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Abstract

The' paper addresses the problems introduced by the single camera approach
to human arm motion study. The arm is considered as a kinematic chain with
a known kinematic structure. The projection is assumed to be orthographic. In
order to solve the motion reconstruction problem, the structure of the arm has to
be determined in each frame. This involves extracting the segments’ axes from
the projected contours of the arm. A robust algorithm for modeling the segments’
projections was developed. The problems of extracting the linked segments’ axes
are discussed. Assuming that the 2D stick figure of the arm can be identified in each
image in the sequence, the equations for motion reconstruction are derived in terms
of matrix algebra. The time-varying sequences of the joint angles of the kinematic
model are used to get a consistent description of the reconstructed motion.

1 Introduction

The analysis of human arm motion is important for applications in many areas. Un-
derstanding of the human arm motion control can help: (a) in robotics to design an-
thropomorphic mechanisms [10], in rehabilitation to evaluate the injury of the motion

mechanism [11], (b) in behavioral neuroscience to study motor disorders caused by some
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disease [9], (c) in sports for gesture performance measurement [4,14], and (d) in designing
new human-computer interfaces [5,17].

A traditional approach to reconstruction of human body motion in 3D is to reconstruct
the movement of markers attached to the human body [1,8,22]. The 3D coordinates of the
markers are computed by triangulation, using two or three cameras. There are problems
with tracking the markers due to obstruction during motion and to the displacement
of markers caused by the elasticity of the skin. Consequently, the need for different
approaches arises. One way to track motion of the human body is to model the body
surface from range data [2,12,16,19,20]. However, the approach involves sophisticated
shape modeling, which is time consuming.

In this paper, we propose a single camera approach for studying the human arm
movements. Our study is based on the following assumptions: (1) the human arm can
be considered as a multi-joint object with a known kinematic model, (2) in each image
frame, the 2D positions of the joint points of the kinematic model can be identified from
projected contour of the arm, and (3) camera projection is orthographic.

The remainder of the paper is organized as follows. The next Section addresses the
problems introduced by the approach. Section 3 gives the mathematical background of
the process of fitting segment axes into projected contours of the arm. Some results of
extracting the segments’ axes are presented in Section 4. Section 5 discuss the problem
of estimation the motion of the arm from linked segment axes.

2 Model based recovery from images

The goal of the research is (a) to reconstruct 3D structure and motion of the arm from
projected image sequence, (b) to give an interpretation of the overall reconstructed motion,
and (c) to predict the future motion from given image sequence. There are two basic
approaches to 3D recovery of structure and motion of an object which model is available
from projected images: the ”3D Euclidean approach” based on geometrical constraints in
3D Euclidean space and the "2D non-Euclidean approach” based on analysis on the the
image plane viewed as a 2D non-Euclidean space [13]. The 3D Euclidean approach begins
with image features, then backprojects them into the scene, and applies object constraints
expressed in terms of 3D Euclidean geometry. In contrast, the 2D non-Euclidean approach
begins with object modeling, then projects the model onto the image plane, and defines
the image features in terms of the 2D non-Euclidean geometry resulting from the assumed
object model.
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(b)

image
plane

Figure 1: 3D Structure recovery using the kinematic model: (a) kinematic model of the
left arm, (b) backprojection of the segments’ axes into the scene.

The research presented in the paper is carried out following the first approach. The
human arm is considered as a kinematic chain of three rigid objects connected by joints
(see Figure 1a) . The kinematic model ! specifies the lengths of the arm segments, the
ranges of the joint angle values and the correlation of joints due to functional connection
[10]). The 3D structure of the human arm is defined as 3D position of the joint points of
the kinematic model relative to each other. Consequently, the 3D structure recovery from
a projected contour of the arm can be done without reconstructing the shape of the arm
segments. It suffices to fit an axis into separated arm segments’ projections, and then
backproject the 2D linked axes into the scene by introducing unknown parameters i.e. the
depth of the joint points (see Figure 1b) . Assuming that this can be done in each image
in the sequence, the geometrical constraints specified with the kinematic model can be

1According to the model developed by Lenari¢ [10] and Umek(21] the arm (without the hand) has
six revolute degrees of freedom (DOF), two in the sternoclavicular joint, three in the glenohumeral joint
and one in the elbow joint. The reference coordinate frame is placed in the sternoclavicular joint.
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used to derive the 3D recovery equations in terms of vector calculus and matrix algebra.
The 3D motion can be reconstructed as transition between two postures of the arm in
space. This requires backprojection of each image in the sequence. The reconstructed 3D
motion can be described with the trajectories of the joint points of the kinematic chain

or with the time-varying sequences of the joint angles.

Figure 2: Extracting the segments’ axes.

3 Extracting image features

The 3D structure recovery involves fitting 2D linked axes to the projected contours of the
arm (see Figure 2). In order to do this the image of the arm should be first segmented
according to the model of the arm and then an axis should be fitted into each segment
separately. Intersections of the fitted segment axes give the image coordinates of the joint
point projections. Taking into consideration the recent results that the segmentation
and modeling are better solved in parallel [18], we first map portions of the image data
to the model manually using window of interest technique (see Figure 3). Next , we
model the contour points with second order curve using nonlinear maximum likelihood
estimation (robust M-estimation). At the end, we resegment the data according to the
results of the modeling process. The second order curve, which is used as model function,
has many good properties: (a) is symmetrical, (b) is described with a small number
of parameters, (c) the curve axis give the orientation of the arm segment, and (d) by
adding new parameters other forms can be obtained which better fit the shape of the arm
segments (12,18,19] .
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The algorithm for modeling data is based on iteratively reweighted least square paradig-
m. The Hampel redescending function is applied for weighting data. The Hampel re-
descending function has the property that the image data with very large residual error
(residual error is deviation of the observed point from the fitted curve) are treated as
outliers. The experimental results have shown very high robustness of the algorithm
to outliers [6]. Thus, the image points which belong to the forearm are rejected while
modeling the upper arm. This enables resegmentation of the image data.

The Section proceeds with brief summary of the mathematical background of the

robust estimation process.

3.1 Robust M estimation

A robust M-estimate for the parameter vector p = {a,b,¢, d,e} of the model f(f)',a:,y)
(1), defined as

f(P,z,y) = +P2¢2+P3¢3+P4¢4+P5¢s+1. (1)

where {1, $2, B3, 4,05} = {z?,zy,y*,z,y}, minimizes the error function €(p) (see E-
quation 2) that sums the deviations e(z:,¥:) of the observations from the fitted curve
(1). ' .
e(zi, i)
op) = 3", @
=1
The parameter s is a known or previously computed scale parameter and p is a robust loss
function. This is more general than the sum of squared deviations (for the L2 regression
problem, we have p(z) = z?), or the sum of absolute deviations (L1 regression problem,
where we have p(z) = |z|).
I y(pyz,y) = 9-("—3(%!1, then a necessary condition for a minimum of the function €(p)

is that p satisfies

f:¢(———"("'s’ Y)) go(eiy) =0, m=1,2,..5. 3)
i=1

Equation ( 3) is a system of five nonlinear equations where % plays the role of a weighting
function. It can be solved iteratively via several different methods, one is iteratively
reweighted least squares [3]. Before the iteratively reweighted least squares scheme is
applied we have to select an appropriate ¥ function . We choosed the Hampel redescending
function [6]. The Hampel M-estimator was implemented in Mathematica programming

language.
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4 Results of extracting joint point positions

The robust M estimation was used to study (a) the influence of outliers on the orientation
of segments’ axes, and (b) the possibilities of extracting the 2D positions of the joint
points as intersections of the fitted segments’ axes when the arm is performing 2D and

3D motion.

4.1 Influence of outliers on orientation of segments’ axes

Case 1 Case 2

Case 3 Region of interest for the

elbow joint point

Figure 3: Influence of outliers on orientation of segments’ axes.

The experiment was carried out as following. Two sets of data were cut from the projected
contour by defining the window of interest manually. The data was assigned to the forearm
and the upper arm respectively. The model was fitted to the data using the robust M-
estimation algorithm and the segments’ axes were extracted. The intersection of the fitted

axes gives the possible position of the projected elbow joint points from the kinematic
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model. Then the windows of interest were widen and new sets of data were obtained.
Figure 3 presents the results of fitting the model in three different sets of data. The
number of iteration in all the cases was the same (twelve iterations). The initial estimate
was obtained with the least square method. The obtained results for the orientation of the
segments’ axes differ. This is caused by the different quantities of noise in the data and
same number of iterations. The results shown that the estimation process in most of the
cases entered a minimum and greater number of iteration would not give better results.
Due to the bad initial estimate and unsuitability of the model (the projected contours
are not perfect ellipses and the shape of the arm change during motion) some points are
incorrectly rejected as outliers. As a result we obtain a region where the projection of the
elbow joint point probably lies. This tolerance region should be taken into consideration
while calculating the 3D posture of the arm segments via 3D coordinates of the joint
points.

4.2 Determination of joint point positions

Figure 4 presents a sequence of orthographic projections of the arm performing 3D
motion. The projected contours were processed as follows. The image data was mapped
to the 3D model manually defining window of interest for the forearm and upper arm
in each frame separately. The segments’ axes were extracted by modeling the data with
second order curves using robust M-estimation [6]. Intersections of the fitted axes give the
possible position of the projected joint points from the kinematic model. The obtained
results lead to the following conclusions. It is difficult to determine the projection of the
shoulder joint point in a separate image. In Figure 4a this could be done by multiple
frame analysis. In Figure 4c is necessary to use the dependence among clavicula and
upper arm joint angles specified in the kinematic model [21]. In the cases where the
elbow joint point projection cannot be extracted as intersection of the forearm axis and

the upper arm axis this should be done using multiple frame analysis.
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(b)

()

Figure 4: An orthographic projection of a 3D human arm motion.
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5 Arm motion reconstruction using the kinematic

model

The human arm is assumed a kinematic chain consisting of three objects which kinematic
model is known. The kinematic model facilitates the arm motion reconstruction process
in many ways. The geometrical constraints specified by the model allow 3D posture
recognition. The process of tracking and estimation of multiple motion in the scene is
easier. The kinematic model can especially helps when multiple frame analysis is needed
due to the problems of occlusion of segments or other problems connected with extraction
of joint point coordinates. According to the model introduced in Section 2 the arm has six
revolute degrees of freedom (DOF). For each DOF a homogeneous matrix can be derived,
which describes the transformation linking the arm segments connected by joints. Using
matrix algebra the 3D structure of the arm can be expressed as following:

ron = Rz(8;).Ry(62).dy (4)
Tt = ton + R2(8,).Ry(62). Ry(63)- Rz(64)- Rz(85).d2 (5)
rur = Tt + R2(6,)-Ry(62). Ry(6s)-Ra(8).Rz(6s).Rz(65).d3 (6)

5.1 Extracting 3D structure from 2D joint point positions

Due to projection of the arm onto the image plane, the depth information is missing.
Using the geometrical constraints in 3D space given with the matrix equations 4, 5 and
6 and the 2D end-points of the arm segments (2D joint point positions), the 3D structure
recovery equations can be derived as following. The position in depth of the shoulder joint
'point is obtained and the position of connected segments are expanded from this point.
There are two possible solutions for each body segment, corresponding to a shortening
due either to a forward or backward tilt of the segment. Since the arm consists of three
segments, there are eight possible solutions for the structure of the arm in space. To
resolve the problem, it is assumed that the initial position of the arm is known and the
motion is smooth. The 3D recovery equations for the rotation parameters §;..8¢ are given
in Figure 5).
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Projections of the arm segment
lenghts
R'S'= (xsh.zsh)
SE'= (xel.zel) - (xsh,zsh)
E'W = (xwr.2zwr) - (xel.zel)

Algebraic constraints for the distances in 3D set up by
the kinematic model

RS = Rz[51] . Ry[62] . (-Dcl.0,0)
RE = RS + Rz[51] . Ry{52] . Ry{83] . Rx([54] . (0,0.-Dup)
RW = RE + Rz[51] . Ry{82] . Ry{83] . Rx{34] . R2{85] . Rx{%6] . (0,Dfor.0)

s

Algebraic constraints for joint angles 31, 82, 83
and 34 in the human arm coordinate system

81 = n—- ArcCos( xs / Dl Cos(52))
§ &2 = ArcSin( zs /Dd )

(x,y.2) = Ry[52) " Rz[51] ' SE
83=ArcCos(-z/ (' +y")") \
5 84=ArcCos( (x*+y")"" /Dup)

Algebraic constraints for joint angles 85 and
36 in the shoulder coordinate system

(x,y,z)= Rx{84]” Ry[53] " Ry[62) " Rz{51]"SW
85 =ArcTan(-y/x)

= ArcCos( SYL--Dup® - Dio)
& 2 Dup Dlor )-=

Figure 5: 3D structure recovery constrained with the kinematic model.
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(a) 2D projection of the joint points
on the image plane

(b) Reconstructed 3D motion
of the human arm

Figure 6: 3D motion of the stick figured human arm presented with: (a) its othographic
projections, (b) trajectories of the joint points.

5.2 Experimental results

Once the sequence of orthographic projections of the arm motion is given and the 2D
coordinates of the joint points is identified in each image (see Figure 6a), the motion
can be derived as transition between two reconstructed postures of the arm in space (see
Figure 6b). The reconstructed 3D motion can be also described with the values of the
joint angle parameters as functions of time (see Figure 7). As the motion is assumed
smooth, the next position of the arm in space and the image features can be predicted.

6 Conclusions

The paper presented an approach to 3D human arm motion and structure recovery from
projected image sequence taken under orthographic projection. Because the time evo-

lution of motion is dependent on object structure, the estimation of object motion and
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Joint angles as functions of time

joint angle [ degree ] joint angle [ degree ]

80
q3

60

40

LN time -»s
2 4 2 2 qs1
-20 -50
ql
-8

Figure 7: 3D motion described with time-varying joint angles.

structure cannot be separated. As the arm is assumed an articulated object with a known
kinematic model, the 3D structure is defined either with the 3D coordinates of the joint
points or with the values of the joint angles of the kinematic model. The 3D structure re-
covery of kinematic chain involves two processes, one is fitting an axis into separated arm
segments’ projections, and another is backprojection of the 2D linked axes into the scene.
In order to extract the segments’ axes from projected contours, we developed a robust
algorithm for modeling the image data with second order curves. The paper presented
some of the results obtained with the algorithm and discuss the problems connected with
the extraction of the 2D joint point coordinates. Assuming that the 2D linked axes can be
extracted in each image in the sequence, we developed an algorithm for 3D structure and
motion recovery. The 3D structure recovery equations were derived in terms of matrix
algebra. Both algorithms were implemented in Mathematica programming language and
tested on real data. .
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