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Shape and Function
Franc Solina and Ruzena Bajcsy

General Robotics and Active Sensory Perception Laboratory

UNIVERSITY of PENNSYLVANIA
Department of Computer and Information Sciences
Philadelphia, Pennsylvania 19104-6389

Abstract

We propose a modeling system for generic objects in order to recognize different objects from the same
category with only one generic model. The representation consists of a prototype, represented by parts and their
configuration. Parts are modeled by superquadric volumetric primitives which are combined via Booleap opera-
tions to form objects. Variations between objects within a category are described by allowable changes in struc-
ture and shape deformations of prototypical parts. Each prototypical part and relation has a set of associated
features that can be recognized in the images. These features are used for selecting models from the model data
base. The selected hypothetical models are then verified on the geometric level by deforming the prototype 1n
allowable ways to match the data. We base our design of the modeling system upon the current psychological
theories of categorization and of human visual perception.

Introduction

Computer vision has not yet adequately addressed the problem of recognizing generic objects. Most current
vision systems must have a precise model of any particular object that they are supposed to recognize. This is
because the present shape representations are inflexible and usually tailored to a particular domain or to a particu-
lar type of objects. These representations may well be sufficient wherever the number of objects and their shape
can be controlled, but not for a vision system of a robot that has to function in an unrestricted environment. Since
people handle the complexities of the world by using categories for recognition, understanding, handling, and
naming of objects, we propose to use category-like models in computer vision.

Categories which people form to achieve larger cognitive economy are not arbitrary collections of objects
but reflect the structure of the world. Categories that are linked most to the structure of the perceived world are
basic categories.! Basic category is the highest level of abstraction for which a generalized outline form can be
recognized and the highest level for which an image can be generated. They are the preferred level of reference,
are recognized faster then superordinate or subordinate categories and children learn them first (i.e. dog vs. animal
vs. German shepherd). Superordinate categories seem to share primarily functional features - vehicles are for
transportation, and tools are for fixing. They do not share perceptual features in sharp contrast to basic categories
which share both functional and perceptual features. Subordinate categories subdivide basic categories according
to one or very few perceptual or functional features. Basic categories seem also to be mutually exclusive which is
not the case for subordinate or superordinate categories.*

* There might be sometimes a marginal overlap of basic categories, like cups and mugs but both appearance and function are similar for them.
Wittgenstein (1953) 2 noted that categorical judgements become a problem only if one is concerned with boundaries.
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Category prototypes. Rosch! has shown that the categories we use contain one member that seems most
representative. These best examples are called prototypes. We use prototypes to judge all other members of the
category which are perceived in terms of or as deviating from them.3 Experiments have shown that prototypes are
the most rapidly recognized in comparison to other objects in the same category.! This can be because these pro-
totypical members represent the common properties in the best way. Goldmeier3 referred to such objects as
singular because they become the standard of reference for other designs. By singular or *‘ Prignant >’ we under-
stand the tendency to make the structure as clear cut as possible. Leyton® has shown that prototypification is
decomposed into a sequence of well-defined stages. Prototypification occurs in parallel, at different regions
(parts) of the figure and removes deformation that differentially varies over a region.

The role of parts. For objects and biological categories basic category cuts seem to follow natural breaks in
the structure of the world which is determined by part configuration. Tversky and Hemenway” pointed out the
particular salience of parts on the basic category level. In comparison to the basic level the proportion of parts of
all the common features decreases for both super and subordinate categories. Parts and part configuration form a
natural bridge connecting perception (appearance) of objects and behavior (activity) toward them, and in turn
communication about them. Perceived part configuration underlies both perceived structure and perceived func-
tion, and forms the basis of intuitive causal reasoning and naive induction. The basis of naive induction is that
separate parts have separate functions, similar parts have similar functions, and more salient parts have more

important functions.

Function and functionality are meant here as a proper action or a design which fulfills its purpose. Func-
tions of man-made objects are defined in terms of the user (agent) model and goal model. But parts and function
are related also independent of human users when an organism or objects are studied as a self-contained system.
The functional basis of shape in nature was first investigated in depth by Thompson.® He pointed out that the
repetition of shapes is not accidental; same shapes are ericountered across species for the same function since they
were molded by the same physical laws. There are only a limited number of types of leaves, crystals etc. The
““form follows function’’t hypothesis carries over also to the man-made objects, where despite the large diversity
found in the design certain functional dimensions must be met for adequate usage. This seems to define objects
on the basic category level. The subordinate category level of man-made objects is the result of available techno-
logies, skill in manufacturing, habits, and esthetic preference. Since this whole set of often disparate requirements
influences the design process, the task of synthesis of form is not easily formalized.” Good designers, however,
always start with the basic function in mind (Figure 1). It is interesting to note that archeologists work in a simi-
lar frame set but try instead to solve the inverse problem (reverse the arrows in Figure 1). Given excavated
artifacts or only some of their parts they want to determine their function among other facts. In a way, the whole
process of visual perception is to the instant visual input the same, as archeology is to the excavated artifacts.

Perceptual organization showed the importance of recovering structure and clustering of features for image
understanding. A new wave of research in computer vision was triggered by this attention to the structure in the

COMPOUND PRIMITIVE SHAPE
FUNCTION FUNCTIONS PRIMITIVES it

Figure 1 Synthesis procedure for design of objects. Function or purpose that define the basic category
dictate the part configuration and the shape of individual parts.

t Architect Louis Sullivan is credited for coining the phrase.
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images that in turn reflects the structure in the world.3:9-10.11.12 The visual process was reformulated as the task
of discovering structure based on some primitive spatiotemporal regularities like least-distortion and non-
accidentalness. The task of recovering structure, also known as perceptual organization, was first investigated by
the Gestalt school in psychology. A fact that demonstrates the role of perceptual organization in vision is that
people are able to perceive structure in images apart from recognizing familiar objects. Humans can see and
describe the contents of images from various sources like black and white photographs, x-rays, line drawings, and
electron micrographs as long as the basic structure of the image is preserved. The addition of semantic context
rarely affects this spontaneous, pre-attentive organization of images into parts. The basis of this remarkable capa-
bility may be the fact that regular relationships like parallel lines, curvilinearity of arcs, symmetry, two or more
terminations of vertices at a common point and so on, are very unlikely to arise by chance.

Partitioning of objects into parts. Building object representations by putting together smaller objects as
building blocks is a common practice in computer vision and computer graphics or design. The apparent com-
plexity of our environment is also produced from a limited vocabulary of parts by applying a small set of generic
processes over and over again. Hence rather than build point-by-point descriptions of surfaces and volumes to
eventually arrive at high-level models, the immediate recognition of part models in images is preferred.!0:11
While, in general, for computer modeling almost any set of primitive building blocks will do, as long as they
enable easy manipulation, we want to concentrate here on parts or primitives that have a perceptual salience and
hence reflect the structure in the world. When looking for a partition rule, two possibilities exist. One is to for-
malize the decomposition of objects into parts by defining part boundaries in terms of differential geometry.13,9
The other is to define the shape of possible parts. Pentland!? proposed superquadrics as a set of part primitives
which very closely correspond to Hoffman’s notion of parts.® Superquadrics can be compared to lumps of clay
that can be further deformed and glued together into very realistic looking models. Since superquadrics are a set
of parametric volumes where the parameters can change continuously, there are an infinite number of them.

Deformation of shape is a process that affects both natural and man-made objects. It is a highly intuitive
way of describing and thinking about objects. Deformation is not just any alteration of shape. It conveys the
impression that the shape as a whole has undergone a change that can be modeled by some physical process.
Thompson® pointed out that several natural forms are easily explained when they are regarded as deformations of
a simple structure. A deformation is highly intuitive and easily visualized process which helps not only to explain
natural forms but simulates some manufacturing processes for fabrication of objects. Attributes that are responsi-
ble for the subdivision of a basic category into subordinate categories often correspond to some deformation. It is
not surprising then that for verbal descriptions of objects we often use adjectives that reflect some underlying
deformation of a simpler, prototypical shape.!4 The deformation terms are often perceived as manifestations of
physical processes acting on an imagined physical object with a prototypical shape. These ideas about prototypes
and deformation were taken up for shape representation in computer vision. Based on work by Barr!3:16 Pent-
land!0 developed a complete real-time graphics system called ‘‘SuperSketch,”” which uses deformations to mold
superquadrics into more natural looking forms.

Motivation. Ideas from categorization, perception, and functionality meet at the basic category level which
is a preferred level of abstraction. The goal of a computer vision system should be to model and recognize basic
categories, their parts and configuration and hence their function, too! Superordinate and subordinate categories
could be derived from basic categories. Recognizing categories opens up new ways of using machine vision.
Instead of just assigning labels to objects, like *‘this object is a cup,’’ questions about the usage (function) of the
object could be answered.

The next two sections define the proposed category model for computer vision and describe the recognition
procedure. In the discussion the proposed model is compared to other attempts of modeling generic objects and
future work is outlined.

286 / SPIE Vol. 726 Intelligent Robots and Computer Vision: Fifth in a Series (1986)




Modeling Categories for Computer Vision

Shape representation of generic objects and categories is difficult because the representation must allow for
variations of shape within a category and yet differentiate between categories. The proposed category model con-
sists of combining prototypical part models and specifying possible variations in structure together with deforma-
tions of parts to account for the variation inside the category (Figure 2).

Individual superquadrics that model parts are combined to represent articulated objects. This structure will
be described by trees, where the internal nodes correspond to Boolean union and the leaves to superquadrics with
positional information, or by hierarchical structures, where the position of each part is defined in the coordinate
system of a part on the preceding, higher level. Each part model and structural relation has also the information
about the allowable shape deformations of parts and allowable changes in structure that account for deviations
among the members of the category. The changes of part shapes are interrelated, i.e. a little cup cannot have a big
handle although little cups and large handles are themselves legal. The proposed model for categories is hence
part based as opposed to feature based because shape deformations operate on parts and changes are made in the
way parts fit together. The amount of deformation of the prototype must be limited since not all kinds of defor-
mations can be allowed. Deformations must be specified by the direction and amount of change. The variability
of the structural description will be described by specifying a range of possible parameters to allow for relative
changes of position among the parts. The variability of superquadrics, on the other hand, will be described by

Top level:
OBJECT

Mid level:
PARTS AND
STRUCTURE RELATIONS

'WABLE CHANG

IN CONTACT POSITION

Bottom level:
FEATURES and
PROPERTIES

Figure 2 A category model for cups. Category models consist of three levels. The upper level is the
category label that applies to all objects in the category. The middle level are the prototypical parts and
their structural relation together with allowable changes in structure and allowable shape deformations of
part primitives to accommodate variations inside the category. The bottom level specifies the associated
features and properties that point to parts or their relation/structure on the second level.
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specifying a range of values for superquadric parameters. Deformations must not, however, change any of the
features on the bottom level of the category model. Each part and relation has a set of associated features and pro-
perties that serve as an interface to the vision modules that recognize features. Each of these features points to
one or more parts on the second level or to a structural relationship among parts. All features must be universal
enough to be representative for all objects that belong to a particular category.

Superquadrics as part-models. Superquadrics are a family of parametric shapes that extend the basic qua-
dric surfaces and solids. 15 They can model a large variety of “‘standard”’ building blocks like spheres, cylinders
and prisms (Figure 3). Superquadrics are defined in implicit form or by the following surface column vector:

T T
ap cos”ncos?m epel
XM, w) = | apcosnsin®w 2 2
? B TSSO
aj sin M

The parameters 1 and ® correspond to latitude and longitude angles of the 3-D vector X'in spherical coordi-
nates. The scale parameters a; , a,, a3 define the size of superquadrics in directions x, y and z respectively. €,
is the squareness parameter along the z axis and €; is the squareness parameter in the x-y plane. The surface that
they describe is everywhere derivable and deformations are easily defined on them.16

Figure 3 On the left is a set of superquadrics. The control parameters a, and a, are = % a3. The shape
parameters €; and €, change from 0.2 to 1 and 2 from left to the right and from top to the bottom of the
figure respectively. On the right is an ellipsoid-like superquadric deformed by tapering and twisting
along the z axis. Tangent and normal vectors on the undeformed surface can be transformed into tangent
or normal vectors on the deformed surface by multiplying with the Jacobian matrix of the deformation
function. Deformations are easily combined; each level in the deformation hierarchy requires an addi-
tional matrix multiplication.
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Recognition Procedure

The input to the recognition procedure is a pair of reflectance images of an object in canonical position, i.e.
a cup in its upright position. Low level vision processing includes: thresholding the background, finding edges,
connecting edges and growing regions to form closed contours, and using stereo to get 3-D points. To select a
model, features typical of all members of a category and yet specialized enough to allow for distinction among
categories must be recognized (i.e. holes, cavities, handles, parallel surfaces, parallel edges, rotational sym-
metries, number of parts, and relative measures like ratio of width/height, or ranges with lower and upper bounds
of object dimensions). What can be detected depends on the sophistication of the low level vision and the
geometric reasoner that combines the results of low level vision into features.

Hypothesis generation and verification. When a feature is found in an image, all objects that have that
feature can be selected and their position and orientation hypothesized.!” Two techniques are used for com-
parison, one looks for similarity or common features, the other for differences or distinctive features to set two
objects or concepts apart. Similarity seems a good mechanism for initial hypothesis generation while differences
seem suited for selecting the best hypothesis among the like. Models that are not consistent with all extracted
features are eliminated from the set of possible models. Hypothesis verification has to measure how well the
model fits the data. If more then one hypothesis is generated then all of them must be tested. Features alone are
not sufficient for verification since different arrangements of same features result in different objects. Verifica-
tion with shape comparison on the geometric level seems more general. This is against the prevailing trend in
object recognition where geometric information is transformed to symbolic representation as soon as possible.!8
We suggest keeping the geometric information around and working with it whenever it is more convenient.
Verification in the proposed procedure consists of checking how the parts are put together and deforming each
part of the prototype to match the appropriate part of the object. Since a brute force approach for solving the
correspondence is not possible, the following parameters must be solved to match the object with the model; the
location and orientation of the whole object, subdivision into parts, and the deformation of individual parts.
When the model hypothesis is made, based on the position of extracted features, the hypothesis can predict also
the location of the local coordinate system. By knowing the relations between the local coordinate systems of
individual parts it is possible to check if the parts fit together. Next, the shape of individual parts is verified by
matching the prototypical superquadric model to the 2-D contour and 3-D points of the corresponding part. The
presence of deformations greatly complicates the problem. By comparing the prototype part with the object part,
direction and amount of deformation can be estimated. In this process a predefined sequence of deformations is
advantageous. Regarding prototypes as shapes with global symmetry structure Leyton* demonstrated strong
differential-geometric constraints on the decomposition of prototypification for 2-D shapes. This comparison can
give only estimates of the position and orientation of the local coordinate system, superquadric parameters a;, a2,
as, €;, and €,, and deformation parameters. These estimates are used as the input to a nonlinear modeling pro-
cedure (i.e. Levenberg-Marquardt!® ) to compute the actual parameter values. To measure the fit between the
deformed superquadrics and the image data the sum of squares of distances between corresponding points is used.

If more than one model matches, either the data is not sufficient to discriminate among the possible
categories or the object is a borderline case (since some objects actually match two different categories). The
more a prototype must be deformed, the less typical is the object for the category. By comparing two competing
models one can conclude whether the information hidden due to self-occlusion can resolve the ambiguity. Chang-
ing the viewing direction or manipulating the object (i.e. rotating it) to get more information may help.

Equipment and objects for experiments. Pictures of objects, 2placed on a rotational platform, will be taken
with the remotely controlled Pennsylvania Active Camera System. 0 We use kitchen objects for investigating the
relationship between shape and function since their gross shape corresponds to a variety of classes (functions);
blob-like (for containment), flat (for support), and elongated (for manipulation). They have holes, handles, cavi-
ties, and a clearly defined function or purpose.
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Figure 4 On the assumption that the correct model was selected (superquadric with fixed €; and &), its
dimensions (a;, a5, and a3) and the transformation from the global coordinate system to the local coor-
dinate system which is embedded in the superquadric were computed from the 2-D projection of three
edges around a common vertex and the assumption that they are perpendicular to each other in 3-D.

Conclusions

We made two basic assumptions for representing the shape of basic object categories; first, that categories
can be modeled with a prototype, which has the most representative shape in the category, with a set of shape
deformations of that prototype to account for the variations inside the category; and second, that on the basic
category level parts (shape) correspond to function. Our model assumes that each object in a category has the
same set of parts. Cups, for example, have onc handle. Scparate catcgorics would have to be made for cups with
two or no handles which would join on the next higher level in the category hierarchy, followed by containers,
dishes, household objects etc.

Other work concerned with the relation between shape and function is the naive physics program,!4 work by
Davis,2! by Winston et. al!® on learning physical descriptions of objects from functional descriptions, examples,
and precedents and by Stansfield22 who is concerned with object recognition within an active, multisensor sys-
tem.
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