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UNIVERZITETNI ŠTUDIJSKI PROGRAM PRVE STOPNJE
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Povzetek

Področje brezžičnih senzorskih omrežij je vse bolj pomembno raziskovalno

področje. Razlog je v tehnološkem napredku, katerega posledica je zniževanje

cene strojne opreme ter zniževanje porabe energije, kar pozitivno vpliva na

uporabnost brezžičnih senzorskih omrežij.

Brezžična senzorska omrežja navadno sestojijo iz večjega števila poceni

vozlǐsč, ki so navadno baterijsko napajana. Če za polnjenje baterij uporabimo

fotovoltaične celice, lahko omrežje postane tudi energetsko samozadostno.

Zaradi omejene količine energije je pomembna nizka poraba. Pogosto se

poleg strojne opreme z nizko porabo uporabljajo dodatni prijemi, kot npr.

periodično izklapaljanje (spanje) naprav. Kot posledica energetskih omejitev

je zelo omejen tudi domet naprav, njihova fizična velikost ter zmogljivost.

Diplomsko delo obravnava izbolǰsave MAC (Media Access Control) pro-

tokola HMAC (Hash MAC ), ki je namenjen uporabi v brezžičnih senzorskih

omrežjih. Naloga MAC protokola je upravljanje dostopa do medija za ko-

municiranje (v tem primeru gre za brezžično omrežje). Protokol HMAC

zagotavlja usklajen dostop do medija na podlagi razporejanja komunikacije

posameznih naprav po času ter frekvenčnem prostoru. Časovno razporeja-

nje je še posebej energetsko učinkovito, saj lahko naprave izklopimo izven

njihovega časovnega okna.

Zaradi uporabe časovnega razporejanja je v protokolu HMAC pomembna

sinhronizacija časa med posameznimi napravami. Je pravzaprav ključnega

pomena za zanesljivo delovanje protokola. Obstoječa implementacija proto-

kola ni podpirala sinhronizacije časa, zato je bil eden glavnih ciljev diplom-
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skega dela izbira tehnike sinhronizacije ter implementacija le-te.

Primer uporabe izbolǰsanega protokola HMAC, predstavljenega v diplom-

skem delu, je projekt iRoad [Ril10], ki ga razvijajo na Lule̊a tekniska uni-

versitet (LTU). Namen projekta je razvoj inteligentnih opozorilnih znakov

na cestah in temelji na uporabi brezžičnega senzorskega omrežja. Naprave,

postavljene ob cestǐsču, so opremljene s senzorji za zaznavanje bližajočih se

vozil. Ob zaznanem vozilu se preko omrežja pošlje sporočilo proti napravam

v krožnem križǐsču, ki so opremljene z močnimi LED (Light emitting diode)

diodami. Namen sistema je opozarjanje ostalih udeležencev v prometu o

bližujočem se vozilu.

Glavna motivacija diplomskega dela sta bili naslednji ključni zahtevi pro-

jekta iRoad:

1. Dovolj nizka poraba energije, da lahko naprave zdržijo brez polnjenja

čez noč.

2. Hitrost prenosa sporočil mora presegati hitrost vozila, ki se približuje

krožnemu prometu.

Protokol HMAC je bil zasnovan za nizko porabo energije. Pri našem delu

je bilo pomembno, da je sinhronizacija časa po eni strani energetsko nepo-

tratna in po drugi strani dovolj natančna, da omogoča dovolj visoko hitrost

prenosa podatkov. Pri komunikaciji morajo namreč naprave implementirati

določene zakasnitve, ki premoščajo razliko v percepciji časa med njimi. Te

zakasnitve so v veliki meri posledica prav razlik v percepciji časa.

Pogoj za izbiro tehnike sinhronizacije časa so bile meritve razlik v fre-

kvenci ure med posameznimi napravami. Namreč, ker se v brezžičnih senzor-

skih omrežjih uporablja relativno poceni strojna oprema, ure v posameznih

napravah ne tečejo s popolnoma enako frekvenco, tudi če gre za naprave iz iste

serije. Te razlike so majhne, vendar v dalǰsih časovnih intervalih povzročijo

veliko odstopanje. Za premoščanje teh odstopanj je potrebna sinhronizacija

časa in za izbiro tehnike ter določanje parametrov pri sinhronizaciji je po-

membno ugotoviti, za kakšno odstopanje gre. V Poglavju 3.1 smo na naši



strojni opremi izmerili povprečno odstopanje 800 ppm, kar pomeni, da se

odstopanje vsako sekundo poveča za 800 mikrosekund.

V Poglavju 2.1 so predstavljene različne tehnike sinhronizacije časa ter

ocenjena njihova primernost za uporabo v protokolu HMAC. Na podlagi

primernosti ter drugih dejavnikov (obstoječe implementacije, razširjenost)

smo izbrali tehniko FTSP (Flooding time synchronization protocol). V Po-

glavju 3.1.2 je predstavljena evalvacija tehnike na naši strojni opremi.

Za učinkovito uporabo FTSP v protokolu HMAC je bilo potrebno na novo

zasnovati implementacijo protokola, v manǰsem obsegu pa tudi prilagoditi

samo specifikacijo. V Poglavju 3.2 so podrobno opisane potrebne spremembe,

implementacija FTSP, evalvacija nove rešitve ter meritve porabe energije.

Rezultat diplomskega dela je protokol HMAC z zmožnostjo sinhronizacije

časa, ki dosega zahteve projekta iRoad. Obsega tako teoretični del - rešitve

problemov obstoječega protokola HMAC, izbira tehnike sinhronizacije časa

ter način vključitve le te, kot tudi praktični del - deljuča implementacija opi-

sane rešitve v celoti. V zaključku so predstavljeni še predlogi za nadaljno

delo.

Ključne besede: brezžična senzorska omrežja, TinyOS, MAC protokol,

HMAC protokol, sinhronizacija časa, zamik ure, FTSP



Abstract

HMAC is a MAC protocol developed for wireless sensor networks at LTU and

is based on time division. Consequently it is highly susceptible to time devi-

ations between nodes, but is good in terms of low power consumption. There

is currently no time synchronization implementation for the HMAC proto-

col, which has an impact on the reliability and performance of the protocol.

In this thesis we focus on implementing time synchronization for HMAC on

TinyOS, ensuring reliable function of HMAC, therefore enabling its use in

production environments. Clock drift was measured on our target platforms

and the performance of the reference flooding time synchronization protocol

(FTSP) implementation was evaluated. We optimized the performance of

FTSP on our platforms by adding microsecond precision support and fixing

FTSP-related bugs present in the radio driver layer. The implementation of

HMAC for TinyOS was redesigned, with the goal of improving performance,

reliability and code manageability. We also integrated FTSP directly into

HMAC, improving HMAC reliability even further. The final tests in this the-

sis show the achieved reliability, synchronization and low power consumption.

Keywords: wireless sensor networks, TinyOS, MAC protocol, HMAC pro-

tocol, time synchronization, clock drift, FTSP



Chapter 1

Introduction

Wireless sensor networks (WSN) are becoming an increasingly popular re-

search topic. Due to constant technological advancements, hardware is be-

coming cheaper and hardware power consumption is decreasing, which both

make WSNs increasingly more viable for use in real-world applications.

WSNs are generally comprised of numerous low-cost nodes, which are

typically battery-powered. The batteries can be charged by solar energy to

make the network self-sufficient. Due to the limited power supply, low power

consumption is also a factor, thus besides using low-power hardware, devices

are often periodically put into sleep mode to preserve power. Furthermore,

the range at which these devices can communicate is limited, the devices

tend to be small in size and they are limited in computational abilities, as

well.

In this thesis, we work on improving HMAC, a MAC protocol developed at

Lule̊a University of Technology, which takes WSN capabilities and limitations

into account. A MAC protocol is used for communication and controls access

to the communication medium - in the case of WSNs, the wireless network.

HMAC uses time and frequency division to control access to the network.

Time division provides benefits in regard to power consumption - the device

can be put to sleep outside of its allocated time slot.

Due to the use of time division in HMAC, maintaining a common notion of

1
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time becomes important, i.e. time needs to be synchronized between nodes.

A time synchronization technique is one of the tools that can be used to

ensure reliable function of HMAC.

WSN applications have different performance requirements, thus there

are many different communication and synchronization protocols for use in

WSNs. For HMAC, it is desirable that the whole network is synchronized to

the same time, as opposed to synchronizing localized clusters in the network.

This somewhat limits the choice of time synchronization protocols that are

suitable. There is no time synchronization currently implemented in HMAC,

which prevents it from working reliably for extended periods of time, thus

making this an interesting research topic.

An example of a real-world application where HMAC can be used, specif-

ically with improvements suggested in this thesis, is the iRoad project [Ril10]

that is being developed at LTU. The aim of iRoad is to make intelligent road

markings through use of low-power devices such as mulle, which was used in

this thesis. One of the use cases is to notify pedestrians of cars approaching

a roundabout. To accomplish this, nodes are placed beside the road leading

to the roundabout. The nodes are equipped with sensors that can detect

cars passing by - when a car is detected, a notification is sent through the

network towards the nodes closest to the roundabout. Receiving nodes light

up LEDs, which lets pedestrians know that a car is approaching. To make

this possible, a network protocol is needed that allows for notifications to

travel through the network faster than the car is traveling on the road, while

still not consuming a lot of power so that the devices can operate only on

batteries recharged during the day by solar power.

The work in this thesis addresses the following research questions in par-

ticular:

1. How accurate are clocks used in WSN nodes and how fast will they

drift apart between different nodes?

2. How do time synchronization protocols work and how well does the

FTSP protocol perform on our platforms?
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3. How to redesign HMAC to improve reliability, performance and code

manageability?

4. How to integrate the FTSP protocol into HMAC to achieve better time

synchronization?

5. How to improve the HMAC protocol and its implementation even fur-

ther, with regard to performance?

The thesis is organized as follows: Chapter 2 introduces the time synchro-

nization problem in the context of wireless sensor networks and provides an

overview of existing work. An overview of medium access control protocols

for use in WSNs, such as HMAC, is also provided. Chapter 3 discusses the

experiments and work done to improve HMAC and choose a suitable time

synchronization protocol that can be used in conjunction with it. Chapter 4

summarizes the work done and suggests further research topics.
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Chapter 2

Background and Related Work

2.1 Time Synchronization

Time synchronization plays an important role in wireless sensor networks, as

it does in distributed systems in general. Time synchronization is necessary in

certain applications to fulfill timing demands. Due to clock crystal impurities

and environmental conditions, devices experience clock drift [KW05].

Time synchronization is also important for MAC protocols based on

TDMA (Time Division Multiple Access), MAC protocols with coordinated

wakeup (e.g. Zigbee) and MAC protocols with duty cycling.

To have a better understanding of the magnitude of error caused by clock

drift, a consequence of unmatched oscillator frequencies, let us examine some

typical values. In [vGR03], authors observed a 50 ppm (parts per million)

drift. In other words there were 50 additional (or missing) oscillations in the

amount of time needed for one million oscillations at the nominal rate. They

also state that a 20 - 50 ppm drift is typical for quartz crystals. A 50 ppm

drift means a drift of 50 µs per second. In [EGE02], authors estimated the

typical drift for crystal oscillators to be in the range of 1−100 µs per second.

To put the number in perspective, 50 ppm drift accounts for a 100 ms drift

around every half hour. In many cases such deviation is unacceptable, and

that is one of the reasons that time synchronization protocols are necessary.

5



6 CHAPTER 2. BACKGROUND AND RELATED WORK

2.1.1 An Overview of Existing Time Synchronization

Protocols Designed for WSNs

Many time synchronization protocols appeared over time. In the following we

describe some of the more important ones for use in wireless sensor networks.

Characteristics of such protocols are, in particular, low power consumption

and the ability to be used in large-scale networks.

Following the classification in [KW05], we divide the protocols into two

groups:

1. Sender/receiver synchronization: the receiver synchronizes to the sender’s

clock. A widely known protocol like this is the network time protocol

(NTP), often used in the Internet [MMBK10].

2. Receiver/receiver synchronization: multiple receivers of the same times-

tamped packet synchronize with each other, but not with the sender.

Lightweight Time Synchronization Protocol (LTS)

The lightweight time synchronization (LTS) protocol [vGR03] works by using

pair-wise synchronization to synchronize the network to reference nodes. LTS

can be classified as a sender/receiver synchronization protocol.

There are two major flavors of LTS. Both depend on pair-wise synchro-

nization to synchronize the clock of some node A to that of some node B.

Pair-wise synchronization is based mostly on packet time-stamping and is

carried out as follows:

1. Node A sends a timestamped synchronization request packet to node

B. One should note the propagation delay (caused by the operating

system, the MAC layer etc.) and the packet transmission time that is

required before the packet reaches node B.

2. Node B constructs an answer packet containing the timestamp of re-

ception (before being processed) and the original timestamp sent by
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node A. Before sending the answer packet to node A it is timestamped

one more time (after processing).

3. By making the assumption that incurred delays are the same in both

directions, node A can estimate its clock offset from the clock of node

B. This offset can then be used to synchronize node A to node B.

4. If required node A will send the offset back to node B.

By using pair-wise synchronization, LTS can then synchronize the whole

network to a reference node. In case of centralized multi-hop LTS, the

whole network is synchronized to one reference node, which may be using a

high-quality time reference such as GPS. The reference node is responsible

for triggering synchronization and all nodes in the network must participate.

The synchronization is performed by constructing a spanning tree and let

each node perform pair-wise synchronizations with its children. In contrast,

one can use distributed multi-hop LTS. In this case, there can be mul-

tiple reference nodes. Synchronization can be triggered on-demand by any

individual node and will synchronize directly to a reference node (can be

through multi-hop).

Distributed multi-hop LTS performs better when synchronization of the

whole network is not required at the same time. In cases where synchro-

nization of the whole network is required, centralized multi-hop LTS is up to

twice more efficient. Distributed multi-hop LTS has, however, the advantage

of being able to synchronize just certain parts of the network, and the nodes

are able to decide by themselves when to synchronize (on-demand).

Timing-sync Protocol for Sensor Networks (TPSN)

Like LTS, Timing-sync protocol for sensor networks (TPSN) [GKS03] is based

on pair-wise synchronization. It can also be classified as a sender/receiver

synchronization protocol. In the case of TPSN, there are a few differences

concerning pair-wise synchronization:
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1. Node A will synchronize to Node B but not vice versa.

2. Time-stamping on the transmission and reception side is done in the

MAC layer immediately before transmission or reception. This way,

most sources of uncertainty are eliminated - namely OS incurred delays

and the medium access delay. The only remaining uncertainty is now

the very small delay between time-stamping and actual transmission

[KW05].

In contrast to LTS, TPSN requires support from the MAC layer, which

is easier to achieve in sensor nodes than with commodity hardware.

By using pair-wise synchronization, TPSN can then synchronize the whole

network to a root node. Only one root can exist in the network. Similarly to

LTS, a spanning tree is built. This is accomplished by sending level discovery

packets containing the current level, starting from the root node. At the end

of this process, each node knows its level in the tree and its parent node. After

a node has found a parent, it periodically resynchronizes to the parent’s clock

using pair-wise synchronization.

TPSN also defines rules for when a parent of a node becomes inaccessible.

If the dead node is not the root node then a level request package is sent to

find a new parent. In case the root node dies then a leader election protocol

based on contention is initiated.

Reference Broadcast Synchronization (RBS)

The reference broadcast synchronization (RBS) protocol [EGE02] works by

estimating the clocks of neighboring nodes. It does not use the concept of

global time but rather converts from the local time of one node to another.

It can be classified as a receiver/receiver synchronization protocol.

RBS works by having a sender transmit a pulse packet into a broadcast

channel. The only purpose of this packet is to serve as a sort of common

trigger for all the nodes in the broadcast domain (nodes who can hear each

other), and does not need to contain a timestamp. All receiving nodes times-
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tamp this pulse packet and then exchange their timestamps, thus learning

about each other’s clock offsets.

An important difference compared to previously described approaches is

that the nodes do not change their clocks, they just know how to convert them

to the clocks of all their neighbors. By keeping a history of this information,

a node can approximate not only the clock offset but also the drift for a

neighbor node (the speed at which the clock of the neighbor drifts apart from

its clock). To approximate the drift, least-square linear regression is proposed

in RBS. It has been shown that keeping a history of more than 30 offset

observations does not provide any additional gains in precision. Similarly to

TPSN, RBS can also benefit in precision from early time-stamping, since it

reduces the number of uncertainties.

The pulse senders can either be dedicated nodes or they can be regular

nodes acting a both senders and receivers. The former case is especially

convenient in networks with stationary nodes like IEEE 802.15.4 in beaconed

mode. These dedicated nodes can also compute the offsets and drifts for all

the regular nodes.

For multi-hop, a time conversion approach is used. Since the forwarding

node can translate from the time of the sending node to the time of the

receiving node, it can translate timestamps accordingly before forwarding

the packet. When the receiving node receives the packet, it will already be

timestamped in its local time.

It is worth mentioning that RBS can produce quite a bit of overhead. In

networks that do not have some central node to process offsets and drift, n *

(n - 1) packets are required to exchange observations between n nodes. Also,

the proposed least-square regression calculation is relatively computation-

ally expensive [MKSL04]. However due to its nature it can be used in cases

where event-triggered synchronization is required, with synchronization hap-

pening after the event. This may be especially useful when not using a MAC

protocol that depends on time synchronization, since the nodes can go into

sleep mode for longer periods of time without the need to wait for explicit
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resynchronization after waking up. In [MKSL04] authors also point out an

advantage of RBS to be the elimination of transmitter-side non-determinism

(since any uncertainties on the pulse sender side do not affect RBS), and as

a disadvantage the lack of extension to large multi-hop networks.

When setting up RBS, determining the broadcast domains can also pro-

vide a challenge. If the broadcast domains are small, more time conversions

need to take place which constitutes loss of precision. On the other hand,

larger broadcast domains increase the amount of packets that need be ex-

changed between nodes and the radio power needs to be increased, as well.

In either case, each node must be a part of at least one broadcast domain.

Flooding Time Synchronization Protocol (FTSP)

The Flooding time synchronization protocol (FTSP) [MKSL04] is based on

the ideas from RBS and TPSN. It is essentially an improvement on RBS and

can likewise be classified as a receiver/receiver synchronization protocol.

In contrast to RBS, FTSP assumes a single synchronization-root node.

For nodes that are not in the broadcast domain of the root (in multi-hop net-

works), any other already synchronized node can act as the root. Instead of

sending simple beacon packets like in RBS, the root sends synchronization

messages which include a timestamp (the estimation of global time), a root

ID (the root as known to the sending node), and the sequence number (incre-

mented after each synchronization round). Since each synchronization round

all synchronized nodes will flood the network with synchronization messages,

each node maintains a myRootID and highestSeqNum variable. With the help

of this information the node can ignore redundant synchronization messages

and synchronize to a single root.

Since FTSP has only a single root node, a mechanism is also proposed

to reelect the root node in case of failure of the current root. To detect

failure a simple timeout approach is used. After timing out, all nodes declare

themselves as the root and begin sending synchronization messages again. If

a node receives a synchronization message with a lower root ID than its own
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ID, it will give up their root status. Eventually the node with the lowest

ID will become the only root in the network. During this process some

special measures are also taken to avoid inconsistencies and maintain the

synchronized state of the network as much as possible [MKSL04].

Some other improvements of FTSP over RBS are:

1. Compensation for byte alignment: some radio chips cannot capture

the byte alignment of the transmitted message stream on the receiver

side and the radio stack has to determine the bit offset of the message

from the alignment of a known synchronization byte and then shift the

message accordingly [MKSL04]. FTSP can compensate for this delay.

2. Time-stamping in the MAC layer: eliminates the jitter of interrupt

handling and decoding time.

3. Several jitter reducing techniques to eliminate the send, access, inter-

rupt handling, encoding, decoding and receive time errors.

4. Since nodes need not exchange their observations as in RBS, less net-

work resources are required for FTSP to function.

Hierarchy Referencing Time Synchronization (HRTS)

The Hierarchy referencing time synchronization (HRTS) protocol [DH04]

works by synchronizing the broadcast domain, as with RBS, but without

the need for neighbors to exchange observations. Like RBS, it can be classi-

fied as a receiver/receiver protocol.

HRTS requires one or more dedicated root nodes or base stations,

preferably with an accurate time reference. The protocol is set up so all

nodes will synchronize to their closest root node. It works as follows:

1. The root node broadcasts a sync begin packet, which includes, similarly

to TPSN, a level value and additionally an ID of any neighboring node,

let us call it node A.
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2. All nodes that receive the sync begin packet, including node A, times-

tamp it upon reception.

3. Node A responds to the root node with a packet containing the time

of reception, and also timestamps the response before transmission.

4. The root node can now calculate its clock offset compared to node A.

This is achieved similarly as with the pair-wise synchronization of LTS

and TPSN.

5. The root node broadcasts both its offset and node A’s timestamp of

reception.

6. Now all nodes in the broadcast domain of the root node can calculate

their offsets, without any further interaction with their neighbors (un-

like RBS). Node A’s offset is simply the offset calculated by the root

node. Other nodes can calculate their offsets by taking into account

the difference between theirs and node A’s local time of reception of the

sync begin packet and adding this relative offset to the offset reported

by the root node.

7. This process can be repeated for other levels if the network is multi-

hop. Contention is not necessary as the listening nodes will accept the

first received sync begin sender as their root unless the level value is

smaller than the level of their current root.

It is proposed in [DH04] (although not required) to run this protocol

over a separate MAC channel to reduce collisions and medium access delays.

Through experimentation they also measured the overhead traffic of RBS to

be much higher than that of HRTS. HRTS’ efficiency does however suffer if

there is a very small amount of children per each node. An example would

be a line topology.
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2.2 MAC Protocols

The Medium Access Control (MAC) protocol layer is a network layer just

above the physical layer. Thus, MAC protocols must take into account the

properties of the physical layer being used. MAC protocols are used to regu-

late access to a shared medium, in order to satisfy performance requirements

of the target application [KW05].

Because of limited resources, MAC protocols play an important role in

WSNs. For some WSN applications, layers above MAC are not even neces-

sary.

2.2.1 An Overview of Existing MAC Protocols De-

signed for WSNs

Most common categories of MAC protocols that are used in wireless networks

are:

1. Protocols with low duty cycles or wakeup concepts.

2. Contention-based protocols.

3. Schedule-based protocols.

Typical performance criteria for MAC protocols are fairness, through-

put and delay. In WSNs, however, these criteria are only of minor impor-

tance compared to energy efficiency. Besides energy consumption, some other

criteria important in WNSs are scalability and robustness against frequent

topology changes (due to nodes being replaced or running out of power).

MAC protocols that are particularly well suited to WSNs, and that will be

described more closely, are Time Division Multiple Access (TDMA) protocols

and Frequency Division Multiple Access (FDMA) protocols. Here, nodes are

assigned time or frequency slots for communication with each other. This

eliminates collisions and the radio can be switched off outside of the node’s

assigned slot. It also eliminates overhearing communication between other
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nodes, which may be desired in order to not consume power by listening

to irrelevant communication. In some MAC protocols, however, overhearing

can also be a desired effect - e.g. in Sensor-MAC (S-MAC) and Overhearing

Based MAC (OBMAC).

Using TDMA gives rise to new challenges, however. TDMA depends

on very tight time synchronization. Nodes in WSNs use cheap hardware

which includes components like oscillators and clocks. This means that for

TDMA protocols to work reliably, frequent time synchronization is required,

which can consume significant amounts of energy. With FDMA, frequency

synchronization is necessary, and the ability of a receiver to tune to the

channel used by a transmitter - therefore, FDMA transceivers tend to be

more complex. Of course, the number of frequency slots is even further

limited by the width of the available frequency band.

In this Section, we will provide an overview of MAC protocols that im-

plement solutions to some common problems arising with the use of TDMA

or FDMA protocols.

LEACH

The LEACH protocol (Low-energy Adaptive Clustering Hierarchy) [HCI+02]

is a TDMA-based MAC protocol and assumes all nodes report their data to

a sink node.

It organizes nodes into clusters, and each cluster has a clusterhead node,

which assigns TDMA slots to member nodes in the cluster. Member nodes

can only communicate to the clusterhead, but not to each other. The clus-

terhead can communicate with the sink node, which may take a lot of power

if the sink node is far away. In either case the clusterhead will consume more

power since it has to be on for more time than the member nodes. Because

of this fact, the clusterhead is periodically reelected, so that one node will

not run out of power sooner than other nodes. To avoid distortion between

neighboring clusters, a clusterhead will also assign a CDMA (Code Division

Multiple Access) code to the cluster.



2.2. MAC PROTOCOLS 15

The protocol itself is organized in rounds, which are divided into phases:

1. The setup phase: Nodes self-elect themselves as clusterheads, based on

how long ago they were last a clusterhead.

The advertisement phase: The clusterheads inform their neighbor-

hood about their clusterhead status. Each node will pick a clusterhead

based on signal strength.

The cluster-setup phase: Nodes inform their clusterhead that they

want to join the cluster.

The broadcast schedule phase: The clusterhead builds a TDMA

schedule and a CDMA code for the cluster, and broadcasts it to the

members.

2. The steady-state phase: Nodes can communicate with their cluster-

heads according to their TDMA schedule.

Because according to protocol specification, a clusterhead will communi-

cate directly to the sink node, a problem for LEACH would be if the sink

node is very far away from a clusterhead, which can happen in bigger WSNs.

This could be solved by adding forwarding. Another problem with LEACH

is the requirement that nodes can only communicate to the clusterhead and

the sink node, which is not always enough.

HMAC

The HMAC (Hash MAC) protocol [Ril10], developed at Lule̊a University of

Technology, is a protocol based on TDMA and FDMA. It relies on global

time synchronization to work reliably.

The protocol is organized into epochs, each being divided into phases:

1. The start phase: The purpose of this phase is to let nodes power up

their radios and tune to the broadcast channel.
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2. The synchronization phase: This phase does not need to happen every

epoch. In this phase, the nodes synchronize to each other, so they can

properly follow their TDMA schedule.

3. The broadcast phase: In this phase, nodes that wish to send some-

thing announce it with an RTS (request to send) packet. There is no

acknowledgement or clear to send packet required. Each node has a

time slot inside the broadcast phase when it can send an RTS.

4. The unicast phase: Process received RTS to schedule receive and/or

schedule send if the node has any data to send.

The unicast receive phase: The node expects another node to trans-

mit during this phase.

The unicast send phase: The node transmits data.

Except for synchronization purposes, there are no central nodes in the

network. The nodes can communicate peer-to-peer. Their schedules are

calculated based on a hash function and a unique identifier of each node (e.g.

TOS NODE ID), which determines both the time at which to send as well

as the channel to use. All nodes are required to have their radio on only in

the broadcast phase. If a node does not have anything to send or receive, it

can power its radio off during the other phases.

Each of the above phases will take a set amount of time. In the following

table we present some durations that were used in [Ril10]:

Application 1 Application 2

Unicast slot 3 ms 24 ms

Unicast frame 60 ms 1752 ms

Broadcast frame 0 5000 ms

Start frame 100 ms 100 ms

Super frame 160 ms 6852 ms

Table 2.1: HMAC parameters for two applications.
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By tuning the length of the frames, HMAC can be adapted to meet the

requirements of specific applications. For example, in Application 1 a line

topology was used, therefore the broadcast frame was not necessary.

The fixed unicast slot length determines the maximum transfer unit. The

amount of time that a node needs to be awake each super frame can be deter-

mined by adding the durations of the start (to prepare radio) and broadcast

frame (to listen for incoming RTS packets). It can also be noted that these

times will determine how much delay will be experienced when sending. For

example, with Application 1, a send delay of up to 160 milliseconds (duration

of one super frame) can be experienced.

2.3 Hardware platforms

There are two platforms of interest to this thesis:

1. The mulle platform.

2. The mulleiroad platform.

The mulle platform, an educational platform, has been in use for a longer

time and support for it is somewhat more extensive. The mulleiroad plat-

form was designed as a proof of concept for a production-value application.

Since both were designed at LTU, it will be interesting to compare their

performance in the following experiments.
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Chapter 3

Work and Results

3.1 Time Synchronization

3.1.1 Measuring clock drift on target platforms

As a basis for more exhaustive experiments, it is beneficial to determine the

average clock drift on target platforms. We performed the experiment under

two regimes of operation:

1. Full power operation: the devices were fully powered throughout the

experiment and were not put to sleep.

2. Low power operation: the devices were put into sleep mode periodically.

This kind of operation is more commonly encountered in production-

value applications.

The assumption is that clocks will be more stable in the former of the two

regimes. The experiments were ran for 30 minutes. The expected result is a

drift between 1 - 100 ppm. We base these expectations on [vGR03, EGE02].

Results

The results were obtained by letting two nodes run for 30 minutes and mea-

suring their local time at the start and end of the experiment, in millisecond

19
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precision. The drift in ppm (i.e. drift in microseconds per second) was cal-

culated using

drift =
(te − ts) · 1000

30 · 60
(3.1)

where

Parameter Meaning

drift Clock drift estimation in parts per million

ts Time in milliseconds when the experiment was started

te Time in milliseconds when the experiment was ended

Table 3.1: Parameters used in (3.1).

Drift Mulle Mulleiroad

Idle application 800 ppm 0

FTSP application 800 ppm 3000ppm

Table 3.2: Measured clock drift on our platforms.

The results were similar for full power and low power modes, but seem

to depend more on other factors like the load of the CPU, especially on

mulleiroad (see Table 3.2).

For mulleiroad, we did not measure any drift when the MCU was not

under load (idle application). But when observing drift in a FTSP test

application, the drift would increase and was measured to be around 3000

ppm.

These somewhat unexpected results may be attributed to the fact that

mulleiroad is using the internal clock on the MCU chip. Due to this fact,

higher MCU load can affect the internal clock operation. It may also be

attributed to implementation details in TinyOS.

The results for mulle are surprising as well, as the drift is much higher than

in [vGR03, EGE02]. This may be attributed to cheaper clock crystals being
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used. Mulle uses an external clock, but as with mulleiroad, implementation

details in TinyOS may also have an impact on the results.

It is also worth noting that [vGR03, EGE02] were published in 2002 and

2003, respectively, while the hardware we used was produced more recently.

3.1.2 Synchronization with FTSP (reference implemen-

tation)

An existing FTSP (see Section 2.1.1) test application was used to measure

how well FTSP performs on our target platforms. We used the following

configuration:

1. Unmodified FTSP reference implementation available in TinyOS.

2. A beaconing node running RadioCountToLeds. The only purpose of

this node is to beacon to FTSP nodes.

3. Nodes running FTSP to synchronize their global times. 8 such nodes

were used for mulle and 2 such nodes were used for mulleiroad.

4. A base station node running BaseStation to receive global times from

FTSP nodes and relay them to a PC for analysis.

5. The FTSP root sends out synchronization messages every 10 seconds.

Results

The motes ran for around 3 hours. Results are represented graphically in

Figure 3.1 and Figure 3.2, separately for each platform. Each Figure repre-

sents time synchronization errors - what is the difference between a node’s

global time estimation and the actual global time (commonly the local time

of the FTSP root node).

Our results show errors higher than those observed in [MKSL04]. Their

time synchronization errors were in the range of a few microseconds, while

our results show errors in the range of a few milliseconds. This could be
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explained by several reasons. First, the authors used 32 KHz and even mi-

crosecond precision in their work, while we used millisecond precision, due to

lack of software implementation supporting 32 KHz FTSP. Also, we are using

different platforms than the authors, but we are using their reference imple-

mentation, which could account for errors due to assumptions made by the

authors regarding hardware and implementation. Time-stamping is also per-

formed at different times in our case, depending on driver implementations

on our platforms (e.g. on mulle, its slow SPI - Serial Peripheral Interface bus

somewhat limits options where time-stamping can be performed). It was also

mentioned in [YL10] that in low-power modes, FTSP can result in errors of

several hundred milliseconds. On mulleiroad, stop mode operation, which

makes the MCU go to sleep when idle, is enabled by default in hardware

configuration code.
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Figure 3.1: Mulle FTSP test results

Mulle

From Figure 3.1, we can observe that the difference between global time

estimations was as high as 35 milliseconds. Resynchronization was every 10

seconds. Comparing with measurements from Section 3.1.1, there is a 35 ms

error compared to 8 ms error due to clock drift in 10 seconds. However after

3 hours, clock drift would account for an error of 8640 ms, while the error of

around 35 ms will be constant when using FTSP, as long as nodes can peri-

odically resynchronize. After 50 seconds of operation, clocks synchronized

with FTSP will already be more accurate than without synchronization.

Based on this results, a feasible FTSP resynchronization period for mulle

would be around 30 seconds (clock drift on mulle in 30 seconds is around

3 · 8ms = 24ms, which is still lower than the 35 ms FTSP synchronization

error).
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Figure 3.2: Mulleiroad FTSP test results

Mulleiroad

Figure 3.2 shows the time synchronization error is lower than with mulle,

only up to 25 milliseconds. We observed varying drift depending on MCU

load in Section 3.1.1, thus when FTSP will pay off depends more on the

target application, more accurately on the MCU load (due to clock drift, see

Table 3.2).

On both platforms, one should also take into account that our experiments

were performed in a controlled environment. The clock drift in harsh weather

conditions may be higher than what we measured. As long as there is clock

drift, any kind of synchronization will pay off eventually.

3.2 Improved HMAC

3.2.1 Redesigning the HMAC protocol implementa-

tion

An important part of this thesis is a complete redesign of the HMAC protocol

implementation in TinyOS. A reference implementation was available to us,

however it was written in a proof-of-concept manner. It soon proved tedious

to implement and test different time synchronization techniques using this

code base. This was due to low modularity of the design, low code manage-
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ability and several bugs. The code was also very tightly coupled and it was

therefore even more difficult to switch between synchronization techniques.

We decided to completely redesign the implementation and re-implement

HMAC for TinyOS.

The reference HMAC implementation was composed of 5 main compo-

nents, the most important being a scheduler component. In our work, some

parts of the reference implementation were reused, e.g. the radio control

state machine.

A design decision was made to base our own design on the design of ex-

isting networking layers in TinyOS, especially the partial implementation of

the IEEE 802.15.4 protocol (referred to as Ieee154 in the code, a notation we

will use from here on as well). This partial implementation is split into two

components or sublayers - the packet component and the message compo-

nent. The packet component provides commands to perform operations on

packets (i.e. to manipulate the Ieee154 header), and provides packet-related

interfaces to upper layers (e.g. to ActiveMessage). The message component

provides the actual implementation of the layer — handling sending and

receiving messages.

HMAC Packet Layer

ActiveMessage Layer

HMAC Radio State

Message Buffer Layer

HMAC Message Layer

Software Ack LayerIeee154 Packet Layer

HMAC

TinyOS

Figure 3.3: Redesigned HMAC.

Due to complexity arising from the TDMA/FDMA nature of HMAC, we

divided the code into several components to achieve better modularity. The

components are presented graphically in Figure 3.3. An arrow signifies that

the component from which the arrow is pointing is being used by the other

component. Ieee154PacketLayerC is the layer below HMAC. ActiveMessage-
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Figure 3.4: Radio components with the new HMAC.
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LayerC uses RadioPacket from HMacPacketLayerC, which adds the HMAC

packet header. MessageBufferLayerC uses RadioState provided by HMacRa-

dioStateC and passes it on to upper layers. Instead of manipulating the

actual radio state, it toggles the HMAC scheduler on/off state. SoftwareAck-

LayerC uses (and provides to upper layers) the RadioSend and RadioReceive

interfaces implemented in HMacMessageLayerC. Some of HMAC components

are also interconnected, but this has been left out for clarity. A more de-

tailed and accurate view of the components and their connections is shown

in Figure 3.4.

The purpose of these components is described in the following.

1. HashC and HSchedulerQueueC: Essentially reused from the reference

implementation. HashC provides the hash function that is used to

determine time slots and channel used for communication. HSched-

ulerQueueC provides a job queue that is used by the scheduler.

2. HMacSlotManagementC: Provides commands for determining time slots

and channels for communications, based on HashC.

3. HSchedulerC: Only includes the actual scheduler and things that could

not be separated from it. Actual packet sending and manipulation is

not done here, it only tracks which phase the scheduler is currently in,

based only on time.

4. HMacRadioStateC: This was refactored out of HMacLayerC in the ref-

erence implementation. It is a state machine that carries out basic

operations on the radio state, such as switching on/off and changing

the channel. It also provides a radio state interface for the upper lay-

ers, which was redesigned so that when an upper layer wishes to switch

on/off the radio, the scheduler is started/stopped instead, but all ac-

tual radio state manipulation is performed by the HMAC layer, i.e. the

upper layers do not have direct access to the radio state anymore. The

scheduler will switch the radio on/off automatically to conserve power.
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Because HMAC is FDMA based, upper layers also cannot change the

channel the radio is tuned to.

5. HMacPacketLayerC: Provides everything related to packet manipula-

tion. We added a new HMAC header (Figure 3.5) to packets, which

contains a type (either an internal packet like request to send - RTS,

SYNC, or a user message passed to upper layers), something that was

not done in the reference implementation (ActiveMessage was used

there). It also provides commands for manipulating the RTS and SYNC

messages. Figure 3.6 shows the structure of the RTS message, while

the SYNC message is described in more detail in the next section.

6. HMacMessageLayerC: Handles only sending and receiving messages. It

provides a send command for upper layers and can signal upper layers

when a new user message is received. It works with the scheduler

to handle the receipt of internal messages like RTS and SYNC, and

provides commands to send these messages, as well.

7. There is also an interface that is implemented in the radio driver called

HMacConfig, which only includes helper commands to determine source

and destination addresses from the layer below HMAC. If desired, these

addresses could now very simply be included in the HMAC header and

some intermediate layers could be removed. There are also some other

minor additions like a few new interfaces and header files.

HMAC message type
1 byte

IEEE 802.11 header User data

Figure 3.5: The newly added HMAC header.

The result is not only a completely redesigned implementation of HMAC

but also several bug fixes and improvements. The most important new fea-

tures that were added are an actual HMAC header, removing all references
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Source address (2 bytes) Destionation address (2 bytes)

Figure 3.6: HMAC request to send (RTS) message.

to ActiveMessage, proper radio state control and proper wiring into upper

layers (Packet and RadioState, in particular). The code was also decou-

pled so it is now much easier to modify and add new features such as new

synchronization techniques.

3.2.2 Simple time synchronization

A simple way to synchronize nodes is to send a synchronization message

(Figure 3.7) with the epoch number from one node, and other nodes set

SYNC
epoch number

Figure 3.7: Simple SYNC message.

their epoch to this number. After that, all of the nodes should enter the same

phase (e.g. the broadcast phase). This solution works, but only in networks

where all nodes can hear each other. For multi-hop networks, this approach

can cause interference between broadcast domains. Since this technique does

not account for clock drift it is also required to resynchronize more regularly

than e.g. with FTSP.

There is also the question of what to do after the synchronization messages

are processed. One possibility is to immediately start normal operation by

proceeding into the broadcast phase, losing less time due to synchronization.

A problem with this approach can be that the current super frame duration

is slightly longer due to the added the extra synchronization phase, which

is normally not present. To solve this issue, we could wait until the end of



30 CHAPTER 3. WORK AND RESULTS

the current super frame before resuming normal operation. The drawback of

such an approach is that more time is lost for synchronization.

This kind of approach was used in the reference implementation, and

before moving to a more complex synchronization technique, we implemented

this technique first. Since only one synchronization packet is needed at a

time, memory for it was allocated during initialization and kept reference to

it in the HMAC packet layer. HMAC message layer provides commands and

events for sending and receiving the SYNC messages. The scheduler uses

these commands and events to perform synchronization according to HMAC

configuration (e.g. how often to synchronize).

Using this synchronization approach, we were able to test if our HMAC

implementation works properly. We ran a ping pong application with 2

nodes, and after 1 hour it was still working properly, which means that the

implementation is usable.

3.2.3 FTSP time synchronization

The goal was to integrate FTSP into HMAC, so that it would be transparent

to the user, while still providing them global time if desired. Internally, global

time should be used to ensure reliable function of HMAC. An ideal solution

would be to rewire FTSP components so that they would use HMAC. In this

way, it would be much easier to use possible newer versions of FTSP later,

without having to update all the patches.

First, components used in FTSP and their dependencies were identified.

Components TimeSyncC and TimeSyncP only use TimeSyncMessageC from

the network-related dependencies. This is beneficial as it means that an

alternative implementation needs to be provided only for this component,

and TimeSyncP need not be touched. The current implementation allows

the user to trigger sending of a synchronization message, which we used to

send these messages based on HMAC configuration and which phase the

HMAC scheduler is in.

TimeSyncMessageC (more specifically, RF212TimeSyncMessageC in our
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case) mostly rewires to TimeSyncMessageLayerC, however it also uses

RF212ActiveMessageC. Avoiding ActiveMessage-related dependencies was

one of the design goals. However, only things that come directly from a lower

layer, TimeStampingLayerC, are being used from RF212ActiveMessageC.

This layer is below HMAC in the network stack, thus it can be used directly.

The last component significant component is TimeSyncMessageLayerC.

Internally, it uses ActiveMessageC and AMSenderC. Because ActiveMessage-

related interfaces are also used in the implementation, and the implementa-

tion is trivial, we made a decision to rewrite this component completely.

Based on this initial research, we assume that we will need to provide a

new TimeSyncMessageC and TimeSyncMessageLayerC, which should only

use layers below the HMAC layer. Additionally, we have to determine

when to trigger sending of FTSP messages and make HMAC use the global

time. Because HMAC hash functions take the current epoch as a parameter,

nodes must also all use the same epoch number. Since we need to mod-

ify TimeSyncMessageC, it would be a good idea to include this information

therein.

Results

During the implementation process, we realized that using the millisecond

precision FTSP introduces many errors. First, the packet time-stamping

done in the radio driver is done with microsecond precision. Second, we

use a microsecond precision alarm in the HMAC scheduler. Using millisec-

ond precision FTSP thus means we need to perform time conversions quite

frequently. FTSP approximations are also slightly better when using mi-

crosecond precision, however we did not measure a substantial difference,

since approximation errors can be in the tens of milliseconds range.

Based on these findings, we moved to microsecond precision. To accom-

plish this, we used the CounterMicro32C counter, available for the mulleiroad

platform. We are already using this same counter in the HMAC scheduler,

thus we do not need to convert time values, leading to less processing time
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and better precision.

Root ID
2 bytes

Node ID
2 bytes

Sequence number
1 byte

Global time
4 bytes

FTSP data HMAC data Relative offset
4 bytes

Epoch number
4 bytes

Global time of next superframe
4 bytes

Figure 3.8: FTSP SYNC message with added HMAC data.

We were able to remove all ActiveMessage dependencies from FTSP, and

instead use the HMAC layer and the time-stamping layer. Additionally,

we incorporated the current HMAC epoch number and the global time of

the next super frame into the FTSP synchronization message. The epoch

number is vital to the proper function of HMAC and must be synchronized.

To give the nodes enough time to process FTSP data, we wait for the next

super frame after sending the FTSP message, instead of proceeding with

normal operation immediately. For this reason, the global time of the next

super frame is included in the FTSP message. The FTSP message with

the HMAC-related information is represented graphically in Figure 3.8. The

FTSP data part of the header is described in more detail in [MKSL04]. The

relative offset at the end of the message is appended by the radio driver and

is the delay between the packet send request and actual start of transmission.

FTSP parameters

During testing, we observed very poor performance. One of the causes was

the throwout limit parameter of FTSP. Upon receiving a new synchronization

point, FTSP compares the received global time to its prediction based on

previous data. If the difference between the prediction and the actual value
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is larger than the throwout limit, all synchronization points are removed —

essentially, FTSP resets. This parameter does not have an implicit unit and is

set to 500 by default. When using millisecond unit, the limit is therefore 500

milliseconds, which is quite large, but when using microsecond unit, the limit

is 500 microseconds. In our case, errors between FTSP predictions and actual

global times were in the range of a few milliseconds, up to 60 milliseconds.

Therefore, FTSP was resetting very frequently, resulting in a desynchronized

state. After adjusting this parameter to a more reasonable value (in relation

to our error measurements) of 60,000 microseconds, performance improved

substantially according to initial testing.

We also noticed that the resynchronization period of FTSP has an impact

on the quality of the predictions. We found too frequent synchronization to

be detrimental to prediction quality. The reason is the limited size of the

FTSP regression table, which is 8 entries by default. If the synchronization

points are closer together, the drift prediction is less accurate. We found a

feasible setting is to synchronize around every 10 seconds, which is also the

default setting in FTSP. For the new implementation, we need to express

this parameter in the number of HMAC super frames between each synchro-

nization. We used 950 ms super frames, therefore we set resynchronization

to every 12 super frames. When changing the super frame length, it is im-

portant to adjust this parameter accordingly. Also note that FTSP requires

at least 4 synchronization points to become synchronized by default. This

directly affects how much time a new node added to the network will need

before it becomes synchronized (40-50 seconds if resynchronization is every

10 seconds).

Just before sending a FTSP message, the radio driver adds the time

elapsed between the message send request and the actual transmission start

to the message. In the reference implementation, the receiver adds this rel-

ative value to its local time and not the received global time. We observed

that this relative time can be high enough that when coupled with high clock

drift, this way of calculation can cause a noticeable error in predictions. We
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modified the implementation so that this relative value is added to the re-

ceived global time instead of the local time.

Radio driver related issues

Even after these changes, FTSP was not giving satisfactory results. We

confirmed that FTSP linear regression calculation is working properly by

performing the calculation manually on the same dataset. The reason for

bad FTSP results was therefore narrowed down to the reported global time

values. There are two parts to a global time report - the global timestamp

and the delay between that timestamp and the time of radio transmission.

The latter is calculated and appended to the FTSP message by the radio

driver (an important feature of FTSP). Observing the global timestamp did

not give any indication of error. However, when observing the delay value, it

was negative on occasion. By debugging the radio driver layer, we discovered

that the delay calculation was flawed. After fixing this bug, we observed a

significant improvement in FTSP global time prediction.

While the performance did improve substantially with the above correc-

tion, the predictions were still occasionally off by a large margin. We man-

aged to trace this back to a yet another bug in the radio driver, this time

in the radio reception code. Again, the incoming transmission was times-

tamped in a similar fashion as with transmission, resulting in an erroneous

timestamp with an occasional error of around 65 milliseconds.

After correcting this problem, along with the other modifications, FTSP

performance improved dramatically, moving into microsecond range. Fig-

ure 3.9 shows the global time error measurements. The maximum error was

8 microseconds, the median error was 0 and the average error was 0.5 mi-

croseconds.

Initial synchronization

Another issue that should be addressed is how the nodes should syn-

chronize when they are first connected to the network. Let us consider the

following options:

1. Begin sending FTSP messages to determine the root node and then
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   Median

Figure 3.9: FTSP average global time error measured over 30 minutes.

synchronize to it, or become root.

2. Statically pick the root node before-hand. All other nodes wait for a

FTSP message from the root node and synchronize to it, before sending

any messages into the network.

The problem with the first option is that new (or desynchronized) nodes

will disrupt the network and may cause collisions. The second approach

resolves this issue, but does not allow for dynamically electing the root node.

This means that if the assigned root node is or becomes unavailable, the

whole network will stop working.

We propose (and implemented) the first option, but using a separate radio

channel for synchronization. This way, FTSP can perform its dynamic root

election without disrupting the network.
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3.2.4 Multi-hop test

We used our improved HMAC with simple static routing to determine per-

formance in a multi-hop network. We wanted to measure the latency and the

packet-loss rate. The test application sends a message with a counter value

to the next node. The other nodes relay the packet to the next node using

static routing.

Radio snooping is not possible in HMAC, due to channel hopping features

of the protocol and the fact that there can be more than one transmission

in progress at the same time on different channels. Therefore, we included

global times of reception for all the nodes in the message that was relayed

through the network. At the sink node, we could therefore see the latency

per hop.

Node 1
Source

Node 2 Node 3 Node 4
Sink

Figure 3.10: An example of a line network topology.

The test was performed as follows:

1. FTSP resynchronization every 10 seconds.

2. HMAC super frame length of 100 milliseconds.

3. The network was composed of 5 nodes in a line topology (c.f. Fig-

ure 3.10).

4. The source node sends a message every 3 seconds.

5. The test was ran for approximately 30 minutes with 604 packets sent.
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Figure 3.11: Per-hop latency measured over 30 minutes.
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Figure 3.12: Per-hop latency in detail over 30 seconds.
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We observed a per-hop latency between 99 and 305 milliseconds. The results

are presented graphically in Figure 3.11. Figure 3.12 shows the results for

the first 30 seconds in more detail.

The main factor that affects the latency is the length of the HMAC super

frame. When a send is requested, it cannot be processed before the current

super frame ends. With the used HMAC parameters, the unicast phase of

HMAC in which the message is sent comes 60 ms after the start of the super

frame, and an unicast slot is 20 ms long. The lowest measured latency was

99 ms, which is around the length of one super frame. The median latency

was 120 ms, and the average was 149 ms.

Higher latency (spikes in Figure 3.11) can occur due to several reasons:

1. FTSP synchronization takes up a whole super frame every 10 seconds,

increasing the latency by one super frame for messages sent during this

time.

2. Send failures and collisions cause a delay. If the failure happens dur-

ing RTS transmission, our HMAC implementation will automatically

resend the message in the next super frame - the added delay is the

length of one super frame. However, if the failure occurs when sending

the user data (in the unicast frame), sending fails and is signaled back

to the user. The user needs to submit a new send request, which can

take an arbitrary amount of time.

The median latency for a message to arrive from the source node to the

sink node was 480 ms for the 5 node network. The result is reasonable as

it is 4 times the median per-hop latency, and there are 4 hops between the

source and sink node. There were 604 packets sent in total, and no packets

were lost.

3.2.5 Power consumption in a line network topology

In case of a line topology in a network with a source node, a sink node, and

intermediate nodes relaying the packet from the source to the sink, we can
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optimize HMAC further. In this case, a node will only receive packets from

the previous node, and only send packets to the next node in the network.

To provide better support for such cases, we introduced the option to

remove the broadcast frame. In this case, nodes use a single unicast slot

for communication, and when a node can send or should listen for incoming

packets is determined by its position in the network and the current HMAC

epoch number.

Super frame type Node 1 Node 2 Node 3 Node 4

Epoch #1 SEND RECV SEND RECV

Epoch #2 RECV SEND RECV SEND

Epoch #3 SEND RECV SEND RECV

Epoch #4 RECV SEND RECV SEND

Table 3.3: An example of the adapted HMAC protocol.

The benefit of this approach is that less network traffic is generated, since

HMAC RTS packets need not be exchanged. Additionally, all nodes must

be listening during the broadcast frame, thus removing the broadcast frame

leads to lower power consumption, as well. In this adapted version of HMAC,

we denote a super frame in which a node can send a send super frame and a

super frame in which a node must listen a receive super frame. In case a node

has nothing to send, it can power off its radio during the entire duration of

the send super frame, which is beneficial in terms of power consumption.

To avoid collisions, FDMA (different radio channels) can be used. Since

only the source node generates new packets, collisions can also be avoided

by imposing a limit on how often the source node can send a new packet,

depending on how long it takes for the packet to propagate to the sink node.

We evaluated the power consumption of this adapted version of the HMAC

protocol in comparison to normal HMAC described in Section 3.2. The re-

sults are presented in Figure 3.13. The HMAC protocol adapted for line

topology lowered power consumption considerably compared to the normal
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Figure 3.13: Power consumption with the normal HMAC protocol and the

version adapted for line topology.

HMAC protocol. Power consumption was further reduced if radio was pow-

ered off outside allocated time slots, instead of putting the radio into suspend

mode. The lowest power consumption was achieved by using the adapted

HMAC protocol for line topologies, and periodically turning the radio on

and off. In this mode, the device was consuming around 31 mW of power on

average.

3.3 Some additional work-related challenges

During our work there were challenges that we had to overcome in order to

achieve set goals. We will describe some of these challenges briefly in the

following.

Serial communication problems on mulleiroad
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There was a problem with mulleiroad’s serial communication, where it

was not possible to receive data from the device on the PC. This problem

was related to the programmer chip, which required a DTR (Data Terminal

Ready) control signal to be set properly before it could receive data. Because

we relied on serial communication for debugging purposes, this was very

important to solve. We had a program called mulle term available that

could communicate with the device, but there was no documentation nor

source code available. This program did not suffice for all our needs, so it

was necessary to find a better solution.

First, we tried piping the output of mulle term into java applications that

were normally used for communication with TinyOS devices. However, this

did not work, because the program left out certain data which was important

for these applications. Using the strace program on Linux, we were then able

to reverse-engineer mulle term to figure out how it works. By doing this we

found out about the DTR control signal, and after that we could write our

own software to communicate with the device.

Low power listening on mulle

In order to obtain more FTSP performance measurements for comparison,

we wanted to run the low power FTSP test on mulle. We used the reference

implementation that comes with TinyOS, but it did not work. By debugging

the program inside the drivers themselves, we were able to determine that

the packets were never being received by the radio. We were not able to

determine exactly why this was the case. We did ask the maintainers if

they could look into it, but it was not fixed in time for us to conduct the

experiment for this thesis.

Permanent stop mode on mulleiroad

On mulleiroad, stop mode was forcibly enabled in the hardware config-

uration file, hardware.h. Stop mode makes it so the device will enter sleep

mode when there is nothing to be done. It was not critical for us to solve

this, but it should be noted that this may have affected some of our results

in the other tests.
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Chapter 4

Conclusion and Future Work

We were able to fix critical driver bugs to enable correct function of FTSP

with our hardware. We observed around 10.000 times better FTSP perfor-

mance with these modifications. We improved HMAC by adding a HMAC

packet header, redesigning the code base for better code manageability, and

improved performance and reliability. Integrating FTSP time synchroniza-

tion into HMAC also improved its function substantially. Even with these

changes, there is still room for improvement. In the following, we list some

possible improvements and current issues we encountered:

1. Debugging with radio snooping in development. As a security feature

of HMAC, it is not possible to snoop radio messages (listen for all

messages being sent in the network, regardless of the recipient). This

is due to the fact that in HMAC, two transmissions can occur at the

same time but on different radio channels. This kind of operation

would be beneficial for research and debugging purposes. It can be

achieved by disabling channel hopping and if necessary, modifying the

hash function or increasing the number of unicast slots in order to avoid

too many collisions in the time domain.

2. Dynamic broadcast channel. With the introduction of the separate syn-

chronization channel, the broadcast channel can change dynamically.

43
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Since the epoch is synchronized through the synchronization channel,

the broadcast channel can depend on the epoch, similarly to unicast

channels. This would provide some additional security to the protocol.

3. Multiple transmissions in one super frame. The design of HMAC allows

for multiple transmissions in one super frame, if the recipients are not

the same. By using a send buffer, this would be relatively easy to

implement. This kind of operation would be beneficial for applications

that need to frequently send messages to multiple recipients.

4. Collisions. With the current hash function used in HMAC to assign

unicast time slots, collisions are possible. We experienced collisions on

several occasions, which caused unwanted delays and also had negative

effects on reliability. We used the same hash function as was used in

the reference HMAC implementation. It is a simplified version of an

existing hash algorithm, in order to decrease computational complexity.

With the original hash function, collisions would be less frequent, but

computational complexity would be too great.

5. Radio sleep during unicast. We already put the radio to sleep in the

unicast frame after all unicast jobs have been processed. However, the

radio could be put to sleep during unused unicast slots, as well.
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