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Range Image Interpretation of Mail Pieces with Superquadrics

Franc Solina and Ruzena Bajcsy

GRASP Laboratory
Department of Computer and Information Sciences
University of Pennsylvania
Philadelphia, Pennsylvania 19104-6389, USA

Abstract

Although mail pieces can be classified by shape into paral-
lelopipeds and cylinders, they do not conform exactly to these
perfect geometrical shapes due to rounded edges, distorted
corners, and bulging sides. Segmentation and classification of
mail pieces hence cannot rely on a limited set of specific
models. Variations and deformations of shape can be con-
veniently expressed when using superquadrics. We show
how to recover superquadric models for mail pieces and seg-
ment the range image at the same time.

I. Introduction

Postal services are currently facing the problem of
automating mail piece handling. At present only letter handling is
fully automated. The rest of the mail pieces is handled at least
partially if not completely by hand due to their large variability in
size and shape [Owen, 1986]. Any automatic system for handling
mail pieces has to determine location, orientation, size, and shape
of mail pieces in order to manipulate them accordingly. Com-
puter vision is a promising way to satisfy these requirements.

The problem of characterizing mail pieces is somewhere
between scene description and object recognition. For scene
description, a unique description of objects is not necessary. It is
generally sufficient to generate, using a bottom up strategy, a suc-
cession of representations that depend on the viewing direction
and orientation of objects which results in a geometric representa-
tion such as surface patches or polyhedral approximations. On
the other hand, to recognize an object in the scene as one from a
set of predefined models, a computer vision system must have
models of these objects which it compares to the input data. For
recognition of 3-D objects, view point independent, 3-D models
are required. Most working recognition systems rely on fixed,
definitive models intended only for environments where a limited,
preselected number of objects are encountered. Mail pieces, how-
ever, do not come just in a few uniform shapes and sizes. Thus,
having individual models for each mail piece is not feasible. This
is why segmenting and representing mail pieces is not object
recognition in the strict sense which is normally understood as
selecting the right ready-made model from a predefined set of
models.

Classifying mail pieces is related to categorization. People
form categories by picking out the essential and separating it from

the accidental [Rosch, 1978]. This sorting of instances into
categories reflects the structure of the world [Pentland, 1986a],
[Bajcsy and Solina, 1987]. Like any other objects, mail pieces
can be grouped into classes or categories. Shape classification
which is used for manual handling of mail pieces and which
identifies parcels, flats, tubes, rolls, and irregular packages,
reflects such structure. An automated mail handling system must
also divide mail pieces into appropriate classes, give their shape
description by identifying the necessary parameters of the class
model, and provide the position and orientation in a world coordi-
nate system. The difficulty in modeling mail pieces is their
nonuniform shape and size. They do not conform to perfect
geometrical shapes because of rounded edges, distorted corners,
bulging sides, and wrinkled wrapping. With standard 3-D shape
representations, like generalized cylinders or polyhedral approxi-
mations, such degradations from ideal prototypes are difficult to
express. Superquadrics, on the other hand, have the advantages of
generalized cylinders and direct control  over the
roundness/squareness of edges. In general, only a single super-
quadric model is required for a single mail piece.

The rest of the paper is organized as follows: we first
describe the recovery of superquadric models from range data,
outline the recognition procedure, including some new ideas and
preliminary results about segmentation and, at the end, compare
our recovery method with pther related work and discuss future
research.

II. Model recovery

Superquadrics are a family of parametric shapes that were
invented by the Danish designer Peit Hein [Gardiner, 1965] as an
extension of basic quadric surfaces and solids (see also [Barr,
1981]). Pentland [Pentland, 1986a] suggested them first for
analysis of scenes in computer vision. A superquadric surface is
defined by the following implicit equation:

2 212 2
e
[x_s]”+[y_s]°’ +[z_s]"=1 1)
a’, as as

Xs, ¥s, and zg are coordinates of a point on the superqua-
dric surface. Subscript S indicates a superquadric centered

This rescarch was made possible by the following grants and contracts: USPS 104230-87-H-0001/M-0195, ONR Subcontract SB35923-0,
NSF/DCR-8410771, ARMY/DAAG-29-84-K-0061, NSF-CER/DCR82-19196 A02, Airforce/F49620-85-K-0018, and DARPA/ONR. We wish to thank
Sandy Pentland for his continuous encouragement to use superquadric models and Max Mintz for helping with the minimization procedure.
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coordinate system. Parameters ay, a,, a3 define the superquadric
size in x, y and z directions, respectively. €, is the squareness
parameter along the z axis and €, is the squareness parameter in
the x-y plane. By changing the two shape parameters, superqua-
drics can model a large set of standard building blocks, like ellip-
soids, cylinders, parallelopipeds, and all shapes in between. Glo-
bal deformations like tapering, twisting, and bending further
enhance superquadric modeling capabilities [Barr, 1984].

We define the ‘‘inside-outside’’ function for superquadrics
as:

F (xS7 Ys» Zs) - (2)
2 2 - N
a, a, a;

When F (xs, ys, zs) = 1, the point (xs, s, 2s) is on the
surface of a superquadric. If F (x5, ys, z5) > 1, the correspond-
ing point lies outside and if F (x5, ys, z5) < 1, inside the super-
quadric. With the outermost exponent €; we force F to grow qua-
dratically instead of exponentially. This ensures faster conver-
gence during model recovery.

Superquadrics are suitable models for computer vision
because we can form overconstrained estimates of their parame-
ters. This overconstraint comes from using models defined by a
few parameters to describe a large number of 3-D points. This
enables us to verify our estimated models and measure the
“‘goodness of fit.”” For a superquadric in an arbitrary position we
must recover 11 parameters: location in space (3 par.), orientation
in space (3 par.), size (3 par.), and two shape parameters, €, and
€,. On the other hand, many more 3-D points are typically avail-
able on the surface of the modeled object from either range imag-
ing or passive stereo. To find the parameters so that the model
best fits the data is called an overdetermined optimization prob-
lem.

We introduce here a relatively fast iterative fitting pro-
cedure based on the ‘‘inside-outside’’ function. Eq. (2) defines
the surface in a superquadric centered coordinate system
(xs, ¥s» zs). 3-D points from passive stereo or range imaging,
however, are given in a world coordinate system (xw, yw, Zw)-
We express these 3-D points in the superquadric centered coordi-
nate system by a translation and a sequence of rotations. A con-
venient way of expressing such transformation in homogeneous
coordinates is with a 4 x 4 matrix T:

Xs Xw
Ys | _ Yw
zg | T Zw (€)
1 1
where T = Trans (p,, p,, P3) - Rot (¢, 6, y). We use

Euler angles to express the orientation in terms of rotation ¢ about
the z axis, followed by a rotation 6 about the new y axis, and
finally, a rotation y about the new z axis. Substituting eq. (3) into
eq. (2) we get the ‘‘inside-outside’’ function for a superquadric in
general position and orientation:
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F (xw, yw> 2w) = (C)]
F (xWa Yws Zws @1, G2, @3, €1, &, ¢a 9, V,P1,P2:P3 )

The independent parameters expressed in vector notation
are: @ = [a;, ay, *** ,ay ). Suppose we have N 3-D surface
points (xw, yw, zw) Which we want to model with a superquadric.
Eq. (4) predicts the position of a point (xw, yw, zw) relative to the
surface of the model. We want to vary the 11 adjustable parame-
tersa;,j=1,..,11ineq. (4) to get such values for g;’s that most
of the 3-D points will lay on or close to the model’s surface.

Since for points on the surface of a superquadric:
F (xw, Yw» Zw; @1, *** »an ) = 1, we achieve this by minimiz-
ing:

N
E[I—F(xwp)‘w,», ZW,-;ah 7all)]2 (5)

i=0

However, due to self-occlusion the solution to eq.(5) is
unbounded in the sense that an infinite number of superquadric
models of different size fit objects like cylinders or parallelo-
pipeds. Obviously only the model with the smallest possible
volume that still fits the given points is the desired solution. We
want a modified fitting function which has a minimum
corresponding to the smallest superquadric that fits a set of 3-D
points and such that the function value for surface points is
known before the minimization. Using function:

R=ajaza; (F-1) ©)

we fulfill the first requirement with the factor a,a,a;, which
corresponds to the superquadric size. The second requirement is
met by the factor (F — 1), since function R has value O for all
points on the surface and does not depend on knowing the correct
size. Now we have to minimize:

N

LR (w,s Ywys 2wy s 81 0 » Gl ™
i=0

Since R is a nonlinear function of 11 parameters a;, j = 1,
..., 11, the minimization must proceed iteradvely. Given trial
values for @, we evaluate eq. (6) and employ a procedure to
improve the trial solution. The procedure is then repeated with
new trial values until the sum of least squares (eq. 7) stops
decreasing, or the changes are statistically meaningless. Since
first derivatives dR/da; for i =1, - -+, 11 can be computed, we
use the Levenberg-Marquardt method for nonlinear least squares
[Press et al., 1986). The first trial set of parameters, @, must be
set experimentally to some initial estimates d.. We found out that
very rough estimates for position, size and orientation are suffi-
cient. Initial estimates for both shape parameters, €, and &, can
always be 1, while position, orientation, and size can be estimated
by computing the center of gravity and moments of inertia for the
given 3-D points. During the fitting procedure we introduce
“‘jitter’’ by adding Poisson distributed noise to the evaluation of
function R. Small local minima caused by the complicated topol-
ogy of the fitting function and the noise in the input data are thus
avoided and a global convergence assured [Pentland, 1986b].

Deformed superquadrics can be recovered using the same
technique of minimizing the *‘inside-outside’’ function (Fig. 1).
Global deformations like tapering, bending, and twisting require



Figure 1: Recovery of a tapered cylinder with an itera-
tive process through which the estimated shape con-
verges to the actual range data. The initial estimate
and some of the following iterations (solid lines) are
shown superimposed on the superquadric (broken
lines) that represents the input data (300 3-D points).
A total of 13 model parameters (11 + 2 for tapering)
were adjusted simultaneously to achieve a least squares
fit. The whole fitting procedure took about three
minutes on a VAX 785.

just a few additional parameters. Any shape deformation can be
recovered in this way as long as the inverse transformation is
available [Bajcsy and Solina, 1987].

We tested the fitting procedure on synthetic (Fig. 1), and
real range data (Fig. 2). The described recovery procedure is fast
and stable in the sense that it always converges to a good approxi-
mation of the actual object. We are able to fit simuitaneousiy all
11 parameters and achieve a good fit in just a few iterations (Fig.
3). Speed depends on the number of 3-D points for which the fit-
ting function and their derivatives must be evaluated, the number
of necessary parameters and the accuracy of initial parameter esti-
mates. We investigated the robustness of the minimization pro-
cedure by studying the relation between independent parameters
of the fitting function and the sum of least squares (Fig. 4).

III. Recognition procedure

The goal of a vision system for mail piece handling is to
classify each mail piece into a class of like objects and report its
position, orientation and size so that appropriate manipulation can
be performed. The whole process can be divided into image
acquisition, segmentation, model recovery and classification.
Model recovery was already described. The rest of this section is
devoted to segmentation and classification.

Figure 2: Interpretation of a real range image [Hansen
and Henderson, 1986] with superquadric models. On
top are the initial model estimates, on the bottom thé
recovered models after 12th iteration. Segmentation
into individual objects was done by hand.

fitting
function
(log
scale)
| | | | | | |
E 5 100715 220 .25 30
number of iterations

Figure 3: Rate of convergence for the cylinder in Fig.
3. The notch around 13th iteration is due to the addi-
tion of Poisson distributed noise which pushed the fit-
ting process out of a local minimum and towards a
better solution. One iteration using about 500 range
points took about 15 seconds on a VAX 785.

A. Scene segmentation

Under the assumption that only single mail pieces are
present in the scene, segmentation consists of removing the sup-
porting surface. The remaining range points are then used for
model recovery. If several, possibly overlapping, mail pieces are
present, segmentation must divide the scene into regions
corresponding to single objects.

Segmentation is a data driven process and normally applies
image formation models like edges, comers, regions, normals,
and surfaces to the image. A review of low level range image
processing research [Besl and Jain, 1985] reveals that there are
two principal approaches. One extracts edges, the other segments
surfaces into planar or cylindrical surfaces. The ‘‘edges first’’
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approach is successful when the objects have nice, clear edges.
Mail pieces, however, have crumpled edges and beaten corners
and this shape noise degrades the performance of edge finders.
Crumpled paper on mail pieces can also mislead a region growing
algorithm, causing it to subdivide a single face into a number of
small surface patches. Using extracted features, regions
corresponding to a single object or part can be hypothesised and
verified by model fitting.

fitting
function
(log
scale)
I | |
V/1000 A 8V
product of size parameters:
V=ala2a3
fitting
function
(log
scale)
1 | |
0.1 1 2
shape parameter: €1
fitting
function
(log
scale)
1 T |
0.1 1 2
shape parameter: €2
fithing
function
(log
scale)
I I I
0-m 0 0+
second Euler angle

Figure 4: Influence of inside-outside function parame-
ters on the fitting function for the cylinder in Fig. 2.
Although all parameters are interdependent, these 2-D
plots give some insight into the behavior of the inside-
outside function. Note that factor a,a,a3 in modified
function R (eq. 6) introduced a new minimum when
any of a’s is 0. If the initial values for size are not
much to underestimated, this does not cause a prob-
lem.
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We are currently investigating the use of superquadric
models for segmentation also. The recovery procedure described
in the previous section uses a fixed number of range points which
are assumed to belong to the same mail piece. Now consider the
case where only very gross segmentation is available, a result of
simple histogramming for example, or even no segmentation at
all. We want to take the whole scene as a large block and like a
sculptor carve out the objects or parts that make up the scene.
The shape of possible recovered parts depends on the capabilities
of our models. Superquadric primitives combined with some glo-
bal deformations can describe a large class of man-made and
natural objects [Pentland, 1986a). The problem can be interpreted
as a global minimization problem over the space of model param-
eters and number of models. First, we want to recover the model
that accounts for the largest number of data points and repeat the
process for remaining chunks until an appropriate level of
representation for the task at hand is reached. The number of
points during model recovery is not fixed. Points that are to far
outside from the model’s surface in the current iteration do not
contribute to the estimation of model parameters, while other
points, not used in a previous iteration but close enough in the
present iteration, are used again. The changing number of points
from iteration to iteration must be taken into account when com-
paring the goodness of fit.!

B. Mail piece classification

Classification of mail pieces is necessary because dif-
ferently shaped mail pieces require different handling. A classifi-
cation scheme must reflect the shape of mail pieces but can also
depend on the nature of the automated manipulation (robot arms
equipped with grippers or suction pumps, fixed automation).
Using recovered superquadric parameters, different geometric
classification schemes can be easily designed. For example, the
classification currently used for manual handling is:

Oletters and flats (a; « a,, a; and €, €, < 1),
Obox-like packages (€, €, < 1),

Otubes and rolls (€; « 1 and &, = 1),

Oirregular objects (1 < €;,, > 2, global deformations).

IV. Discussion

Pentland has shown that superquadric primitives can
describe a large class of man-made and natural objects [Pentland,
1986a]. We believe that they are appropriate as part-based
models, especially for the class of basic categories, since the pro-
totype and deformation paradigm common in human perception
can easily be applied [Bajcsy and Solina, 1987]. At that level
very detailed shape descriptions are not necessary. With a small
set of parameters a large set of primitives can be uniformly han-
dled. Superquadrics model the whole object, including parts hid-
den by self-occlusion and parts occluded by other objects, by
assuming symmetry. Verification which normally comes as an
afterthought is here an integral part of model recovery.

! Instead of comparing the sum of least squares, we divide the sum
first by the number of participating points. The treshold for rejecting
points that are too far ousside from the model’s surface is a function of
goodness of fit. The better the fit, the stricter the rejection criteria.



Figure 5: Segmentation by model recovery. The
above image sequence shows the iterative process
through which the estimated shape based on the non-
segmented range image converges to a model that ac-
counts for the largest part in the scene. The small cube
on top of the large on&tan be recovered simply by ap-
plying the fitting to the remaining range points.

To recover superquadric models, Pentland [Pentland,
1986a] first suggested an analytic solution of parametric super-
quadric equations. Using linear regression, one could compute
parameter values that provide the best fit. Pentland [Pentland,
1986b] currently recovers superquadrics from range data by com-
puting a heuristic ‘‘goodness-of-fit’’ functional in a coarse grain
search over the entire parameter space. We believe that, due to
complexity, an analytic solution for superquadric parameters is
not practical. A heuristic approach, on the other hand, lacks pre-
cision, and global search is computationally €xpensive. Recovery
using the ‘‘inside-outside’’ function and a steepest descent
method combined with addition of Poisson noise has proved to be
more efficient. The speed of the fitting procedure depends on the

number of range points, the number of function parameters and
the accuracy of first parameter estimates. Since the ‘‘inside-
outside’” function and its partial derivatives can be evaluated for
all range points in parallel, the fitting procedure may be speeded
up on a parallel architecture.

Segmentation by model recovery looks promising but more
research is in order. Global search is a possible but costly propo-
sal [Pentland, 1986b]. We will investigate if the method would
benefit by using simulated annealing.

References

[Bajcsy and Solina, 1987]
R. Bajcsy and F. Solina, ‘“‘Three Dimensional Shape
Representation Revisited,”” Proceedings ICCV, London,
England (June 1987).

[Barr, 1981]
A. H. Barr, ‘‘Superquadrics and angle-preserving transfor-
mations,”” IEEE Computer Graphics and Applications
1pp. 11-23 (1981).

[Barr, 1984]
.A. H. Barr, ‘‘Global and local deformations of solid primi-
tives,”” Computer Graphics 18(3) pp. 21-30. (1984).

[Besl and Jain, 1985]
P. Besl and R. Jain, ‘‘Range Image Understanding,”” IEEE
Proceedings on Computer Vision and Pattern Recognition,
(June 1985).

[Gardiner, 1965]
M. Gardiner, ‘“The superellipse: a curve that lies between
the ellipse and the rectangle,’”’ Scientific American, (Sep-
tember 1965).

[Hansen and Henderson, 1986]
C. Hansen and T. Henderson, ‘‘UTAH Range Database,’’
Technical Report UUCS-86-113, Computer Science
Department, University of Utah, Salt Lake City (April
1986).

[Owen, 1986]
J. Owen, ‘‘Characterization of Live Mail,”’ Proceedings
USPS Advanced Technology Conference, Washington,
DC pp. 2-22 (1986).

[Pentland, 1986a]
A. P. Pentland, ‘‘Perceptual Organization and the
Representation of Natural Form,”’ Artficial Intelligence
28(3) pp- 293-331 (1986).

[Pentland, 1986b]
A. Pentland, ‘‘Recognition by parts,”” SRI Technical note
No. 406, Menlo Park, CA (1986).

[Press et al., 1986]
W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T.
Vettering, Numerical Recipies, Cambridge University
Press, Cambridge, England (1986).

[Rosch, 1978]
E. Rosch, “‘Principles of Categorization,”” in Cognition
and categorization, ed. E. Rosch and B. Lloyd, Erlbaum,
Hillsdale, NJ (1978).

Solina and Bajcsy 737




