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Razširjeni povzetek

Monte-Carlo preiskovanje združuje splošnost naključnih simulacij s preci-
znostjo preiskovanja dreves. Je algoritem za preiskovanje dreves in gradnjo
dreves, ki gradi delno drevo igre. Vsako vozlišče v tem drevesu predstavlja
neko stanje v izbrani domeni. V naši domeni vozlišče tako predstavlja neko
stanje na šahovnici (ali drugače: neko šahovsko pozicijo).

Monte-Carlo preiskovanje je leta 2006 vzbudilo veliko pozornosti s strani
raziskovalcev zaradi uspeha v igri Go. Remi Coulom je s programom, ki
za igranje igre Go uporablja Monte-Carlo preiskovanje, imenovanim Crazy
Stone, dobil zlato medaljo na 11. računalniški olimpijadi.

Za igro Go ne poznamo dobre ocenjevalne funkcije. Zato z uporabo tradi-
cionalnih algoritmov ni bilo možno ustvariti programa, ki bi lahko igral bolje
od človeškega igralca. Monte-Carlo preiskovanje pa se je izkazalo za učin-
kovit algoritem v igri Go, saj ne potrebuje ocenjevalne funkcije. Namesto
ocenjevalne funkcije uporablja naključne simulacije.

Simulacije usmerjajo preiskovanje in gradnjo drevesa v algoritmu. Za
delovanje algoritma zadoščajo le informacije, ki jih Monte-Carlo preiskovanje
dobi od izvajanih simulacij.

Algoritem je neodvisen od domene, v kateri je uporabljen. Za delovanje
potrebuje le vse možne akcije in končna stanja. To je dovolj za izvajanje
simulacij. Kar pomeni, da ga je možno implementirati v drugih domenah, z
le malo spremembami.

Kljub temu ta pristop ni bil pogosto uporabljan v igri šaha. Tema te na-
loge je poskus uporabe Monte-Carlo preiskovanja v igranju šahovskih konč-



nic. Cilja te naloge sta:

• ugotoviti pri kakšni konfiguraciji algoritem igra najbolje v izbrani do-
meni,

• najti povezave med parametri Monte-Carlo preiskovanja in s tem dobiti
vpogled, ki bi lahko povečal učinkovitost algoritma, ne glede na izbrano
domeno.

V ta namen sem razvil program, ki uporablja Monte-Carlo preiskovanje za
igranje šaha. Program smo uporabili v šahovskih končnicah. Z njegovo
pomočjo smo tudi bolj podrobno opisali delovanje algoritma.

Za šahovske končnice obstajajo zbirke podatkov, ki za vsako pozicijo po-
dajo njeno vrednost oz. razdaljo do mata. Če primerjamo pozicijo po potezi,
ki jo je odigral naš program, s pozicijo po potezi idealnega igralca, lahko
ocenimo kvaliteto posamezne poteze. Kvaliteto igre v tej nalogi merimo s
povprečjem kvalitete posameznih potez belega igralca (ki ga usmerja naš
program).

Pokazali smo, da mera tudi določa povprečno dolžino odigrane igre. Kot
domeno smo si izbrali šahovsko končnico, kjer beli poskuša s kraljem in tr-
dnjavo matirati črnega. V tej končnici je našemu programu, ki upravlja
belega igralca, uspelo matirati črnega igralca v skoraj vseh igrah. Tako je
povprečna dolžina matiranja dobra mera kvalitete igre.

Z uporabo te mere smo prišli do naslednjih zaključkov.

• Pokazali smo, da je sposobnost algoritma, da predvidi možne poteze na-
sprotnika, zelo povezana z njegovo učinkovitostjo. Če nasprotni igralec
izbere potezo, katera vodi v pozicijo, ki je ni v drevesu, pride do sesu-
tja drevesa. V drevesu ostane le koren in vse pridobljene informacije
so izgubljene.

Katere pozicije se bodo dodale v drevo, določa kvaliteta simulacij. Spo-
sobnost simulacije, da predvidi poteze nasprotnika, je tako zelo po-
membna za učinkovitost algoritma.



• Prag T je eden od parametrov Monte-Carlo preiskovanja, je prag, ki
določa ali bo algoritem v izbranem vozlišču izbral naslednika, ki ga
oceni kot najboljšega, ali pa bo začel izvajati simulacijo. Če je bilo vo-
zlišče obiskano manjkrat, kot določa prag T , se izbere najbolje ocenjen
naslednik, sicer se začne izvajanje simulacije.

Nova vozlišča se v drevo dodajo samo, ko igra v simulaciji pride v
pozicijo, ki še ni predstavljena v drevesu. Prag T tako določa, kakšno
je največje možno število vozlišč na nekem nivoju drevesa. Prag T je
tako eden od pomembnejših parametrov. V tej nalogi smo prišli do
zaključka, da je za učinkovitost algoritma dobro nastaviti prag T na
največje število možnih potez za igralca.

Če je prag T manjši od največjega števila možnih potez, v drevesu
ne morejo biti predstavljene vse možne pozicije. Nova vozlišča pa v
drevo pa dodajo naključne simulacije, zato obstaja verjetnost, da tudi
pomembnejše pozicije ne bodo dodane v drevo. Kar pa seveda pomeni
slabšo kvaliteto igre.

Prav tako previsok prag T tudi slabo vpliva na kvaliteto igre. Tudi
če so že dodani vsi možni nasledniki, program namreč začne izvajati
naključno simulacijo, namesto da bi izbral doslej najbolje ocenjenega
naslednika. Kar lahko pomeni, da bo algoritem več časa namenil veji
drevesa, ki ni najboljša.

• Konstanta C je parameter, ki določa v kolikšni meri bo Monte-Carlo
preiskovanje izkoriščalo že dobljeno znanje. Če je C manjši, bo al-
goritem bolj usmeril preiskovanje v vozlišča, ki se do tedaj zdijo bolj
obetavna. Pri večjem C pa bo več časa usmeril v vozlišča, ki so bila
manj raziskana.

Pokazali smo, da če damo algoritmu na voljo več časa za izvajanje si-
mulacij, je bolje, da tudi povečamo konstanto C. Če so bila vozlišča
dovolj dobro raziskana, potem z izvajanjem novih simulacij na teh vo-
zilščih ne pridobimo nič novega znanja. Z raziskovanjem ostalih, manj



raziskanih vozlišč pa lahko najdemo novo, bolj obetavno vozlišče.

Premajhno število simulacij, izvajanih iz nekega vozlišča, lahko pomeni,
da to vozlišče ne bo pravilno ocenjeno. Zaradi tega C ne sme biti
prevelik, posebej pri fiksnem številu simulacij. Saj večji kot je C, bolj
bo algoritem enakomerno preiskoval vsa vozlišča, ne glede na to kako
so bila do tedaj ocenjena.

S to nalogo upamo, da smo vsaj malo pripomogli k še boljšemu razu-
mevanju Monte-Carlo preiskovanja in verjamemo, da bo naloga služila kot
podlaga za nadaljnje raziskovanje.

Ključne besede: Monte-Carlo, preiskovanje, šah, tablebases, šahovska
končnica



Abstract

The Monte-Carlo Tree Search (MCTS) algorithm has in recent years captured
the attention of many researchers due to its notable success in the game of Go.
In spite of this success, so far it has not been used much in the game of chess.
In this thesis, we attempt to apply MCTS to chess endgames. The reason for
this is the existence of chess tablebases, i.e. databases that provide an exact
value of each chess board position in terms of distance to mate. With this
information at disposal we are able to measure more objectively the quality
of play, and thus assess how well the Monte-Carlo Tree Search algorithm
performs. We propose some guidelines about how the algorithm should be
configured to achieve good performance in chess endgames. The question
remains whether our findings are applicable to other domains as well.

Keywords: Monte-Carlo, tree, chess, tablebases, endgame, search



Chapter 1

Introduction

Monte-Carlo Tree Search is a best-first tree search method guided by playing
out random simulations. It is built upon two fundamental concepts: that we
can approximate true value of an action by performing random simulations;
and that these values may be used to adjust the policy towards a best-first
policy. The algorithm uses previously played random simulations to guide
the building of a partial game tree. This approach was formalized into the
UCT algorithm by Kocis and Szepesvari [1, 3, 4, 5].

Monte-Carlo Tree Search caught the attention of researchers in 2006 when
a computer program Crazy Stone won a gold medal at the 11th Computer
Olympiad. Crazy Stone is a program written by Remi Coulon which uses
Monte-Carlo Tree Search algorithm for playing GO.

Another Monte-Carlo Tree Search based program MoGo was also first
computer program to defeat a professional human Go player, when it achieved
a victory against Guo Juan on 2007, further increasing the interest in the
algorithm [2, 5].

The main advantage of Monte-Carlo Tree Search is that it does not rely on
a position evaluation function, instead it uses random simulations to evaluate
a game position. This is especially important in the game of Go. Go is a
traditional Japanese board game that has high branching factor and lacks
good static evaluation function for non-terminal board position. Making it

1
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a very challenging game for traditional tree search approaches which require
a good static evaluation function.

Monte-Carlo Tree Search is up to date still the most promising direction
in achieving human-competitive computer player for Go [3].

Even though there has been at least 150 research papers written on topics
related to Monte-Carlo Tree Search since its inception. This field of study is
still very interesting research topic in artificial intelligence, with many opened
research questions [1].

By applying Monte-Carlo Tree Search to chess endgames, where infor-
mation about game play quality is available, we hoped to demonstrate how
algorithm performs in relation to input parameters. We focused on exam-
ining relations between these parameters and how they influence its perfor-
mance. For optimal performance, currently values of these parameters are
determined empirically. By exploring these relations we hoped to achieve
that at least some of the parameters could be calculated to achieve optimal
performance in a given domain.

1.1 Thesis goals

The purpose of this this thesis is to better understand how Monte-Carlo Tree
Search performs in relation to input parameters. To achieve this we applied
it to the KRK endgame in the game of chess.

We chose KRK endgame for two reasons: first the attacking player (con-
trolled by the algorithm) can easily achieve a checkmate against the defending
player. The second reason is that for chess endgames tablebases are available.

Chess tablebases give us a way to objectively measure the quality of play
by providing number of moves to deliver checkmate from any given position
assuming optimal play by both players.

We set our goals to be:

1. To discover combination of parameter values where Monte-Carlo Tree
Search performs best in our domain.
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2. To discover possible relations between the Monte-Carlo Tree Search
parameters. Thus gaining knowledge that could improve performance
regardless of domain.

1.2 Results

We used data from performed experiments to:

• to show that if we give Monte-Carlo Tree Search more time for per-
forming simulations, it is good idea to configure it so that it explores
higher number of different nodes.

• to show that from a given node H, it is best to perform random sim-
ulations until that node has been visited as many times as there are
possible moves. Only after that we should use information gotten from
these simulations, to decide on which child of node H should we put
more focus.

1.3 Structure of the thesis

• Chapter 1 introduces Monte-Carlo Tree Search and describes goals and
structure of this thesis.

• Chapter 2 defines and describes some terms used in this thesis.

• Chapter 3 describes how Monte-Carlo Tree Search works and how our
program for playing chess endgames was implemented.

• Chapter 4 explains how experiments were conducted and contains con-
clusions that we can draw from these experiments.

• Chapter 5 summarizes this thesis.
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Chapter 2

Domain description

This chapter contains definitions and explanation on some terms used in this
thesis.

2.1 Chess

Chess is a board game for two players. Each player has sixteens pieces and
the object of the game for a player is to trap enemy king piece in a position
where it is attacked regardless of which move enemy plays. This position is
called a checkmate and it represent a loss of a player who’s king was trapped
in this way. Chess game consists of three phases:

• opening,

• middlegame,

• endgame.

In this thesis, we are only interested in endgames. Endgame in chess is a
stage of the game where only a few pieces remain on board. The reason why
we used chess endgames as our domain are tablebases (see Section 2.2). For
more detailed description and rules of the game see [9].

5
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2.1.1 KRK endgame

KRK endgame is a chess endgame where an attacking player has two pieces:
a king and a rook and the defending player has only a king piece. In our
program only this endgame was used.

Every match our computer program played used the same chessboard
state as starting position. From this position if attacking player played per-
fect game, checkmate was achieved in 15 moves.

In our program, white player is also the attacking player. In the thesis
white player is a synonym for attacking player and black player is a synonym
for defending player.

2.2 Nalimov tablebases

An endgame tablebases is a database containing various precalculated in-
formation of every chess endgame position. We used it for two reasons: it
enables our program to play best possible moves for defending player and
to objectively determine the quality of play. Quality of play is calculated
by examining the discrepancy between number of moves needed to reach a
checkmate position determined by moves played by attacking player and by
perfect player. [7]

2.2.1 Distance to Mate (DTM) difference

We used Distance to Mate difference to determine the quality of game play.
It represents the deviation from optimal play. It is calculated with the help
of tablebases.

Tablebases provided us with information of how many moves are needed
to achieve a checkmate for the attacking player if both players play optimal.
We called this Distance to Mate value. With the help of Distance to Mate
value we defined DTM difference as:

DTM difference = DTMplayed − DTMoptimal (2.1)
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where DTMplayed represents Distance to Mate value of the position reached
after played move and DTMoptimal represents Distance to Mate value of the
position after best possible legal move was played.

Best possible move minimizes Distance to Mate value, so DTM difference
is non-negative. If DTM difference of played move is 0, optimal move was
played. Lower DTM difference means better quality of play [8].
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Chapter 3

Monte-Carlo Tree Search

3.1 What is Monte-Carlo Tree Search

Monte-Carlo Tree Search (MCTS) combines generality of random simulation
with precision of tree search. It is a tree searching algorithm that builds a
partial game tree guided by (pseudo) random simulations.

Monte-Carlo Tree Search offers many advantages over other tree search
methods:

• Even though MCTS does not require evaluation function or strategic
knowledge, it can make use of them thus becoming even more effective
[6].

• It can function effectively knowing only the rules of the game (which
can mean knowing only all legal moves and terminal positions). As a
result a single implementation can be easily reused for different domains
with only small modifications [1].

• MCTS algorithm visits more interesting nodes more often and focuses
on searching more relevant parts of the tree. This property makes
MCTS effective in games with high branching factor like the game of
GO [3, 1]. Such games can usually cause problems for other algorithms,
but due to its adaptive nature MCTS may handle them effectively.

9



10 CHAPTER 3. MONTE-CARLO TREE SEARCH

• The algorithm can be stopped at any moment, to return best estimate.
Game tree that was built so far can be discarded or preserved for future
use [1].

However MCTS is not without drawbacks:

• In its basic form MCTS may not perform efficiently in games with
medium complexity. Some domains may require too many simulations
for MCTS to evaluate position properly in a reasonable amount of given
time [1].

• Ramanujan argued that MCTS may not yield good results in domains
with many trap states [6]. This is why good simulation strategy is very
important for the algorithm to perform efficiently, so that it can avoid
those trap states.

• In domains where simulations are slow or where too many iterations
are required to find a good solution, performance issues may arise.
This flaw may be avoided with improvements such as adding domain
knowledge or detecting and removing trap states in domains where this
is possible [1].

3.1.1 Basic algorithm

Monte-Carlo Tree Search is a best first algorithm tree search method. It uses
random simulations (also called playouts) for evaluation of a game positions
(also called game states) instead of an evaluation function. These random
playouts guide construction of partial game tree.

Its aim is to select the most promising node by randomly exploring the
tree space with random playouts. It is very simple in its design and domain
independent.

Basic principle behind MCTS (or any algorithm built upon Monte-Carlo
method) is: “From a single random game, very little can be learnt. But from
simulating a multitude of random games, a good strategy can be inferred.”
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[11]. So for Monte-Carlo Tree Search to be effective, many iterations need to
be executed.

In MCTS, each node represents a given position. Every node must contain
at least two pieces of information:

1. Current value of a node. This information is gained through previously
played random simulations.

2. How many times was node visited (this is also called visit count).

3.1.2 Structure of MCTS

MCTS consists of four main phases executed in following order:

1. Selection is a recursive task with the goal of selecting the most promis-
ing child of a given node. It traverses the game tree from the root node
until it reaches position E which is not yet part of the tree, selecting
most promising positions along its path.

2. Expansion adds a node representing position E to the tree.

3. Simulation performs random simulation(s) (playouts) from a position
E according to the Simulation Strategy.

4. Backpropagation updates values of previously traversed nodes with in-
formation gained from the Simulation step.

3.2 MCTS phases

In this section, we describe the four MCTS phases (Selection, Expansion,
Simulation, Backpropagation) in more detail.
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3.2.1 Selection

Selection traverses the tree from the root node until a position is reached that
is not a part of the tree yet, selecting most promising positions according to
Selection strategy along its path.

Selection strategy controls the balance between exploration and exploita-
tion. This strategy consists of selecting nodes that leads to best results so
far (exploitation). However due to uncertainty of the evaluation other nodes
that might not appear promising should be explored (exploration).

Our Selection strategy was very simple to implement as it consists of
choosing positions which maximize the following UCT formula:

m

n
+ C ·

√
ln N

n
(3.1)

Where:

• n is the number of times node has been visited.

• m represents the number of checkmates achieved by the algorithm when
it traversed this node.

• C is a constant which determines the level of exploitation/exploration.

• N is a visit count of the node’s parent.

From a single playout very little can be learnt, however from a multitude
a sound solution may arise. Which is why in most implementations selection
phase is only applied to a node if visit count is higher than a constant called
threshold T. Otherwise Simulation phase is applied. [5]

3.2.2 Expansion

Expansion adds new nodes to the tree. Usually one node per simulation is
added. This is done when algorithm reaches a position which is not yet in
the three.
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3.2.3 Simulation

Simulation step plays the game until it runs out of time or until a termi-
nal state is reached. During the play, moves are selected pseudo randomly
according to the Simulation strategy.

Implementation of Simulation strategy

We implemented simulation strategy in a very basic way. First all possible
legal actions are generated and then these actions are filtered with what we
call (for the lack of a better term) heuristics methods. These methods act as
filter functions. For example, if we use heuristic method that prevents white
player from loosing any piece, this function will remove any action where
white could potentially lose a piece.

For simulation strategy players relied on the following simple heuristics:

• Black player stays as near the center of chessboard as possible.

• White player shouldn’t loose any pieces.

• White king should not increase distance from black king1.

• White king should move if distance between kings is larger than 3.

• If kings are in opposition, white player tries to check the black king from
the side (opposition of kings in chess is a position on the chessboard
where two kings face each other on the same rank or a file being exactly
one square apart).

• White player evades chess board state repetition.

3.2.4 Backpropagation

Backpropagation updates values of previously visited positions with infor-
mation gained from simulation. Backpropagation is usually a very simple

1Whenever distance between squares or pieces in mentioned in the thesis we are actually
referring to Manhattan distance.
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method. In our program it updates every node’s value to the value of equa-
tion 3.2. (

checkmates achieved from position A

visit count of position A

)
(3.2)

Where position A is the starting position of simulation phase.

3.3 Implementation

For experiments, we implemented MCTS and the KRK rules in Java which
can be downloaded from git repository:

https://github.com/ak83/MCTS.git.
Instructions on how to use the program can be found at

https://github.com/ak83/MCTS/wiki.
In the program we implemented MCTS and chess rules. For calculating DTM
difference of a chess move we used a chess program Fruit (version 2.3.1).

3.3.1 Playing moves

In our implementation, the white player is the attacking player, controlled
by the MCTS algorithm and trying to achieve a checkmate against the black
(defending) player. White player wins the game if it manages to checkmate
the black player.

White player can only play moves that are in the tree. It chooses top level
node (a child of the root node) with the highest visit count.

Black player always plays an optimal move which puts him in a position
with the greatest distance to checkmate.

The tree built by MCTS algorithm is a partial game tree. Meaning that
not all positions are in the tree so black’s response is not always anticipated.
If black player plays a move which was not anticipated, the tree is reset to
the root node and all previously gained information is lost. We call this a
tree collapse.

https://github.com/ak83/MCTS.git
https://github.com/ak83/MCTS/wiki
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Before every white player ply and at the beginning of every match many
iterations of MCTS algorithm were completed (exact amount of MCTS steps
performed is specified in Section 4.1).
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Chapter 4

Experiments

4.1 Experimental setup

For each set of MCTS input parameters (C, threshold T , number of MCTS
iterations performed before white player’s ply) we ran 100 chess games. In
total there were 26,000 playouts performed. All matches started from the
same starting position where black player was at least 15 moves away from
a checkmate.

In our experiments we focused on the following parameters:

C controls the amount of exploitation/exploration (lower C values favour
exploitation, higher C values favour exploration).
Values used 0, 0.12, 0.25, 0.75, 1.0, 1.75, 2.5, 5, 10, 25, 50, 100, 500

Threshold T determines if simulation or selection is performed from a
given position. If position has a visit count higher than the threshold
T , the selection strategy is applied otherwise the simulation strategy is
applied.
Values used 5, 10, 30, 50, 75, 100, 150, 300, 500, 1000

Number of MCTS simulations is a number of MCTS iterations that were
performed before each white player’s ply.
Values used 3000, 6000

17
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Figure 4.1: Starting position used in our experiments

In addition, before every match there were also 10,000 MCTS iterations
completed.

4.2 Results

4.2.1 Measuring performance

This section explains why we used DTM difference as a method of measuring
quality of play and why it is a viable measurement.

Average DTM difference may not be directly connected with winning ra-
tio of attacking player. Especially in more difficult endgames the attacking
player can make one or two wrong moves that may prevent him from achiev-
ing a checkmate, despite playing optimally up to that point.

The main reason why we chose the DTM difference for measuring playing
quality are the tablebases (Section 2.2). Tablebases are a great tool that
allowed us to exactly calculate the DTM difference of a played move. With
average DTM difference we may accurately calculate quality of an individual
move played.
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Figure 4.2 shows that the average game length and the average DTM
difference are related. With better performance of the attacking player (lower
DTM difference) the average game length becomes shorter, meaning that the
attacking player wins the game faster.

4.2.2 Basic results

All results described in this Section were expected and we use them to explain
how MCTS works.

Level of exploitation/exploration of MCTS is controlled by the UCT for-
mula, more specifically by the constant C. With higher exploitation MCTS
focuses more on the previously gained information and does not try to ex-
plore less significant positions. In contrast, higher exploration means that it
will explore also less significant positions. This property is important due to
uncertainty of evaluation by simulations, a position which may seem good at
some point, might turn out to be suboptimal later on.

In chess games where 3,000 MCTS iterations were performed, we took a
sample from each combination of C and threshold T , and for each value of
C we calculated standard deviation of visit count for top level nodes. These
samples were taken when the attacking player played his first move at the
beginning of the chess games. In figures 4.3 and 4.4 we calculated the stan-
dard deviation of top-level nodes. Figure 4.3 explains best how our algorithm
works. With higher exploration (higher C values) standard deviation of visit
count taken from the top-level nodes decreases. Due to heuristics used, there
were usually usually 2 or 3 top-level nodes. In playouts where exploitation
was high, typically only one of these nodes was explored properly. This is
especially true for games where there was no exploration (if C was set to 0).
If a checkmate was reached in the first iteration of MCTS, all other top-level
node were ignored.

In playouts with higher exploration, all top-level nodes were explored
equally. Which may not be optimal, because we want the algorithm to explore
significant parts of the tree more extensively.
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Figure 4.2: Average game length based on the DTM difference. We can
see that if the DTM difference increases average game length also increases.
The graph demonstrates that average DTM difference can be used as a valid
measurement of a player’s skill. The attacking player did not play very well,
because in our tests we used starting position that is 15 moves away from
checkmate if both players play optimally. However as we can see from the
graph, average game lengths ranged from 28 to 36.
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Setting C value for optimal performance is not an easy task. Nevertheless
there are some guidelines how to find a good value (see Section 4.2.3 for more
details). Also optimal C values are domain dependent and different for each
set of other MCTS input parameters.

As can be seen in figure 4.3 standard deviation of times that node was
visited by the algorithm decreases with increasing values of C. This demon-
strates how Monte-Carlo Tree Search and UCT formula work. The C con-
stant determines exploitation/exploration of the MCTS algortihm. With
lower C values the MCTS algorithm will rely on exploiting knowledge that
has already been found and will not explore nodes that do not seem good
choice early on. With higher C values the MCTS algorithm will tend to ex-
plore more different nodes. As a consequence of this, also standard deviation
of average number of checkmates achieved will decrease with increasing of C

value (see Figure 4.4).

Importance of a good simulation strategy

Figure 4.6 shows that the quality of play is related to the number of tree
collapses. A tree collapse occurs when the black player plays a move which
is not in the tree, i.e. the move that was played was not anticipated by the
algorithm. In tests where fewer tree collapses occurred, the quality of play
was better (lower DTM difference).

The data for Figure 4.6 was collected in following way: for each set of
C and threshold T average DTM difference and number of tree collapses
were collected. Both DTM difference and number of tree collapses were then
normalized to fit on the interval [0, 1]. By looking at the figure it is easy to
see that a relation between them, since in most graphs when the number of
tree collapses drops also DTM difference drops.

It is easy to conclude that inability to correctly guess black player’s re-
sponse in a given game state can be a mayor flaw in designing a good simu-
lations strategy.
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Figure 4.3: Average standard deviation of visit count at top-level nodes for
different C values. With lower C values (higher exploitation and lower ex-
ploration) less top-level nodes are explored and search is more focused on
positions which appear a good choice very early on. With the higher C value
(increased exploration) more positions which may not appear significant will
be explored. Until a point where C is high enough so that all top-level nodes
will be explored equally causing tree building process to ignore information
gain from simulations performed.
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Figure 4.4: Standard deviation of checkmates achieved from top-level nodes.
Checkmates are very important because they guide building of the tree.
Lower exploration (low C values) cause only very few top-level nodes to
be explored. Checkmates then appear only in those few nodes and cause
tree building process to be sub-optimal. Because the first node from which
checkmate is achieved may not be the node from which checkmate is achieved
in least number of moves.
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Figure 4.5: In this figure we see the ratio between top-level node’s visit count
and a number of checkmates achieve from it. With higher exploration (higher
C values) more different nodes are explored. However, if fixed amount of sim-
ulations is available, by distributing simulations to more different positions,
there are less simulations available for evaluation of each node. If less simula-
tions are performed from a position, MCTS might gain too little information
for proper evaluation. Meaning that quality of MCTS guided play might
drop if we simply keep increasing exploration. However if we set exploration
too low, then not all significant positions would be explored.
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Figure 4.6: The Figure shows that the quality of play and the number of
tree collapses are related. Both DTM difference (y axis) and the number of
tree collapses have been normalized to fit on the interval [0, 1]. Blue lines
represents DTM difference and red line number of MCTS tree collapses. The
x axis of each graph represents threshold T values used in tests.
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4.2.3 Relation between MCTS parameters

Relation between C and the number of MCTS iterations

In Figure 4.7, we can see an average DTM difference based on the value of C.
What is the most important is for which C value algorithm’s performance
is optimal (where DTM difference is minimum). This value is different for
chess games with different number of MCTS iterations made.

Our claim is that with higher number of MCTS iterations performed, it
is better to increase exploration.

With higher C values standard deviation of visit count decreases (Figure
4.3), because a certain amount of simulations must be divided between a fixed
amount of nodes. If we increase the number of simulations and if we don’t
increase exploration, simulations will begin mostly from nodes that have
already been evaluated. If those nodes were already properly evaluated, we
gain nothing from increased number of simulations. However if we increase
exploration, new simulations can better evaluate a node that may not have
been properly evaluated before.

Finding optimal C value is not an easy task. If we just increase the explo-
ration, MCTS performance would not be optimal. If we have a fixed amount
of simulations available and we increase exploration too much, the algorithm
will explore more different positions. Even though more positions would get
explored, from these positions fewer simulations would be performed. With
fewer simulations, evaluation of those positions may not be up to par.

Relation between C and threshold T

For each value of C used, Figure 4.8 shows DTM difference based on different
threshold T values. We can observe that for lower exploration the quality of
play increases with threshold T .

If exploration is set too low, the MCTS focuses too much on certain
positions, before enough different nodes have been explored to determine
which position is a good choice. In such case higher threshold T provides
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Figure 4.7: Average DTM difference for C values used in games with 6000
(blue line) and 3000 (red line) MCTS iterations performed per white player’s
move. Better quality of play is represented with lower values of DTM dif-
ference. This Figure suggests that it is better to choose higher exploration
where more time for performing simulations is available. Because the attack-
ing player’s skill is the best at C value 5 in games with 3000 MCTS iterations
made and 10 in games with 6000 iterations made. In matches where the at-
tacking player made 6000 MCTS iterations, the attacking player played with
more skill than in those with 3000 MCTS iterations available.
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extra exploration by performing random simulations that start closer to the
top of the MCTS tree.

This is however not true for games performed with higher exploration.
In these games the white player plays best (or close to best) when threshold
T is set to 30. We believe this is because in the KRK endgame there are at
most 22 moves possible for attacking player. If threshold T is set to a value
that is lower, not all possible move may be added to the tree and crucial
moves may not be played. However if threshold T is set to a value higher
than that, MCTS should add all possible moves to the tree.

Although when all of possible moves are added with threshold T set
higher, instead of using the information gained, the algorithm performs ran-
dom playouts. Which is not optimal.

In our tests, for games with sufficient exploration level algorithm per-
formed best at threshold T with the value of 30 incidentally, this is the
closest value that is also higher than the maximum number of legal moves
possible.

The claim about this relation can be further confirmed by the fact that
it has been empirically determined that for the game of Go played on 9 × 9
board, it is best to set threshold T to the value of 81. Which is also the
maximum number of possible moves for a player [10] in that game.
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Figure 4.8: This picture shows how threshold T and C constant are related.
The x-axis represents the threshold T values used and the y-axis represents
the DTM difference. For chess games where C was set to 2.5 or lower DTM
difference decreases with increasing threshold T . For chess games where C

was set to 5 or higher DTM difference reaches minimum or is near minimum
in chess games where threshold T was set to 30.
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Conclusions

In this thesis, we applied the Monte-Carlo Tree Search to chess endgames.
We chose this domain because with the help of tablebases, giving an exact
evaluation of each algorithm’s decision in terms of distance to mate, we could
assess more objectively the algorithm’s performance. For this purpose we
used DTM difference. With the DTM difference we could assess the quality
of each move and consequently the quality of the algorithm’s decisions.

The DTM difference offers a better way to measure game quality (com-
pared to average game length, for example). It represents a deviation from
optimal play, and could be assigned to each particular move. Thus using the
DTM difference we could assess the quality of each individual move played
(and not only of a game as a whole), making it more feasible to analyze
MCTS performance.

It is worth noting that MCTS performed rather poorly in our domain of
choice – chess endgames. While our MCTS-based program won almost every
game in the KRK endgame, it rarely achieved a checkmate when tested
in more difficult endgames, even with help of additional heuristics. The
main reason is that during simulations too few checkmates were achieved to
properly guide the tree search.

Although we applied MCTS to chess endgames, the purpose of this thesis
was not to create a chess-playing agent. Our goal was to understand Monte-
Carlo Tree Search better.

By using the DTM difference we came to following conclusions.

• By exploring the relations between various parameters, we showed that

31



by increasing the computational time to perform simulations it is also a
good strategy to also increase exploration. By running simulations from
nodes that were already evaluated properly hardly any information can
be gained. However, using the extra time to explore previously less
explored nodes, a better solution may be found.

• We argued that by setting the threshold T to a value equal to the
maximum of possible actions in a given domain, the Monte-Carlo Tree
Search will perform best. If the threshold T is set to a value lower than
that, then not all moves may be explored. On the other hand, if the
threshold T is set much higher than the maximum number of possible
moves, then instead of relying on information gained from the MCTS
tree, random simulations are performed, causing MCTS performance
to be less than optimal.

• By demonstrating that the number of tree collapses being very much
related to the algorithm’s performance, we also explained that if the
algorithm does not anticipate opponent’s moves properly, its perfor-
mance will drop.

Another interesting domain for studying the MCTS performance may
be Checkers, where tablebases also exist. Future work can be associated
with obtaining more experimental results in order to find out how domain
independent our findings are.
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