)

Iterative logarithmic with

one error correction circuit 427 803 10.6

Matrix 477 1137 13.53
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3.2. Parallel implementation

A multilayered perceptron exhibits two levels of concurrency:
a coarse-grained computation of the outputs from all the neurons
in a layer and a fine-grained computation of each neuron’s
activation potential. However, due to the limited resources,
usually only one of the approaches is used in the implementation.

A lot of existing solutions rely on the first concept [2,17,3],
where each neuron is treated as a building block composed of a
multiplier, an adder, and other accompanying circuits. In this
case, the computation of Eqs. (10) and (12) is performed con-
currently on all the neurons in a layer, but sequentially inside
each neuron. This concept is perfectly suited for processing, while
in the learning phase a lot of resources cannot be used simulta-
neously, for example, the new data should not be fed to the
neurons in the first layer until all the weights are updated.

The second concept exploits the similarity between the calcu-
lation of the activation potential and the delta of neurons in
hidden layers. In both cases, the most complex is the calculation
Please cite this article as: U. Lotrič, P. Bulić, Applicability of approxim
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of the scalar product, denoted with the summation in Eqs. (10)
and (12). Here, the calculation of the scalar product is done in
parallel, while the output of neurons in a layer is obtained in a
sequential manner. In contrast to the first concept, here the
parallel computation of the scalar product can be used in all
the above equations, making this concept especially suitable for
the implementation of large hardware neural networks on small
FPGA circuits.

We have developed a highly parallel neural unit that calculates
the scalar product of two vectors in only one clock cycle [18]. The
inputs to the neural units are first passed to the multipliers
from which the products are then fed to the adders, organized in a
tree-like structure, as shown in Fig. 3. To support the efficient
computation of the above equations, the unit has many output
ports. Besides the scalar product (port SP), it is designed to
calculate the element-wise products (ports EWP) needed for the
efficient parallel multiplication in Eqs. (11) and (12), as well as
the first level sum (ports FLS) for the parallel calculation of the
differences ðtn�xl

nÞ in Eq. (12).
If hardware neural network learning is performed off-chip, it is

important to calculate the products as well as the activation
function very precisely. A lot of solutions for the calculation of the
latter can be found in the literature, ranging from a piecewise
linear approximation [6], a least-square approximation [8] to an
approximate calculation of the exponents [7]. When learning is
performed on-chip, larger errors can be tolerated. Moreover, with
only one highly parallel neural unit we can afford to hard code the
activation function and its derivative in look-up tables (LUTs)
with the required precision. The values of the activation function
ate multipliers in hardware neural networks, Neurocomputing
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Fig. 3. A highly parallel neural unit [18] (only the computation of Eq. (10) is

illustrated).

Fig. 4. Activation function jðvÞ ¼ tanhð1:4vÞ and its LUT approximation with

b¼ 24 elements in interval [�2, þ2].
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defined by a LUT with b elements in an interval ½�r,þr�, taking
into account only the quantization of the activation potential, are
obtained from the equation

jLUTðvÞ ¼jðbvð2r=bÞ�1
cð2r=bÞÞ: ð13Þ

The effect of the proposed quantization is presented in Fig. 4.
To use the neural unit (NU), a set of subsidiary units is needed:

a RAM memory for storing weights, registers for keeping the
inputs, outputs, and partial results, multiplexers (MUX) for load-
ing the proper data to the neural unit, lookup tables with stored
values of the activation function (LUT) and its derivative (LUTd)
and three state machines. The forward pass and the backward
pass are controlled by the Learn and Execute state machines,
respectively, which are supervised by the Main state machine. A
simplified scheme of the implementation is shown in Fig. 5,
where data-paths used for processing are denoted with the thick
black lines, additional data-paths needed during learning with the
thick gray lines, and control signals with the thin black lines.

In order to gain as much as possible from the neural unit, it should
be capable of calculating a scalar product of the largest vectors
that appear in the computation. The hardware circuit thus becomes
very complex and can only be operated at lowered frequencies.
For example, a unit with 32 18-bit multipliers and consequently 31
18-bit adders in a tree-like structure was implemented in the Spartan
Please cite this article as: U. Lotrič, P. Bulić, Applicability of approxim
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3 XC3S1500-5FG676 FPGA chip. While separate multiplications can
run at a maximum frequency of 50 MHz, the proposed unit managed
to run at a still acceptable 30 MHz [18].
4. Experimental work

To assess the performance of the iterative logarithmic multi-
plier, a set of experiments was performed on multilayer percep-
tron neural networks with one hidden layer. The models were
compared in terms of the classification or approximation accu-
racy, the speed of convergence, and the power consumption.
Three types of models were evaluated: (a) an ordinary software
model (SM) using floating-point arithmetic, (b) a hardware model
with exact matrix multipliers ðHMMÞ, and (c) the proposed hard-
ware model using the iterative logarithmic multipliers with one
error-correction circuit ðHMLÞ.

The models were evaluated on the PROBEN1 collection of freely
available benchmarking problems for the neural network learning
[19]. A rather heterogeneous collection contains 15 datasets from 12
different domains, and all but one consist of real-world data. Among
them 11 datasets are from the area of pattern classification and the
remaining four are from the area of function approximation. The
datasets, containing from a few hundred to a few thousand input–
output samples, have been already divided into training, validation
and test sets, generally in the proportion 50:25:25. The number of
attributes in the input samples ranges from 9 to 125 and in output
samples from 1 to 19. Before modelling, all the input and output
samples were rescaled to the interval [�0.8, þ0.8].

4.1. Setup

The testing of the models on each of the datasets mentioned
above was performed in two steps. After finding the best software
models, the modelling of the hardware models started, keeping the
same number of neurons in the hidden layer. During the optimiza-
tion of the software models, the number of neurons in the hidden
layer was varied in such a way that the number of model weights
did not exceed the number of training samples, where the number
of inputs and outputs is determined by a dataset. The model
topology with respect to the dataset is given in Table 3. Due to
the heterogeneity of the datasets, values of the learning parameter Z,
ranging from 2�2 to 2�12, were used. They are expressed in powers
of two in order to replace the first multiplication in Eq. (11) with a
simple shift circuit. For both hardware models the weights were
limited to the interval [�4, þ4]. The processing values, including
the inputs and outputs, were represented with 16 bits in the interval
[�1, þ1]. The values of the activation function jðvÞ ¼ tanhð1:4 vÞ

and its derivatives for b¼ 28 equidistant values of v from the
interval [�2, 2] were stored in two separate lookup tables.

By applying the early-stopping criterion, the learning was
stopped as soon as the classification or approximation error on
the validation set started to grow. The model parameters that
gave the best performance on the validation set were further used
to assess the performance of the models on the test set, consisting
only of the samples that were not used during the learning phase.

4.2. Weight precision

The impact of weight precision on the model performance was
studied in terms of the normalized squared error, defined as

E¼
/ðtn�x2

nÞ
2Ss

ðmaxs tn�mins tnÞ
2

* +
n

, ð14Þ

where tn denotes the n-th element of the target, x2
n denotes the

n-th output from the second (output) layer. In the above equation
ate multipliers in hardware neural networks, Neurocomputing
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Fig. 5. Neural network implementation scheme [18].

Table 3
Properties of datasets and corresponding model topology given in terms of inputs–

hidden neurons–outputs.

Dataset Samples Topology Free params.

cancer1 699 9–6–2 74

card1 690 51–6–2 326

diabetes1 768 8–7–2 79

gene1 3175 120–8–3 995

glass1 214 9–12–6 198

heart1 920 35–8–2 306

heartc1 303 35–8–2 306

horse1 364 58–12–3 747

mushroom1 8124 125–39–2 4994

soybean1 683 35–22–19 1229

thyroid1 7200 21–48–3 1203

building1 4208 14–56–3 1011

flare1 1066 24–4–3 115

hearta1 920 35–3–1 112

heartac1 303 35–4–1 149

Fig. 6. Performance of the models with respect to the weight precision on

Hearta1 dataset.
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/ �Ss and / �Sn denote averaging over all the samples and
output attributes, respectively, whilst mins and maxs denote the
minimal and maximal values among all the samples.

As presented in Fig. 6 for Hearta1 dataset, the normalized
squared error exhibits a typical exponential decrease for an
increasing precision of the weights. However, the increasing
precision of the weights also requires more and more hardware
resources. Since there is a big drop in the normalized squared
error when the precision is increased from 16 to 18 bits, and since
we can make use of numerous prefabricated 18�18-bit matrix
multipliers in the new Xilinx FPGA programmable circuits, our
further analysis is confined to an 18-bit weight precision.

4.3. Classification problems

The model performance for the first 11 datasets in Table 3 is
given in Fig. 7. The average values and standard deviations for
all types of models over 10 runs are given in terms of three
Please cite this article as: U. Lotrič, P. Bulić, Applicability of approxim
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measures: the number of epochs, the normalized squared error
Ete and the percentage of misclassified samples pmiss

te . For each
dataset the results obtained with the models SM, HMM, and HML

are presented with white, gray and black bars, respectively.
The results obtained for the software models using the back-

propagation algorithm are similar to those reported in [19], where
more advanced learning techniques were applied. The most
noticeable difference between the software and hardware models
is in the number of epochs needed to train a model. The number
of epochs in the case of the hardware models is for many datasets
an order of magnitude smaller than in the case of the software
models. The reason probably lies in the inability of the hardware
models to further optimize the weights due to their representa-
tion in limited precision.

As a rule, the hardware models exhibit slightly poorer perfor-
mance in the case of the normalized squared error and the
percentage of misclassified samples. The discrepancy is very large
for the gene1 and thyroid1 datasets, where, apparently, more
than 18 bits representation of the weights is needed to close
the gap.

4.4. Approximation problems

The last four datasets in Table 3 are from the approximation
domain, so their performance was assessed only in terms of the
ate multipliers in hardware neural networks, Neurocomputing
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Fig. 7. Performance of the models in terms of the number of epochs (top), the normalized squared error (middle) and percentage of misclassified samples (bottom).

Average values over 10 runs as well as standard deviations are given.

Fig. 8. Performance of the models in terms of the number of epochs (top) and the

normalized squared error (bottom). Average values over 10 runs and standard

deviations are given.

Fig. 9. Comparison of models in terms of the number of epochs (top), normalized

squared error (middle) and percentage of misclassified samples (bottom). Models

that are not significantly different are connected with a thick line.
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number of epochs and the normalized squared error Ete. In Fig. 8
the same color coding is used as in the classification problems.

Similar conclusions as in the case of the classification pro-
blems can be drawn, as follows. Due to the limited precision of
the weights, the learning process in the hardware models stops
earlier, and the hardware models exhibit slightly poorer perfor-
mance in terms of the normalized squared error.

4.5. Statistical evaluation

Using the statistical tests recommended by [20], we deter-
mined the statistical significance of the results. For the compar-
ison of the three models, the Friedman non-parametric test was
applied. The analysis is based on model ranks, which are sepa-
rately determined for each dataset. Rank 1 is assigned to the best
model, rank 2 to the second best and so on. In the case of ties, the
average ranks are calculated in order to keep the sum of the ranks
constant. According to the Nemenyi test, the performance of the
two models is significantly different if the corresponding average
ranks differ by a critical difference. The critical distance for three
Please cite this article as: U. Lotrič, P. Bulić, Applicability of approxim
(2012), http://dx.doi.org/10.1016/j.neucom.2011.09.039
models and the confidence level 0.05 is given as CD¼ 3:314S�1=2,
with S being the number of datasets used in the analysis.

The analysis is visually presented in Fig. 9, where the average
ranks of the three models are given in terms of the number of
epochs, Ete and pmiss

te . While the analysis of the first two measures
is made on 15 datasets, the analysis of pmiss

te is performed only on
the 11 datasets for the classification problems. The models, for
which average ranks differ by less than the critical difference CD,
are connected with a thick line to stress that their differences are
not statistically relevant. As we already observed, the limited bit
precision of the weights means that the hardware models take
fewer epochs to train, but the difference is not significant. As
expected, owing to the same speculation the software models
significantly outperform the hardware models in terms of the
measures Ete and pmiss

te . Most importantly, the comparison of the
hardware models HMM and HML reveals that the replacement of the
exact matrix multipliers with the proposed approximate iterative
logarithmic multipliers does not have any significant effect on the
performance of the models. The reason for the very good compensa-
tion of the errors caused by an inexact multiplication can be found
ate multipliers in hardware neural networks, Neurocomputing
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Table 4
Estimation of FPGA device utilization for a neural network model with 32 inputs,

8 hidden neurons and 10 outputs using 16�18-bit matrix multipliers.

Part of the circuit Slices (�1000) Lookup tables (�1000)

Whole model 27 38

Neural unit 25 (92%) 34 (89%)

Multipliers 24 (89%) 33 (87%)
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in the excellent ability to adapt, common to all neural network
models.

4.6. Device utilization

The proposed neural unit needs to be applied many times to
calculate the model output; therefore, it is important to be as
small and as efficient as possible. The estimation of the device
utilization in terms of the Xilinx Spartan 3 FPGA programmable
circuit building blocks for a model with 32 exact 16�18 matrix
multipliers is shown in Table 4. According to the analysis of the
multipliers in Table 2, the replacement of the matrix multipliers
with the iterative logarithmic multipliers can lead to more than
10% smaller device utilization and more than 20% smaller power
consumption.
5. Conclusion

Neural networks offer a high degree of internal parallelism,
which can be efficiently used in custom chip designs. Our work
has been focused on the efficient digital design of a hardware
neural network using field-programmable gate-array technology.
The work was aimed at the design of a resource-, speed- and
power-consumption efficient, feed-forward neural network with
on-chip learning ability.

Neural network processing comprises a huge number of
multiplications. To gain as much as possible from the custom
design, multiplications must be performed in parallel. However,
multiplication circuits consume a lot of resources, time and
power. Since the resources on a chip are limited, different
strategies are applied to overcome the limitations. The first idea
is to replace the floating-point arithmetic with fixed-point arith-
metic. However, to further increase the performance the exact
fixed-point matrix multipliers must be replaced with some
approximate solutions.

The hardware neural network presented in this paper is built
around an iterative logarithmic multiplier, which can use many
levels of correction circuits to iteratively approximate a product
to the arbitrary precision. It also enables the pipelined design of
correction circuits, which significantly reduce the propagation
time of a signal through a circuit. The iterative logarithmic
multiplier with only one correction circuit is enough to reduce
the multiplication error, on average, to less than 1%.

The proposed logarithmic multiplier needs fewer resources
and consequently leads to designs with more concurrent units on
the same chip. In contrast to the majority of the proposed designs,
where a special hardware unit is used for each neuron, our design
contains only one highly parallel neural unit, which is capable of
the fast parallel calculation of a neuron output. Since the same
circuit can be used in forward and backward passes, it is more
suitable for hardware neural network designs targeting small
FPGA chips.

The performance of the proposed hardware neural network
with iterative logarithmic multipliers was compared to the usual
software models and hardware neural network with exact matrix
Please cite this article as: U. Lotrič, P. Bulić, Applicability of approxim
(2012), http://dx.doi.org/10.1016/j.neucom.2011.09.039
multipliers. The models were tested on the PROBEN1 benchmark
dataset, consisting of classification and approximation problems.
Although the training of the software models, on average, takes
longer, the difference is not statistically significant. More
encouraging is the fact that in terms of the observed measures,
i.e., the number of training epochs, the normalized squared error,
and the percentage of misclassified samples, there is no statisti-
cally significant difference in the performance of both hardware
models.

Due to the highly adaptive nature of neural network models,
which compensated the erroneous calculation, the replacement of
the multipliers did not have any notable impact on the models’
processing and learning accuracy. Furthermore, the consumption
of fewer resources per multiplier also results in more power-
efficient circuits. The power consumption, which was reduced by
roughly 20%, makes the hardware neural network models with
iterative logarithmic multipliers favorable candidates for battery-
powered applications.
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