7th Mediterranean Electrotechnical Conference

April 12-14, 1994
Hotel Dedeman
Antalya, Turkey

Proceedings
Volume I
Implementation of Systolic Multipliers and Digital Filters via Signal Flow-Graph Transformations; K. Z. Pekmezci, C.G. Caraiscos

Vector Quantization of Textile Patterns for Jacquard Looms; Lale Akarun, Y. Fatih Sarigoz

A New Gradient Approximation Method for the Design of Minimax FIR Filters with Powers of Two Coefficients; Tolga Ciloglu, Zafer Unver

Comparison between Two Nonminimum Phase System Estimators; J.Y. Tourneret, B. Lacaze

A31- COMMUNICATIONS 3

Interference Calculations for an S-CDMA Cellular Radio System; Yalcin Tanik, Mustafa Kuzuoglu

Transmission Modelling and Performance Evaluation for Mobile Radio Using QQPSK-Type Modulations; Victor Goncalves, R. Dinis, A. Gusmao

Future Trends for Mobile Communications in Europe; C. Cengiz Erci

Spectrum Efficiency in Cellular Mobile Radio Systems with Multiple Correlated Signals; Ayser Safak

An Experimental Investigation of GMSK Modulation; Ibrahim Canturk, F. Ruyal Ergul

A32- SIGNAL PROCESSING 3

Analysis of Numerical Methods Efficiency for EDFA Modelling; E. Januart, P. Crahay, P. Megret, J.C. Froidure, M. Lamquin, M. Blondel

On the Performance of a Software Reliability Model for Grouped Failure Data; M. Sahinoglu, Unal Can

A Feature-Based Stereo Matching Algorithm; Osman Parlaktuna, Serap On, Muammer Akcay

CFAR Processing in Nonhomogeneous Background; M.K. Uner, P. K. Varshney

Continuous-Time Adaptive Control Applied to RF Amplifier Linearization; E. Bertran, G. Montoro, N. Talavera

B32- OPTICAL COMMUNICATIONS

Interchannel Interference in FDM Coherent Optical Networks; Roberto Corvaja, Luciano Tomba

Asynchronous Transfer Mode Architecture Using Photonic Devices; Mohsen Guizani

A Simple Formulation for the Signal Jitter due to the Amplified Spontaneous Emission of Optical Amplifiers; Adolfo V.T. Cartaxo

Direct-Modulation/Direct-Detection Technology in Multigigabit Optical Networks; J. A. Navarro, Gabriel Junyent

Computer Aided Analysis and Design of Optoelectronic Sensor Circuits; Otto Schwabl

A33- COMMUNICATIONS 4

Analysis and Optimization of PLL's with Signal Injection in Synchronization Systems; A. Gameiro

Changes in the Probability Distribution for Gaussian Processes SubJECTED to Phase Jitter; N.D. Aakvaag, Bernard Lacaze

A Transform Adapted to Polynomial Phase Signals; S. Puechmorel, B. Lacaze

High-Level Modelling of an Adaptive Echo Canceller and Finite Wordlength Effects on Its Performances; M. Leban, J. Tasic, I. Kale, B. Zajc, R. Morling

B33- VIDEO PROCESSING

An Iterative Technique for 3-D Motion Estimation in Videophone Applications; Ozge Bozdagi, A. Murat Tekalp, Levent Onural

Simulation of a DCT Based Very Low Bit Rate Codec for Mobile Video Coding; Roy Mickos, Levent Onural

A34- COMMUNICATIONS 5

Applying Permutation Modulation to Spread-Spectrum Systems; Abbas Tongacoglu, Jun Wang

Generalized Type-II Hybrid SR ARQ System using Punctured Convolutional Coding for Point-to-Multipoint Communications; Necmi Taspinar

Design and Evaluation of Two Block Coded Modulation Schemes; Berna Sayrac, Meleki D. Yuces

An Optimal Symbol-by-Symbol Detector for Linear Dispersive AWGN Channels; Kadri Hacioglu

Spurious Performance of Direct Digital Synthesizers Generating Modulated Signals; Jose M. Riera Salis

B34- IMAGE AND VIDEO PROCESSING

Image Compression using 2-D Lattice Filters; Nagihan Tulu Onuk, Aysin Ertuzun

A New Objective Fidelity Criterion for Image Processing: Derivative SNR; Hakki T. Yalazan, Meleki D. Yuces

Modeling 2D Image Data by Robust M-estimation; V. Filova, F. Solina, J. Lenarcic

Intraframe Coding with DCT-VQ for Image Sequence Compression; Mustafa Ali Turker, Mete Severcan

A Comparative Study of Moment Invariants and Fourier Descriptors in Planar Shape Recognition; Nejat Ezer, Emin Anarim, Bulent Sankur

Image Restoration in Frequency Domain using the EM Algorithm; Emin Anarim, Hakan Ucar, Yorgo Istefanopulos

B11- ARTIFICIAL INTELLIGENCE AND NEURAL NETWORK APPLICATIONS

Computer Based Structural Analysis of Turkish Words; M. Mete Bulut, Mehtap Gozakan
Modeling 2D Image Data by Robust M-estimation
V. Filova1; F. Solina2, J. Lenarčič1

1Robotics Laboratory
Jožef Stefan Institute
University of Ljubljana
Jamova 39, Ljubljana, Slovenia
Valentina.Filova@ijs.si

2Computer Vision Laboratory
Faculty of EE and CS
University of Ljubljana
Tržaška 25, Ljubljana, Slovenia
Franc.Solina@ninurta.fer.unl.si

Abstract

The conventional least squared distance method of fitting a model to a set of data points gives unreliable results when the amount of noise in the input is significant compared with the amount of data correlated to the model itself. The theory of robust statistics formally addresses these problems and is used in this work to develop a method of separation of the data of interest from noise. It is based on iteratively reweighted least squares algorithm where Hampel redescending function is applied for weighting data. The method has been efficiently tested in modeling synthetic and real 2D image data with second order curves.

1 Introduction

The modeling process plays a key role in image understanding. The goal is to organize the data in terms of common characteristics and features and obtain concise and useful description for further processing. After selecting an appropriate model for the data the most popular approach is to use least squares analysis to estimate the model parameters. This is based under assumption that errors in the data are normally and identically distributed. However, these assumptions are frequently inappropriate. In computer vision two types of anomalies in data appear, which can not fit the Gaussian noise model: (1) a uniformly distributed error component arising from rounding and quantization, and (2) a few large deviations in the data, often thought of as outliers, indicating that all data points do not belong to the same distribution. Therefore, the least-squares (L2) estimator often gives misleading results. In order to remedy the problem of non-normal errors, new statistical techniques known as robust methods have been developed that are insensitive to such departures in the data. One the best known robust procedure is the class of maximum-likelihood-type estimators (M-estimator).

The theory of the robust M-estimator was first developed by Huber in 1964 [6]. Up to now, it has been successfully applied for general regression [10], robust curve [4] and region [2] growing, image smoothing and derivative estimation [1,7], etc. We used M-estimator build on iteratively reweighted least squares algorithm [1] to perform outlier rejection while modeling synthetic and real 2D image data with second order curves.

The paper is organized as follows. First, we outline the mathematical concepts of the modeling process. Next, we explain the design of the robust M-estimator. After that, we summarize our experiments. We conclude with several comments about possible applications.

2 Mathematical background

The modeling process can be defined as a search for such parameter vector $\mathbf{\hat{p}}$ of the model $Q(x, y) = f(\mathbf{\hat{p}}, x, y)$, which best fits the structure of the image data $Q = \{(x_1, y_1), \ldots, (x_n, y_n)\}$ [8], where (x_i, y_i) are the 2D coordinates of the i-th edge point in the set. In this research, we have chosen the second order curve (1) to account for the structure of the data.

2.1 Model function

The general equation of second order curve $Q(x, y)$ is a linear combination of five independent basis functions $\Phi = \{x^2, xy, y^2, x, y, 1\}$:
\[ax^2 + bxy + cy^2 + dx + ey + 1 = 0. \]

(1)

The residual errors can be computed as follows:

\[e(x_i, y_i) = Q(x_i, y_i) - \sum_{m=1}^{s} p_m \phi_m(x_i, y_i). \]

(2)

The contribution of the data points to the error function (3) is not uniform. For the geometrical interpretation of the residual errors look at [9].

2.2 Robust M-estimation

A robust M-estimate for \(\hat{\eta} \), minimizes function \(e(\hat{\eta}) \) of the deviations of the observations \(Q(x_i, y_i) \) from the estimate \(f(\hat{\eta}, x_i, y_i) \), that is more general than the sum of squared deviations (L2 regression problem \(\rho_2(x) = x^2 \)), or the sum of absolute deviations (L1 regression problem \(\rho_1(x) = |x| \)):

\[e(\hat{\eta}) = \sum_{i=1}^{N} \rho\left(\frac{e(x_i, y_i)}{s}\right). \]

(3)

Parameter \(s \) is a known or previously computed scale parameter and \(\rho \) is a robust loss function. If we let \(\psi(\hat{\eta}, x, y) = \frac{\partial e(\hat{\eta}, x, y)}{\partial (\hat{\eta})} \), then a necessary condition for a minimum is that \(\hat{\eta} \) satisfy

\[\sum_{i=1}^{N} \psi\left(\frac{e(x_i, y_i)}{s}\right) \phi_m(x_i, y_i) = 0, \quad m = 1, 2, \ldots, 5. \]

(4)

Introducing a set of weighting parameters:

\[\omega(x_i, y_i) = \begin{cases} \psi\left(\frac{e(x_i, y_i)}{s}\right) & \text{if } e(x_i, y_i) \neq 0 \\ 1 & \text{if } e(x_i, y_i) = 0, \end{cases} \]

(5)

the nonlinear matrix equation (4) can be rewritten as following:

\[\sum_{i=1}^{N} \phi_m(x_i, y_i) \omega(x_i, y_i) e(x_i, y_i) = 0, \quad m = 1, 2, \ldots, 5. \]

(6)

The equation (6) can be solved iteratively via several different methods, one of which is iteratively reweighted least squares (IRLS).

2.3 Iteratively reweighted least squares algorithm

Before the IRLS M-estimation scheme is applied we have to determine the weight function (look for their performance evaluation at [7]). The weighting function (see equation 5) is dependent of the scale estimate \(s \). Although somewhat ad hoc the robust statistics community uses the median absolute deviation (MAD) scale estimate almost exclusively:

\[s(\hat{\eta}) = 1.4826 \cdot \text{median}(|e(x_i, y_i) - \text{median}(e(x_i, y_i))|). \]

(7)

where \(e(x_i, y_i) \) are the residuals from the previous function fit. We compute the initial set of residuals errors by least squares (L2 regression) fit. Thus, the weighting process is govern by the scale estimate, which is updated simultaneously.

The IRLS M-estimation algorithm is as following:

- By L2 regression compute the initial values of:
 1. the parameter vector \(\hat{\eta} \) (6),
 2. the scale parameter \(s \) (7),
 3. the weighting parameters \(\omega(x_i, y_i) \) (5).

- While \(s_{new} > s_{min} \) calculate new values for:
 1. the parameter vector \(\hat{\eta} \) (6),
 2. the scale parameter \(s_{new} \) (7),
 3. the weighting parameters \(\omega(x_i, y_i) \) (5).

Our experiments (see Sec. 3) and empirical studies [3] have shown that the algorithm always converges to a unique solution.

3 Experimental results

These experiments were specifically designed to meet the following goals:

- to compare the convergence speed of two different weighting functions: Huber Minimax and Hampel redescending,
- to test the Hampel redescending M-estimator on different quantities of noise,
- to demonstrate the power and potential application of robust M-estimator in outlier rejection and data modeling.

As we have already mentioned, we used second order curve to account for the structure of the data (synthetically generated and real), where elliptical shape parameters \((A, B, X_0, Y_0, \varphi) \) [9] are to be estimated.
3.1 Comparative study of two weighting functions

![Diagram of weighting functions](image)

Figure 1: Two different weighting functions for robust regression.

On Fig. 1 two different weighting functions can be seen. *Huber Minimax* has been introduced by Huber [6] to yield the efficiency of L2 regression with the robustness of L1 regression. When *Huber Minimax* is used, the expression for the weights (5) becomes:

\[
\omega(x_i, y_i) = \begin{cases}
\frac{bs}{|e(x_i, y_i)|} & \text{if } |e(x_i, y_i)| > bs \\
1 & \text{if } |e(x_i, y_i)| \leq bs.
\end{cases}
\]

(8)

This form shows explicitly that all "inliers" receive unit weights \(\psi(x) = 1\) for \(x \leq b\) whereas questionable data points are "down weighted" proportional to the magnitude of the residual error. Although this is desirable, the weights are never exactly zero unless the residuals are infinite. In addition, the *Hampel re-descending* function (see Fig. 1) has the property that \(\psi(x) = 0\) for \(x > c\) where \(c\) is a preselected cutoff value, also known as the finite rejection point. This allows outlier rejection (total elimination of the effects of data points with very large residual errors).

Experiment 1: On Fig. 2A we can see the results of applying *Huber Minimax* M-estimator and *Hampel re-descending* M-estimator on synthetically generated ellipsoid shape data with 15% of noise. The final solution (14 iterations) depends grossly on the initial fit obtained with L2 regression and the scale estimate \(s\). When the data is less noisy (9%), the initial fit better (see Fig. 2B), *Hampel re-descending* M-estimator very fast converges to right solution (only 8 iterations were needed).

The experiment (see Fig. 2) demonstrates the high convergence speed of the *Hampel re-descending* M-estimator due to outlier rejection. Therefore, we chose *Hampel re-descending* function for weighting data in further research [5].

\[\text{Figure 2: Experiment 1.}\]

3.2 Behavior of Hampel re-descending M-estimator

Experiment 2: This experiment was carried out to test the behavior of the robust M-estimator built on *Hampel(0.7,1,2)* re-descending function while incrementing the percentage of noise in data. The tuning parameters \((a = 0.7, b = 1, c = 2)\) have been chosen as in [1]. Besl [1] stated that the detailed shape of the weighting function is not as important as the cutoff value \(c\). Two ellipsoid shape data clusters EII1 and EII2 were generated synthetically. The data cluster EII1 was to be modeled, while the data cluster EII2 was treated as noise. The noise in data was incremented in five steps from 21% to 100%. Tab. 1 lists the results obtained after 5 and 10 iterations.

The experiment demonstrates the ability of the estimator to cope with 100% bad data. Thus, it reaches the best possible value for breakdown point \(c^* = 50\%\) (breakdown point is the limiting fraction of arbitrarily bad data that the estimator can cope with [1]).

3.3 Hampel re-descending M-estimator applied to real data

Experiment 3: In Fig. 4 the results of modeling the arm part projections with second order curves can be observed. The problem of separating one part from another is efficiently solved by considering each part as an individual object and using Hampel re-descending M-estimator to perform outlier rejection.
4 Conclusions

A robust M estimator has been described and a few aspects of its performance have been demonstrated. It was built on iteratively reweighted least squares algorithm, where weighting is accomplished with Hampel re-descending function. The scale parameter, which depend on the parameter vector to be estimated is updated simultaneously yielding better convergence speed. The estimator has the best possible break down point $c^* = 50\%$. We demonstrated the power of the estimator in outlier rejection and data modeling. We emphasized the potential application of the approach in data segmentation.

References

