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Separating Diffuse and Specular Component of
Image Irradiance by Translating a Camera

Ales Jakli¢ and Franc Solina

Computer Vision Laboratory, Faculty of Electrical Engineering and Computer
Science, University of Ljubljana, Trzaska cesta 25, 61001 Ljubljana, Slovenia
E-mail: alesj@ninurta.fer.uni-lj.si

Abstract. In this paper we discuss a possible use of camera translation
to separate diffuse and specular component of image irradiance. For a
moving observer specular reflection appears to “slide” on the object sur-
face. The proposed method is based on the analysis of image sequence
obtained during camera translation. By modeling image irradiance as a
sum of specular and diffuse component and estimating the motion of the
two components we can separate them by filtering the image sequence
with two filters.

1 Introduction

Many early computer vision algorithms have assumed simple reflectance models
for observed objects, i.e. Lambertian surfaces, in order to reduce the complexity
of the posed problems. Unsatisfactory results of the algorithms applied to real
images and some industrial inspection tasks encouraged the study of reflectance
properties in computer vision. The two main goals of analysis of reflectance
properties of objects in computer vision are:

— detection of regions where the specular component of image irradiance ex-
ceeds a certain threshold,
— separation of specular and diffuse component of image irradiance.

As a side result some analysis methods provide information about surface shape
or material type. Most methods can be classified into one of the following groups:

— use of controlled illumination [10],
— use of polarization filter in different orientations [11,12],
— use of color filters [6,1].

The approaches listed above are all based on constant direction of observation.
Only few attempts of using camera motion to analyse the reflectance properties
have been made so far [9,7,8].

Our approach is based on the observation that for a moving observer specular
reflection appears to “slide” on the object surface. By modeling the image irra-
diance as a sum of specular and diffuse component and using the algorithm for
estimating the motion of the two components we can separate them by filtering
the image sequence in frequency domain.
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2 Geometric and Photometric Model of Light Reflection

Reflectance properties of many surfaces encountered in practice can be described
by a linear combination of Lambertian and specular models. That leads to the
following bidirectional reflectance distribution function (BDRF), which is a linear
combination of BRDFs for an ideal Lambertian and ideal specular surface [5],

6(91’ = or)é(éi - ¢r + 7l') .

cos 6; sin 0;

1)

1
[+ (6i, 456, ,6,) = Pdift — + Pspec

where 0 < pgiff + pspec < 1. To determine the radiance of a surface element dA,
illuminated by light sources or other surfaces reflecting light, we calculate the
following integral over the upper hemisphere above dA

L.(6:,¢,) = /" /0? fr(6i,6i;0r,6-)Li(6;, ¢i) cos b; sin 6;d6;d¢;

1
= Pdiﬁ';r‘Ei + pspecLi(eraQSr - 7r)- (2)

The radiance of dA is the sum of the diffuse component, which depends only
on the surface irradiance E; and is independent on viewing direction, and the
specular component, which is nothing but “reflected” radiance of the light source
dA, (see Fig. 1) in the direction towards the surface element dA. Since the image
irradiance is proportional to the scene radiance [5] the image irradiance for dA
is a sum of diffuse and specular component. If the observer moves the specular
reflection caused by dA, will move on the reflecting surface to a different position.
In the next section we describe a relationship between the movement of the
observer and the movement of the point of specular reflection.

observer
(camera) dAg
%3 light source

or
Lambertian
surface
reflecting
light

7 reflecting surface

Fig. 1. Specular reflection of light

3 Motion of Specular Reflection

An ideal specular surface is illuminated by a distant point source. A light ray
from the point source is reflected from the surface at point A in such a way
that the reflected ray passes through the optic center of the observer at point C.
Blake [3,4] derived a relationship between the movement of the observer from
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point C' to point D and the movement of the point of specular reflection from
point A to point B assuming that both movements are small. The geometrical
relationships among the vectors describing the specular reflection are depicted
in figure 2.

point source

Fig. 2. Vector description of specular reflection

By applying the law of specular reflection and approximating the surface
patch near the point A in the local coordinate system zyz with a Taylor series
where

2(x) = 3x"Hx + O(Ix?), (3)
and
=[] n=| B = =[23]. (4)
¥ 8zdy  3y? ] (0,0)

the following equation for x, that is the z and y components of vector r, is
obtained [4]

2v(MH — £k, I)x = b, (5)
where I is a unit matrix of dimension 2 x 2, v = |v|, I = |1,
_|seca 0 _ | —d:+d; tane 1.1 1
M = [ 0 coso'] - [ —d, } » Kol = 5(; + 7) (6)

Note that vector —b is a projection of vector d to the tangent plane in the
direction of vector v. .

The situation where the observer is moving with constant velocity d is e-
quivalent to a situation with the stationary observer and the scene moving with
velocity -d and the specular reflection moving with —d + £. If the camera ve-
locity vector d is parallel to the image plane, the corresponding motion field for
Lambertian component depends only on the distance of a scene point from the
image plane. In order to detect the two differently moving components the r
should be large enough between two consecutive frames. For small slant angles
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o of the tangent plane at point A, that is M = I, we can conclude the following
by expresing x in the base of eigenvectors of H:

— the movement of the point of specular reflection is small if both principal
curvatures are large, that is the eigenvalues of the matrix H are large,

— the point of specular reflection tends to move in the direction of the minimal
principal curvature,

— the movement of the point of specular reflection generally violates the epipo-
lar constraint, except if b happens to be an eigenvector of MH.

The algorithm for estimating the motion of both image irradiance compo-
nents assumes homogeneous motion fields within the region of analysis. That
restricts the regions of analysis to image regions of smooth surfaces with small
slant angles, small principal curvatures and constant surface type, i.e. convex or
concave.

4 Estimating the Motion of Specular and Diffuse
Component in the Image Plane

In his paper Bergen [2] introduced a simple method for estimating two motion
components from three image frames. We assume that the motion field for both
components is homogeneous in the region of interest. A sequence of three image
frames is acquired during camera translation parallel to the image plane. Image
translation is denoted as T': (vz,vy) and the translated image as

E(z,y,t + At) = ET(z,y,t) = E(z — v, At,y — vy At,t). (7

In our case the image irradiance consists of two components, translating by T}

and Tg,
E(z,y,t + At) = Ej(z,y,t) + EX2 (2,y,1). (8)

Translations T; and T are different in general. Assume that the translations are
constant between two consecutive frames in the sequence

E(z, y,t) = Ediﬂ'(xy y;t) + Espec(xy y,i),
E(z,y,t + At) = Ejg(z,y,t) + ERec (2,9, 1),
E(z,y,t + 24t) = E52 (z,y,1) + EX2(2,y,1), 9)
and that we know one of them, 7} for example. From the properties that trans-

lations are linear and commutative the following sequence of images can be gen-
erated:

Di(z,y,t) = E(z,y,t + At) — ET'(z,y,1)
= Esszec(zay’t) By Ez;;’ec(%y,t), (10)

D (z,y,t + At) = E(z,y,t + 24t) — ET'(z,y,t + At)
= (Efiec(2,,t) — EDec(2,9,1))T
= DT (2,y,1). (11)
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Thus the Dy (z,y,t+ At) is nothing else but D;(z,y,t) translated by T,. Having
an estimate for 77, we can estimate T5 from the two difference images D,(z, y, 1),
D (z,y,t+ At) by a method for estimating a single translation. The same proce-
dure, using a new estimate of T, is then repeated to estimate T} (Figure 3). In
our experiments we started the iteration with 73 : (0,0) and used a coarse-fine
motion tracking algorithm [2] to estimate the translation.

Tior T,

Dilx y. 1

Elx,y, t+af

Elx, y, t+ 241

Dilx,y, t+ At
or
D,lx, y, t+ At)

Fig. 3. Estimation of the parameters for 7} and T3

5 Image Sequence Filtering

A translated image can be interpreted as a result of a convolution of the image
with a translated delta impulse. Representing the first two frames of the image
sequence as a sum of two stationary stohastic processes and additive white noise
we obtain

yi(z,y) = x1(2z,y) + x2(2, y) + vi(,9),
yz(z, y) = xl(z’y) * hl(zvy) + X2(1:,y) * hg(l‘,y) + V2(xvy)' (12)

Assuming that the x; and x, are both orthogonal to the v; and v,, the MSE
estimate of x;(z,y) of the form % (z,y) = y(z,y) * p1(z,y) from the signal

y(z,y) = ya(z,y) — yi(z,y) * hao(z,y) (13)
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restricts the Fourier transform of p;(z,y) to

H} - H; H} — H;

P = = (14)
Vo v Sv v H 2 25 ’
|H, _H2|2+5_2_2i;_1.hu. |Hy -—1-1;]24-—”'-5‘”‘l
where )
hl(z’ y) - 6(x -0,y — yo), Hl(wz,wy) e e_J(w:z‘o'HUyyo), (15)

hQ(IE, y) — 6(1- - Do, Y — qo), Hz(ws,wy) — e—j(W:PO'HleqO).

Note that we have to know the power spectrum of the x;(z,y) in order to
construct the filter py(z,y). Since the power spectrum of diffuse or specular
component is not known in advance we used the following equation to estimate
the components

X1 _ H; — H} Hy -1][Yq (16)
Xq |Hy — Hy|? + const. | —H; 1 Yo’

where 5(1, 5(2, Y1, and Yo are Fourier transforms of corresponding stohastic
processes. Experiments were performed by using FFT.

6 Results of Experiments

In the first experiment we took a sequence of three images (256 x 256 pix) of an
L-shaped glass plate laid on a wooden desk (Fig. 4). After 20 iterations Bergen’s
algorithm produced the following estimates T} : (zo = —0.5 pix,yo = 0.1 pix)
and T3 : (po = —4.4 pix,qo = —0.2 pix). Note that it is impossible to separate
the X1(0,0) and X5(0,0) components of the diffuse and specular component
by using a translational model (equation (16)), so we assigned the Y7(0,0)
component to the diffuse component. Fig. 5 shows the separated components.
Since the specular reflection at the edge of the L-shaped plate did not move
during the camera translation it was treated as diffuse component by our method.

E(z,y,1) E(z,y,t+ At) E(z,y,t+ 241)

Fig. 4. Image sequence of the L-shaped glass plate

In the second experiment we tried to separate the specular and diffuse com-
ponents for a curved object. The estimated translation for the image sequence
(Fig. 6) are T : (o = —10.9 pix, yo = —0.2 pix) and T : (po = —13.1 pix, qo =
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Ediﬂ(zyyyt) Espec(zyy»t)

Fig. 5. Diffuse and specular component of image irradiance

—0.9 pix). Since the motion field of diffuse component is not homogeneous and
the apparent depth of virtual image of the light source is within the depth range
of the points on the reflector a part of the diffuse component was assigned to the
specular component (Fig. 7). In this case we have to combine the algorithm for
separation of image irradiance components with some algorithm for detection of
specularities in the original image to restrict the regions in Egpec(z,y,t) where
the result is valid.

E(z,y,t) E(z,y,t+ At) E(z,y,t+ 2At)

Fig. 6. Image sequence of the lamp reflector

Ediff(zyyvt) ElpeC(xv y)t)

Fig. 7. Diffuse and specular component of image irradiance
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Conclusions and Further Work

The experimental results show that the separation of diffuse and specular compo-
nent of image irradiance by translating a camera is possible for smooth surfaces
in the regions with small slant angles and principal curvatures and constant
surface type. The method must be used in combination with some specularity
detection algorithm to determine which component of the two separated com-
ponents is diffuse and which is specular and to determine the regions, where the
results are valid. We intend to compare the results obtained by our method with
the results of other methods for analysis of reflectance properties.
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