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izkorǐsčanje rezultatov diplomskega dela je potrebno pisno soglasje avtorja, Fakul-
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Thesis topic:

Search for the largest clique in a graph is a well known NP-complete problem. We
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where each of them is a clique. The described problem is met in bioinformatics,

when we calculate gene expression.

The described problem has a trivial solution where we partition graph into

pairs of connected vertices each of the pair is obviously a clique. Define a more

reasonable profit function that will guide a partitioning of the graph into a cliques

and design an algorithm to perform such a partition. Algorithm shall work as an
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one at a time, while the algorithm has to compute an appropriate partition in

each step. Estimate the time complexity of your algorithm, its quality and the

complexity of the problem itself.
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kliko. Definirajte smiselneǰso cenovno funkcijo razdelitve grafa v klike in začrtajte
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Abstract

Clique clustering is the problem of partitioning a graph into cliques so that some

objective function is optimised. In online clustering the input graph is given one

vertex at a time, and vertices that have been previously clustered are not allowed

to be separated. The objective is to maintain a clustering that never deviates too

far from the optimal offline solution.

We give a constant competitive upper bound and a strategy (Lazy) for online

clique clustering, where the objective function is to maximise the number of edges

inside the clusters (Max-ECP). We also give almost matching upper and lower

bounds on the competitive ratio for online clique clustering, where we want to

minimise the number of edges between clusters (Min-ECP). In addition, we prove

that the greedy method only gives linear competitive ratio for these problems.

The research result shows that the proposed constant competitive strategy

performs significantly better on bigger graphs than the greedy method.

Results in this thesis have been published on 8th International Conference,

CIAC 2013 in Barcelona, Spain. Scientific article Competitive Online Clique Clus-

tering is available in the Proceedings on pages 221 until 233.

Keywords: competitive analysis, clustering, online algorithm, approximation

algorithm





Povzetek

Grupiranje v klike je proces združevanja vozlǐsč v gruče, za katere velja, da so vsa

vozlǐsča med seboj povezana. V sprotnem (on-line) združevanju celoten graf ni

znan vnaprej, ampak je na voljo po eno vozlǐsče naenkrat. Tista vozlǐsča, ki so

že pridružena gruči, ne morejo biti prestavljena v drugo gručo. Naloga je poiskati

takšno razvrstitev vozlǐsč, ki se od optimalne razvrstitve razlikuje čim manj.

V tej diplomski nalogi podamo konstantno zgornjo mejo in algoritem (Lazy)

za problem sprotnega združevanja v klike, kjer je cilj poiskati razvrstitev vozlǐsč

s čim več povezavami znotraj gruč (problem Max-ECP). Poleg tega podamo uje-

majoči zgornji in spodnji meji za problem sprotnega združevanja v klike, kjer je

cilj poiskati razvrstitev s čim manj povezavami med gručami (problem Min-ECP).

Za oba problema pokažemo, da naraven (Greedy) pristop vodi k linearni rešitvi.

Naša metoda Lazy nudi konstantno tekmovalno razmerje, kar se znatno odraža

na grafih z veliko vozlǐsči.

Rezultati te diplomske naloge so bili objavljeni na osmi mednarodni konferenci,

CIAC 2013 v Barceloni v Španiji. Članek Competitive Online Clique Clustering

je na voljo od strani 221 do strani 233.

Ključne besede: analiza konkurenčnosti, grupiranje, sprotni algoritem, apro-

ksimacijski algoritem





Dalǰsi povzetek

V tej diplomski nalogi se bralec seznani s sprotnimi algoritmi. Ti predstavljajo

ogrodje za raziskovanje problemov v računalnǐstvu, kjer vsi podatki niso znani

vnaprej, ampak so algoritmu, ki rešuje problem, na voljo postopoma. Pred kratkim

so vzbudili veliko zanimanja zaradi številnih problemov, ki jih ni mogoče rešiti

na drugačen način. Hkrati rešujejo probleme, za katere želimo poiskati približno

rešitev, ker bi iskanje natančne potekalo predolgo. Mnogokrat se v praksi izkaže,

da se natančne rešitve nekega problema ne da poiskati in da se moramo pogosto

zadovoljiti s približno rešitvijo, če bistveno ne odstopa od natančne (optimalne)

rešitve.

Teoretično računalnǐstvo se velikokrat ukvarja z algoritmi in ocenjevanjem

učinkovitosti nekega algoritma, v primerjavi z drugim. Strokovno rečemo takšnemu

primerjanju uspešnosti različnih algoritmov analiza konkurenčnosti (competitive

analysis). Ta ima pomembno vlogo pri tako imenovanih sprotnih algoritmih. Pri

njih so vhodni podatki programu na voljo na tako imenovani zaporedni način.

Analogija prihaja iz sredine šestdesetih let, ko so tako prvič poimenovali prenos

podatkov preko serijskega načina - poslušalec je pasiven in začne izvajati program

šele po prejemu prvega podatka. Na podlagi zadostne količine podatkov je takšen

program nekoč posvetil z žarnico in poslušal dalje.

Pri sprotnih (on-line) algoritmih je izvajanje programa pogojeno s tem, koliko

podatkov je znanih. Koraki, ki jih je program izbral na poti do trenutnega stanja

močno vplivajo na pot, ki bo izbrana v prihodnje. Primer problema, ki nima

znanega celotnega vhoda je sprotno prilagajanje poti v službo, kjer navigacijski

sistem odloča, po kateri poti nas bo pripeljal do delovnega mesta. Algoritem

v navigacijski napravi na podlagi podatkov o prometu, zastojih, delu na cesti

in trenutnem položaju izračuna predlagano pot, ki pa se bo v času potovanja
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prilagodila ob morebitni spremembi razmer na cesti. Podobno, računalnik na

delovnem mestu vedno skrbi, da v hitrem pomnilniku ostanejo tisti podatki, za

katere obstaja velika verjetnost, da bodo kmalu zopet potrebni.

Omenjena primera pa sta le dva izmed mnogih, kjer se sprotni algoritmi upo-

rabljajo za modeliranje procesov. Najdemo jih tudi pri časovnem načrtovanju

opravil, kjer so naloge podane v zaporedju in morajo biti končane pred prihodom

novih zahtev ter v omrežjih pri ohranjanju odprtih povezav kjer ni znano katere

bodo uporabljene v prihodnje.

Posebno in pomembno vlogo pa imajo sprotni algoritmi v biotehniki in gene-

tiki, kjer znanstveniki raziskujejo in modelirajo človeški genom. Genetiki pogosto

merijo nivoje pri katerih se geni izločajo. Farmacevti npr. ugotavljajo, kako se

stanje celice spreminja glede na to, koliko zdravila je bilo dodanega v biološki sis-

tem [1]. Meritve se izvajajo v različnih pogojih in različnih tkivih. Vrednosti, pri

katerih so doseženi pragovi so ključnega pomena pri razumevanju delovanja posa-

meznih genov. Rezultati teh meritev pa predstavljajo vhodne podatke za sprotni

algoritem, ki sestavlja model preučevanega gena ali celice.

V procesu preučevanja DNA so pod drobnogledom posamezni geni, ki z med-

sebojno interakcijo vplivajo na telesni razvoj in vedenje. Sestavljeni so iz verige

DNK (pri nekaterih virusih RNK), ki vsebuje promotor za nadzor aktivnosti gena

in kodirajoče zaporedje, ki določa rezultat gena. Kadar je gen aktiven, se kodi-

rajoče zaporedje v procesu prevajanja (transkripcija) prepǐse, pri čemer nastane

kopija RNK v genu vsebovanih podatkov. Ta RNK lahko nato na podlagi genskega

koda usmerja sintezo proteinov. Nekatere RNK pa se uporabijo neposredno, npr.

kot deli ribosomov. Molekule, ki nastanejo z izražanjem genov, bodisi RNK ali

proteini, so genski produkti.

Pomemben korak v analizi podatkov pridobljenih iz procesa izločanja genov

je iskanje skupin, ki so sestavljene iz genov, ki so izločili podoben vzorec. Stro-

kovni izraz za takšno skupino elementov je gruča in lastnost te je, da vsebuje

elemente, ki so si med seboj podobni (homogenost). V primeru genetike so to

skupine genov, za katere velja, da se enako obnašajo (imajo izmerjeno enako vre-

dnost izločanja določenega proteina) ob enakih pogojih, npr. isti količini dodanega

zdravila. Za proces grupiranja, gene predstavimo kot vozlǐsča v grafu G skupaj

s povezavami, ki so prisotne med tistimi geni, ki imajo podoben vzorec izločanja



proteinov. Združevanje v gruče je sestavljeno iz razdelitve grafa v polno povezane

podgrafe tako, da zadovoljimo kriterijsko funkcijo. V tako imenovanem sprotnem

načinu združevanja v gruče je vhodni graf razkrit po eno vozlǐsče naenkrat in vo-

zlǐsča, ki so že bila združena v gručo ni dovoljeno ražčleniti. Naloga je poiskati

gruče, ki so čim bližje optimalni rešitvi.

Obstaja več različnih kriterijskih funkcij, ki so v uporabi; maksimiziranje

števila povezav znotraj gruč + število nepovezav med gručami (MaxAgree), ali

npr. minimiziranje števila nepovezav v gručah + število povezav med gručami

(MinDisagree). Nekatere druge mere zahtevajo, da so vozlǐsča v gručah povezana

med seboj (clique), kjer je naloga maksimizirati število povezav znotraj gruč ali

minimizirati število povezav med gručami. S tujko rečemo primeru takšne kriterij-

ske funkcije MAX-ECP (Maximal-Edge Clique Partition) in Min-ECP (Minimum-

Edge Clique Partition).

Prva, Max-ECP je podrobno opisana v poglavju 2.1.1. Ta kriterijska funk-

cija je uporabna v področju izločanja genov in klasificiranju DNA-ja [2]. Bralec

lahko najde v poglavju 4.2 požrešen pristop implementacije algoritma Max-ECP.

Tak algoritem zadovolji potrebe kriterijske funkcije, vendar ni prav zelo učinkovit

v primerjavi s strategijo, ki pozna vse podatke vnaprej (OPT). Izkaže se, da je

( 2
|V |−2)-tekmovalen. Njegova slaba lastnost je, da je tekmovalno odvisen od števila

vozlǐsč v grafu - |V |. Iz tega razloga najdemo v poglavju 4.3 optimizirano strate-

gijo Lazy, ki je v primerjavi s tako imenovano strategijo off-line učinkoviteǰsa. V

slovenščini je algoritem Lazy podan na Sliki 1 in v grobem ločimo njegovo izvajanje

med dvema vejama:

• Če optimalna rešitev OPTn (optimalno gručenje nad n vozlǐsči) ne vsebuje

gruč večjih kot 3 vozlǐsča, se strategija Lazy izvaja enako kot greedy .

• V nasprotnem primeru grupira Lazy vozlǐsča v samostojne gruče vse do-

kler razmerje profitov med trenutnim gručenjem S′n in optimalnim (off-line)

gručenjem OPTn (nad n znanimi vozlǐsči) ni nad določenim pragom. Ko

je prag dosežen, Lazy poračuna relativen optimum (optimalno gručenje nad

razkritimi vozlǐsči in pripadajočimi povezavami).

Strategija Lazy ni neposredno odvisna od števila vozlǐsč v grafu in je 9/(154 +

16
√

61) ≈ 0.032262-tekmovalna, kar smo z uporabo matematike dokazali v po-

glavju 4.3.2. Dodatno je vredno omeniti, da število gruč ni znano vnaprej in je
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Strategy Lazy

/* Drži Sn z profitom profit(Sn) in naj bo c konstanta */

1 n = 1

2 while novo vozlǐsče vn na vhodu do

2.1 S′n := Sn−1 + singleton(vn)

2.2 Poračunaj OPTn

2.3 if največja gruča v OPTn ≥ 4 then

2.3.1 if profit(OPTn) > c · profit(S′n) then

2.3.1.1 Izračunaj relativen optimum S′n, ÔPT (S′n)

2.3.1.2 Sestavi Sn z uporabo ÔPT (S′n)

else

2.3.1.3 Sn := S′n

endif

else

2.3.2 Sestavi Sn z uporabo greedy strategije

endif

2.4 n := n+ 1

endwhile

End Lazy

Slika 1: Strategija Lazy

dinamično določeno med izvajanje strategije. Neposredna primerjava požrešne

strategije in na drugi strani tako imenovane strategije Lazy pokaže, da je rezultat

slednje precej bližje pravilnemu.

V poglavju 5 predstavimo spodnjo mejo za on-line Min-ECP združevanja v

gruče in idejo požrešne strategije (5.2). Najprej predstavimo dokaz, da ne more

obstajati deterministična strategije, ki bi rešila problem MIN-ECP in bila več

kot n1−ε

2 -tekmovalna. V nadaljevanju pokažemo, da je požrešna strategija (n−2)
2 -

tekmovalna in da pripada skupini algoritmov, ki smo jo poimenovali Maksimalni.



Chapter 1

Introduction

This thesis provides an insight into Online Algorithms. They represent a theoret-

ical framework for studying problems in interactive computing and they gained a

lot of attention recently because of the number of problems that cannot be solved

offline or the desire to find approximate solutions to problems that seem to be too

complex, perhaps even too difficult, to be solved otherwise.

We focus on online clique clustering, an online problem that belongs to a wider

group of problems called correlation clustering and it has applications in Genetics

and Biotechnology. A common activity there is to analyse the human genome.

This is done by researchers who identify the levels at which a particular gene

is expressed within a cell (gene expression for short), tissue or organism, and it

can be of significant importance when finding viral infection of a cell, detecting

vulnerability to cancer or finding out if a bacteria is resistant to penicillin or any

other drug.

Recent advances in computer science and biotechnology allow scientists to mea-

sure the expression levels for multiple genes at the same time, producing a signif-

icant amount of data. Valuable information is extracted and analysed. Here an

important step is to identify groups of genes that produce identical or similar lev-

els of expression. This translates to the algorithmic problem of clustering. The

detection of groups of genes that exhibit similar expression patterns is a key initial

step in the analysis of gene expression data.

We provide more detailed insight on the problem in the next chapters.

1



2 CHAPTER 1. INTRODUCTION

1.1 Intuitive Definition of the Problem

Consider the following problem: Given an input sequence of vertices A,B,C,D, ...

that belong to a graph G, determine a clustering that maximises a given objective

function. Moreover, the vertices and its associated edges to previous vertices are

revealed in a serial fashion (one at a time) and the clustering algorithm has to

be executed in every step. Upon an arrival of a new vertex, the later is either

clustered into an already existing cluster using merge operation, or it is put into

a singleton cluster. Existing clusters can be merged together, however, this oper-

ation is irreversible, hence a bad decision will have significant impact on the final

solution.

The problem mentioned above belongs to a group of correlation clustering prob-

lems. Its different variants have been extensively studied over the past decades;

see e.g. [5]. Several objective functions are used in the literature, e.g., maximise

the number of edges within the clusters plus the number of non edges between

the clusters (MaxAgree), or minimise the number of non-edges within the clusters

plus number of edges between the clusters (MinDisagree).

Other measures require that the clusters are cliques, complete subgraphs of the

original graph, in which case we maximise the number of edges inside the cluster

or minimise the number of edges outside the clusters (not considering the edges

between clusters). These measures gave rise to the maximum and minimum edge

clique partition problems (Max-ECP and Min-ECP) respectively.

In this thesis we present Max-ECP and Min-ECP problems in their online

version, simulate two algorithms to solve them (Greedy and Lazy) and prove what

results the algorithms achieve.

1.2 Structure of the Work

This thesis is structured as following: First an overview of related and prior work is

given in section 2, together with an introduction to clustering and different types of

clustering (section 2.1) and definitions of criteria functions Maximum Edge Clique

Partition and Minimum Edge Clique Partition (Max-ECP and Min-ECP).

First, an introduction to online algorithms is given in Section 2.2. Next, intro-

duction to Graph Theory is given in Chapter 3. In Chapter 4 Online Max-ECP
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clustering is described in details. Two different approaches are described for the

Max-ECP objective function. The first one shows that the greedy strategy is far

from optimal and is no better than a 2
|V |−2 -competitive (Section 4.2). We give

another strategy in Section 4.3. We named it Lazy and it is a Constant Competi-

tive Strategy due to its property of being competitive to an offline version with a

difference of a constant which we calculated to be ≈ 0.032262.

We discuss Online Min-ECP Clustering in chapter 5, presenting a lower bound

in section 5.1 and a greedy strategy for Min-ECP problem in section 5.2.

Investigating a possibility of improving the competitiveness of both Min-ECP

and Max-ECP would ensure better results and is therefore one of the tasks to be

researched in the future (Chapter 6).
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Chapter 2

Related and prior work

Analysing algorithms where the performance of an online algorithm is compared

to the performance of an optimal offline algorithm (the one that has the complete

knowledge of the input) was introduced by Sleator and Tarjan [12]. This type of

analysis is called competitive analysis and they studied the amortised efficiency

of the move-to-front algorithm (where after accessing or inserting an item in a

list, the item is moved to the front of the list, without changing the relative order

of the other items) for dynamically maintaining a linear list. They also analysed

the amortised complexity of LRU (last recently used) algorithm, showing that

its efficiency differs from the offline version of the paging rule by a factor that

depends on the size of the fast memory. Competitive analysis requires that any

algorithm performs well both on hard and easy inputs, where both are defined by

the performance of the optimal offline algorithm. Competitive algorithms were also

developed for distributed systems, where the algorithm has to react to a request

arriving at a location on site B, without the knowledge of what the state of requests

on site A is [13].

In this thesis we will focus on competitive analysis of algorithms that work with

clustering. This is an important issue in the analysis and exploration of data and

is considered as the most important unsupervised learning problem. It consists of

discovering natural groups of similar elements (in our case these are verticies) in

data sets. After the process is complete these data sets are called clusters.

5
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2.1 Different types of Clustering

Clustering is a machine learning technique for analysing data and dividing it into

groups of similar data. In our case, the data are the vertices of a graph. The

groups or sets of similar data are known as clusters.

There are in general four types of division that each clustering algorithm can

be categorised into [11]:

• Hierarchical or partitional: A hierarchical clustering algorithm is based on

the union between the two nearest clusters. At the beginning, every example

(in our case vertex) is put into a singleton cluster and using merge operations

in the next iterations we achieve the final clustering. A hierarchical structure

that reflects the order in which groups are merged or divided is created.

In partitional clustering examples are divided into clusters and then eval-

uated by some criterion (e.g. Sum of Squared Error). Additionally, the

number of clusters has to be given before the process of clustering can be-

gin. Partitioning algorithms iteratively relocate objects (in our case vertices)

among groups until criterium has convergent. The hierarchical structure

does not reflect the order in which groups are merged. The most known

partitional clustering algorithm is k-means, described in [11].

• Exclusive or overlapping: In exclusive clustering an example (in our case

vertex) is grouped in such a way, so that if belongs to one cluster, then it

cannot belong to another. On the other hand, in overlapping methods we

can find an example that can belong to many clusters with different degrees

of membership.

• Deterministic or stochastic: This issue is most relevant to partitional ap-

proaches designed to optimise a squared error function (a measurement of

dissimilarity).

• Incremental or non-incremental: This is an issue when all examples are either

not available in advance or when the set of examples is too big to be passed

as a complete input to an algorithm due to memory or time constraints.

The goal of clustering is to determine the groups in a set of unlabelled data.

However, measuring the quality of the final clustering depends on the criterion,

defined by a user.
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Clustering is most often done on data that are known in advance. Consider a

case where an input graph G is given with all the vertices and edges. An offline

clustering algorithm would in this case take the complete graph as an input and try

to procure an output that is meaningful (satisfies the given criteria and number

of clusters). On the other hand, consider a case where the graph is not known

in advance. More specifically, vertices and edges are revealed one at a time and

the algorithm has to procure an output that satisfies an objective function given

upfront. This type of problem is called Online Clustering problem and is in details

described in section 2.2.

We consider a case, where an input to a clustering algorithm is a graph G and

we would like to define a partition of vertices into clusters such that an objective

function is maximised. This type of clustering belongs to a group of correlation

clustering problems and its many different variants that have been studied and

introduced over the past decades [5]. The basic setup here is to cluster a collec-

tion of vertices given as input only qualitative information concerning similarity

between pairs of vertices (an edge). We are not provided with any quantitate in-

formation on how different pairs of vertices are, as it is typically assumed in most

other clustering formulations. Our goal is to produce a partitioning into clusters

that maximises an objective function to the extend possible.

Two examples of an objective function, used in this work, are the Maximum

Edge Clique Partition problem (MAX-ECP) and Minimum Edge Clique Partition

problem (MIN-ECP). They are defined as the following [6]:

Definition 2.1.1. The problem of maximum edge clique partition (Max-ECP) is

defined as finding a partition of vertices V into disjoint subsets V1, ..., Vk such that

for each 1 ≤ i ≤ k, any two vertices in Vi share an edge and the total number of

edges within the subsets V1, ..., Vk is maximised.

In simple terms, given a general undirected graph, partition its vertices into

disjoint clusters such that each cluster forms a clique and the number of edges

within the clusters is maximised. For the example from Figure 3.1, we determine

an optimal clustering consisting of 2 clusters, each with 1 clique. The first one

consists of the vertices A, D, E and F , while the second cluster consists of nodes

B and C. This clustering can be seen on Figure 2.1a.
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(a) An optimal solution
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(b) A feasible solution

Figure 2.1: A feasible solution (a), a sub graph of the initial graph from Figure

3.1. There are 7 edges in total inside the clusters. Clustering on Figure (b) has

one edge less, thus having a profit of 6.

The definition of the minimum edge clique partition (Min-ECP) problem is

similar to Max-ECP.

Definition 2.1.2. Min-ECP aims to group a partition of vertices V into disjoint

subsets V1, ..., Vk such that for each 1 ≤ i ≤ k, any two vertices in Vi share an

edge Ei j. Additionally, the total number of edges between the subsets V1, ..., Vk are

minimised. [6]

Offline correlation clustering has been studied and exhibited some results in the

past. It was first studied by Ben-Dor et al. [1] motivated by some questions from

computational biology and later by Shamir et al [15], proving that the problem

of correlation clustering with variants of Max-ECP and Min-ECP is actually NP-

hard, meaning that we can not calculate the solution in a polynomial time but

in an exponential. On the other hand, Giotis and Guruswami [14] introduced a

polynomial time approximation scheme (PTAS) for a case, when the number of

clusters is given upfront. Such an approximation guarantees that the problem can

have an approximate solution calculated in a polynomial time.



2.2. ONLINE ALGORITHMS 9

A

B

e1

C

e3

E

e4 D

e5

F

e9 e2

e7

e6

e8

Figure 2.2: An optimal solution to Max-ECP is an optimal solution for Min-ECP.

The number of edges between the clusters is minimized whenever the number of

edges inside the cluster is maximized. On our example the result is 2.

Many of the algorithmic problems are identified as online. We present an online

version of the correlation clustering problems with the Max-ECP and Min-ECP

as the objective function in the next section.

2.2 Online Algorithms

In Online Algorithms the input is only partially known because other relevant

input data will arrive in the future. An online algorithm must therefore, on every

step, generate output without knowing the complete input [8]. Additionally, it

would be appreciated if an output of the online algorithm does not differ too much

from an output of the offline version (the one that has the complete knowledge of

the input).

Formally, an online algorithm Alg is presented with a request sequence

r1, r2, ...ri, ri+1, ri+2, ...rn
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by an Adversary, which provides the algorithm piecemeal information. The re-

quests ri, has to be served before the request ri+1 and it is not known in advance

when the last request rn will arrive as an input. An online algorithm Alg pro-

cesses this input and if the adversary knows the strategy of the algorithm, it can

construct a request sequence such that it will cause the online algorithm to behave

as bad as possible. Adversary chooses data to maximise the ratio of the cost of

the algorithm being studied and some optimal (e. g. offline) algorithm.

There are several applications of online algorithms [8]

• Resource management in operating systems: Paging is a classical online

problem where a two-level memory system consisting of a small fast memory

(L1) and a large slow memory (L2) has to be maintained. The goal is to

keep actively referenced pages in fast memory without knowing which pages

will be referenced in the future [16].

• Data structures: We wish to dynamically maintain this structure so that a

sequence of accesses to elements can be served at low cost. Future accesses

are not known. Consider a data structure such as a Most Recently Used,

linear linked list or a tree [17].

• Scheduling: A sequence of jobs must be scheduled to optimise a given ob-

jective function. Jobs arrive one by one and must be scheduled immediately

without knowledge of future jobs (see e.g. [18]).

• Networks: Many online problems in this area arise in the context of data

transmission. The problem can be, for instance, to dynamically maintain

a set of open connections between network nodes without knowing which

connections are needed in the future (see e.g. [19]).

• Clustering: To maintain an optimal clustering. A vertex is introduced and

has to be put in an appropriate cluster. After another vertex a computa-

tional expensive operation has to be redone due to a wrong decision a step

before.
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The problem of correlation clustering can also be formatted as online and it

has already been studied by Mathieu et al. [3] in such version. They proved that

when the objective is to minimise the disagreements (Min-ECP problem), then the

natural greedy strategy is O(n)-competitive, and that this is optimal. When the

objective is to maximise the number of agreements edges (Max-ECP), they prove

that the greedy algorithm is 1
2 -competitive and that no online strategy can be

better than 0.834-competitive. Additionally they purpose and prove a randomised

strategy with competitive ratio slightly higher than 1
2 .

We introduce online clique clustering as a complementary online clustering

method where each cluster is a clique. Additionally, no explicit number of clusters

needs to be given upfront.
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Chapter 3

Graph Theory

A graph is a mathematical structure. More specifically it is a representation of a

set of objects where pairs of them, called Vertices, can be connected with Edges. A

connecting edge often represents similarity whereas no edge between two vertices

frequently implies that there is a difference between the two vertices [7].

Graphs can be used to model:

• Social networks

• Communications networks

• Information networks

• Software design

• Transportation networks

• Biological networks

• ...

Vertices are most commonly denoted with upper case letter, for example Vi

and edges between them with lower case letters, for example ej . In terms of

mathematics, a graph G is a pair of a set V and E, denoted by G = (V,E).

Vertices are most often graphically represented as a a dot, circle or any other

symmetrical symbol with the label of the vertex in the middle. On the other

hand, edges between two or more vertices most often appear as a line. For the

purpose of this thesis we will focus on undirected graphs; however, some graphs

can have edges with orientation shown with an arrow at one or both ends. These

type of graphs are most commonly used to represent a flow of some quantity,

13
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Figure 3.1: A simple undirected graph G, with a group of vertices V =

{A,B,C,D,E, F} and a set of edges E = {e1, e2, e3, e4, e5, e6, e7, e8, e9}.

e.g. water or other fluids. The undirected graphs are, on the other hand, most

commonly used to represent relations between objects, e.g. on Figure 3.1, E could

be interpreted as a neighbour of A and D. Likewise, A and D are neighbours of

E.

The minimum number of edges in any graph is 0, however, the maximum

number of edges in an undirected graph is given in Lemma 3.0.1:

Lemma 3.0.1. Let G be an undirected graph with n verticies. The number of

edges in the graph |En|, is at most

|En| ≤
n(n− 1)

2
=

(
n

2

)
(3.1)

Proof. This can be shown with induction over the number of vertices. A graph

with two vertices can have at most 1 edge in between them. This is consistent

with (3.1), therefore, the base case holds.

Let us now assume that if another vertex is introduced, the following inductive

hypothesis must be true:

|En+1| =
(n+ 1) ∗ n

2

We now focus on the inductive step by introducing another vertex (which can
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have at most n edges to n previously existing verticies):

|En+1| ≤ |En|+ n

Using the inductive hypothesis we get

|En+1| ≤
n(n− 1)

2
+ n =

n2 − n+ 2n

2
=
n(n+ 1)

2

which is true for any n greater or equal to 0.

3.1 Graph Clustering

Graph clustering is the task of grouping the vertices of graph into clusters taking

into consideration the number of edges inside and between the clusters. The general

idea is to have many edges within each cluster and relatively few between the

clusters.

One example of a criterion for graph clustering can be that we would be inter-

ested in finding clusters that contain only vertices with the same number of edges

(identical degree of the vertex). We name this problem MaxDeg and additionally

to the proposed criterium, the degree of the vertex (deg(v)) should be maximised.

If all of the vertices have the same degree (identical number of edges), we say that

the graph is regular.

Graphically we can see one feasible solution to MaxDeg problem of graph from

Figure 3.1 on Figure 3.2.
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Figure 3.2: A feasible clustering of the initial graph from Figure 3.1. The first

cluster contains only vertex A with a degree of five, the second cluster consists of

vertices D,E and F which all have a degree of 3. The last cluster contains vertices

B and C with a degree of 2. Each cluster satisfies the criterium of Max-ECP and

is at the same time also a regular graph on its own.
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3.2 Clique Graph

Definition 3.2.1. Graph G is a clique if there exists an edge ei,j for every pair of

vertices {Vi, Vj} ∈ G, where i 6= j.

An example of such a graph can be seen on Figure 3.3. A clique graph repre-

sents a possible clustering of the vertices and due to its definition the number of

edges inside the clusters is limited by (3.1).

A

E

e4 D

e5

F

e9

e7

e6

e8

Figure 3.3: A feasible Clique, a sub graph of the initial graph from Figure 3.1.

There is an edge in-between all of the vertices.

3.3 Profit function

In order to measure how successful an operation on a graph is we introduce a

function called profit. It is problem specific and measures the gain from an oper-

ation. For Maximum Edge Clique Partition (Max-ECP) problem we define profit

as the number of edges inside a cluster and for Minimum Edge Clique Partition

(Min-ECP) problem the number of edges between clusters respectively. Similarly

we define the cost to be the consequence of the operation resulting in the case of

Max-ECP to be the number of edges between clusters and in the case of Min-ECP

to be the number of edges inside clusters. The sum of profit and cost equals to the
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number of edges in the graph. The edges that count in profit are called agreements

and those that count as a cost, disagreements [3].

3.3.1 Profit definition for Max-ECP and Min-ECP

Let Ci be the current clustering on i vertices. Moreover, let Ci+1 be a clustering

on (i+ 1) vertices after a new vertex is introduced.

Definition 3.3.1. We define the profit function profit(C) to be the difference of

edges that are inside a cluster (between clusters) for the MAX-ECP (MIN-ECP)

problem in respect to the clusterings Ci and Ci+1.

3.4 Competitive Ratio

The idea of competitiveness is to compare the output generated by an online

algorithm to the output produced by an optimal algorithm, often denoted with

OPT. The later is an optimal offline algorithm that knows the entire input data

in advance and can compute an optimal output.

Definition 3.4.1. We define competitive ratio Comp as the ratio between profits

of an online version of an algorithm (Alg) and an offline version of the optimal

algorithm (OPT).

Comp =
profit(Alg)

profit(OPT)

The better an online algorithm approximates the optimal solution, the more

competitive this algorithm is. If we have two algorithms Alg1 and Alg2 and we

compute that Alg1 has a competitive ratio of Comp1 which is greater than Comp2

(competitive ratio of Alg2), we say, that algorithm Alg1 is more competitive than

Alg2. In case of the Max-ECP problem defined in section 2.1.1, the outcome of

Alg1 would for example produce a clustering on a graph G with more edges inside

the clusters than Alg2.

3.5 Complexity of Max-ECP and Min-ECP

In [5], Bansal et al. show that both the minimisation (minimising the number of

disagreement edges) and the maximisation (maximising the number of agreement
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edges) versions are in fact NP-hard. This means that we can verify in polynomial

time if a given solution to an ECP problem is correct, however, do not know it in

polynomial time. From the point of view of approximation the maximisation and

minimisation versions of ECP problems differ.

In the case of maximising agreement edges (Max-ECP) this problem actually

admits a polynomial-time approximation scheme, meaning that an algorithm for

finding an approximate solution needs polynomial number of steps to complete.

In the case of minimising disagreements (Min-ECP) it is APX-hard, meaning

that there exists a constant c such that it is NP-hard to find an approximation

algorithm with approximation ratio better than c. Problems in this class have

efficient algorithms that can find an answer within some fixed percentage of the

optimal answer. Several efficient constant factor approximation algorithms are

proposed in the literature when minimising disagreements (Min-ECP problem)

[5].
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Chapter 4

Online Max-ECP Clustering

In online clique clustering an input graph G = (V,E) is given with a goal of finding

a clustering that satisfies the Max-ECP or Min-ECP problems. Vertices are given

in a serial fashion, meaning that they are not known in advance. Additionally, the

number of vertices is not known either.

Upon the arrival of a new vertex, an online algorithm has to update the current

clustering in on of the following ways:

• vertex is being added to a pre-existing cluster if it satisfy the criterium

• a new singleton cluster is created (a cluster with only one vertex) if it does

not satisfy the criterium

• some pre-existing clusters can be merged

4.1 The Greedy Strategy

The greedy strategy for Max-ECP clustering merges each input vertex with the

largest current cluster that maintains the clique property. If no such merging is

possible the vertex is placed into its own (also called singleton) cluster. Greedy

strategies are natural first attempts used to solve online problems and can be

shown to behave well for some problems, however, the greedy strategy can be far

from optimal for Max-ECP clustering [9].

To demonstrate this let us look at an example how greedy would perform on our

initial graph from Figure 3.1 on page 4.

21
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The input of the vertices has to be serialised; V = {A,B,C,D,E, F}. The adver-

sary first introduces vertex A to the algorithm greedy.

• Vertex A is clustered into it’s own (singleton) cluster as there are no other

clusters yet existing, Figure 4.1a.

• Next in Line is vertex B with an edge eA,B. Due to the shared edge with A,

greedy merges the Vertex B together with A.

• Vertex C shares an edge with both A and B, therefore becoming a part of

the same cluster as well, Figure 4.1b.

• Next in the queue is Dwith an edge eD,A. It shares an edge with A, however,

not with B and C. The split operation is not allowed so the only possible

outcome here is to put D into a singleton cluster, Figure 4.1c.

• Vertices E and F share an edge with D and each other so they become a

part of the cluster 2 together with D, Figure 4.1d.

Greedy stops as there are no more vertices given by the adversary. The number of

edges inside clusters is being counted and in the example above the profit equals

to 6 (in both cliques there are 3 edges). Greedy strategy is far from optimal and

is no better than 2
|V |−2 -competitive, as visible from theorem 4.1.1.

Theorem 4.1.1. The greedy strategy for Max-ECP clustering is no better than
2

(n−2) -competitive.

Proof. Consider an adversary that provides input to the strategy to make it behave

as badly as possible.

1 2

7 8

Figure 4.2: Illustrating the proof of Theorem 4.1.1.

Our adversary gives greedy n = 2k vertices in order from 1 to 2k. Each odd

numbered vertex is connected to its even successor, each odd numbered vertex is
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A

(a) A is the first vertex and it is clustered

into a singleton cluster.
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(b) A, B and C form a clique so they are

clustered together.
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(c) Since vertex D does not have an edge

to B and C, it has to be clustered sepa-

rately.
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(d) D, E and F form a clique so they are

clustered together. A is a member of the

previous cluster.

Figure 4.1: Greedy procured 2 clusters that equally contribute both 3 edges,

summing up the profit to 6. A careful observation can show that OPT procures a

profit of 7.

also connected to every other odd numbered vertex before it, and similarly, each
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even numbered vertex is also connected to every even numbered vertex before it;

see Figure 4.2.

The greedy strategy clusters the vertices as odd/even pairs, giving the clus-

tering GDYn having profit profit(GDYn) = k. An optimal strategy clusters

the odd vertices in one clique of size k and the even vertices in another clique

also of size k. The profit for the optimal solution is profit(OPTn) = k(k − 1).

Hence, the worst case ratio between greedy and an optimum solution is at most

1/(k − 1) = 1/(n/2− 1) so the competitive ratio is at most 2/(n− 2).

4.2 Lower Bound

Theorem 4.2.1. Any deterministic strategy for Max-ECP clustering is at most 1
2

- competitive.

Proof. Let the adversary provide 2k vertices, where every odd numbered vertex

is connected to its even numbered vertex, V1 to V2, V3 to V4, etc. The game

now continues in stages with the strategy constructing clusters followed by adding

edges. In each stage the adversary looks at the clusters constructed; these are

either singletons or pairs {V2i−1, V2i}. For each newly constructed pair cluster, the

adversary adds two new vertices, V ′2i−1 connected to V2i−1, and, V ′2i connected to

V2i. The adversary stops providing new vertices as soon as the strategy can not

produce a pair in a cluster at any stage.

Assume that the strategy at the end of the stages has constructed k′ pair

clusters, k′ ≤ k, thus giving a profit of k′. Note that the strategy can never

produce the pairs {V2i−1, V
′

2i−1} or {V2i, V
′

2i} since these are revealed only if the

pair {V2i−1, V2i} is produced. The optimal solution in this case has profit k + k′

since this solution produces 2k′ pair clusters {V2i−1, V
′

2i−1} or {V2i, V2i}, where the

strategy produces {V2i−1, V2i}, in addition to k − k′ pairs {V2i−1, V2i}, where the

strategy produces singleton clusters. Hence, the competitive ratio is

k′

k + k′
≤ 1

2
, for 0 ≤ k′ ≤ k, (4.1)
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V{2i-1}

V{2i}

(a) Every odd numbered vertex is con-

nected to its even successor.

V{2i-1}
V{2i}

V'{2i-1} V'{2i}

(b) Two new vertices (marked with ’ )

are introduced.

Figure 4.3: First pair of vertices (a) is introduced. Due to an existing edge they

will be clustered together. Additionally, a pair of vertices is introduced on the

next step (b) which can only be clustered into singleton clusters.

Based on (4.1) we can conclude that any new improved strategy introduced

cannot have a better competitive ratio than 1
2 . This reveals the possibility of an

Algorithm that can keep a constant competitive ratio, independent of the number

of nodes. One such algorithm is presented in section 4.3.

4.3 A Lazy Strategy

We present a new strategy for Max-ECP clustering and prove that it has constant

competitive ratio. We divide its execution between two cases:

• If the optimum solution OPTn (an offline optimum clustering performed on

n vertices) does not have any clusters of size larger than three, the strategy

follows the greedy strategy

• Otherwise, the strategy places arriving vertices in singleton clusters until the

profit ratio between the current solution S′n and the offline optimum solution

OPTn (of the n currently known vertices) goes below a threshold value.

When this happens the strategy computes the relative optimum (optimum

clustering on the vertices and edges revealed) solution given the current

clustering

The strategy is given in pseudocode on Figure 4.4 bellow.



26 CHAPTER 4. ONLINE MAX-ECP CLUSTERING

Strategy Lazy

/* Maintain Sn with profit profit(Sn) and let c be a constant */

1 n = 1

2 while new vertex vn arrives do

2.1 S′n := Sn−1 + singleton(vn)

2.2 Compute OPTn

2.3 if the largest cluster in OPTn has size ≥ 4 then

2.3.1 if profit(OPTn) > c · profit(S′n) then

2.3.1.1 Compute the relative optimum of S′n, ÔPT (S′n)

2.3.1.2 Construct Sn from ÔPT (S′n)

else

2.3.1.3 Sn := S′n

endif

else

2.3.2 Construct Sn using the greedy strategy

endif

2.4 n := n+ 1

endwhile

End Lazy

Figure 4.4: The Lazy strategy

Given a clustering S, the relative optimum, ÔPT (S), is defined as follows:

construct a graph GS such that, for every cluster in S there is a vertex in GS and

two vertices in GS are connected by an edge, if every pair of vertices in the two

underlying clusters are connected. ÔPT (S) is now the offline optimal clustering

in GS .

Given the current clustering, S′n, the new clustering, Sn, is easily generated by

constructing a cluster in Sn for each cluster in ÔPT (S′n) by merging the corre-

sponding clusters in Sn.

The following definition follows directly from the construction of the strategy.

Theorem 4.3.1. There is a constant c such that the Lazy strategy is 1/c-competitive

for online Max-ECP clustering.
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We prove later that Theorem 4.3.1 holds for c = (154 + 16
√

61)/9.

4.3.1 Simulating Greedy and Lazy

In order to understand the benefits provided by the strategy, we first show how

greedy would have performed, using our initial graph with additional vertices. We

then compare the clustering induced by greedy with the clustering done by the

Lazy strategy.

The scenario is the following: Adversary gives us the vertices from A to F with

edges, same as in Figure 3.1. Greedy will by nature create 2 clusters, the first one

containing vertices A, B and C, while the second one will consist of D, E and F .

Graphically this is identical to Figure 2.1b. Counting the profit we see that each of

the cliques yields 3, summing up to 6. The later does not deviate from the before

mentioned optimum of the current scenario being 7.

The lazy strategy on the other hand follows the greedy , yielding the profit 7

with constructing the identical cliques. This happens because the condition in

Step 2.3 is not fulfilled.

Now let us assume that the adversary yields vertices V1 and V2, where V1 has

an edge to all the vertices in one of the cliques (for example, to A, B and C) and

V2 an edge to all the vertices in the other clique (D, E and F ) respectively. Greedy

due to its nature clusters V1 together with A, B and C increasing the cluster in

size. Respectively, V2 is clustered together with D, E and F . Graphically this can

be seen on Figure 4.5a.

Lazy on the other hand clusters the newly arrived vertices into singleton clus-

ters. This is the case due to condition in Step 2.3 being fulfilled (Figure 4.5b).
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E

F

V2

(a) Greedy; V1 is clustered together with A, B and C. V2 is clustered together

with D,E and F .

A

B

C

D

 V1 E

F

 V2

(b) Lazy; V1 and V2 form both a singleton cluster.

Figure 4.5: Greedy merged V1 and V2 into existing clusters, while Lazy produces

2 new singleton clusters.
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The simulation continues by adversary giving us new vertices, labeled from V3

to V20, having each odd ancestor (vertex with an index greater than the current)

vertex connected to every existing odd vertex and each even ancestor connected

to every existing even vertex.

Note that greedy has previously merged V1 and V2 to an existing cluster and

that V3 and V4 do not have an edge to all the vertices in the cluster, meaning

that immediately after introducing V3 and V4, greedy creates two new singleton

clusters. Every odd vertex is clustered together with V3 and every even with V4.

The end product is a Graph, consisting of 4 clusters as shown on figure 4.6.

 V1

 V3

e3

 V27

e27

...

ei

 V2

 V4

e4

 V28

e28

....

ej

A

B

C

D

E

F

Figure 4.6: Greedy ends with 4 clusters. Mind that edges from e3 up to e28 are

not inside any of the clusters. They are disagreements and therefore do not count

to the profit.

We calculate the profit of greedy by counting the number of edges inside the
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clusters. The first two clusters each contribute 6 while the bigger clusters contain

both 13 vertices. Using the formula 3.1 we see that the profit of the greedy strategy

is 168.

profit(greedy28) =

(
4

2

)
+

(
4

2

)
+

(
13

2

)
+

(
13

2

)
= 168

Lazy on the other hand expects the new vertices with 2 clusters of size 3 and 2

singleton clusters with V1 in the first one and V2 in the second one respectively. As

per the scenario, every new odd vertex has an edge to every existing odd vertex.

However, due to the condition in Step 2.3.1 not being fulfilled, vertices from V2

up to V27 can not be clustered together in any possible way. They are put into

a singleton and the simulation continues with the existing clustering and, in each

step, one new cluster as per Step 2.3.1.3.
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Figure 4.7: Newly arrived vertices from V1 until V27 are being clustered separately

into singleton clusters. The profit of the offline solution has to reach a threshold

value for the actual clustering to happen.
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This continues until the condition Step 2.3.1 from Lazy is fulfilled. The profit

of the strategy S′n equals to 6 (contributing each of the initial clusters 3). To

follow with the strategy, we assign c to 30.99 (the selection is determined by a

later introduced Lemma 4.3.3) A simple calculation using (4.2) shows that the

first time when this condition can be fulfilled is when the vertex V28 is introduced

(making the profit of the offline strategy OPTn greater than the right side of the

equation).

profit(OPTn) > 30.99 · 6 (4.2)

At this point of time, a new optimal clustering is being calculated and as per

the scenario, Lazy executes a merge operation, joining odd vertices together in a

cluster (including V1) and even vertices together (including V2) respectively. This

is shown on Figure 4.8.

D

E

F

 V1

 V2

 V3

 V4

 V27

 V28

A

B

C

...

....

Figure 4.8: The newly arrived vertex V28 causes the Lazy strategy to start

executing merge operations, forming an instant optimal clustering. The end result

are 4 clusters, however two clusters have a significantly higher amount
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Likewise, we count the number of edges inside the clusters. In this case, Lazy

produced 4 clusters with symmetrical profits. The first two contribute 3 each,

while the second two contain each 14 vertices. Using the (3.1) we see that the

profit of the Lazy strategy is 188.

profit(S28) =

(
3

2

)
+

(
3

2

)
+

(
14

2

)
+

(
14

2

)
= 188

4.3.2 Comptetitivnes of the strategy

We begin the proof by giving a relationship between the profits of the two cluster-

ings OPTn−1 and OPTn.

Lemma 4.3.1. Let cmax be the largest cluster in OPTn−1, with size k. If this is

the case, for all n > 2, profit(OPTn) ≤ profit(OPTn−1) · (k+1)
(k−1) .

Proof. The maximum increase occurs if the next vertex given by the adversary vn

can be clustered together with the vertices in cmax. The increase in profit in this

cluster goes from
(
k
2

)
to
(
k+1

2

)
. The maximum increase for the whole clustering

happens when cmax is the only non-singleton cluster in OPTn−1, giving a ratio of(
k+1

2

)
/
(
k
2

)
= (k+1)

(k−1) .

Let G be an undirected graph and let GA and GB be two subgraphs produced

by some partitioning of the vertices in G. Let C be a clustering on G and let A

and B be the clusterings induced by C on GA and GB respectively.

Lemma 4.3.2. If profit(A) > 0 and profit(C)
profit(A) = z > 1, then profit(B)

profit(C) ≥ r(z) where

r(z) = 1−
√

1 + 8z − 2

z
.

Proof. The proof is by a two level induction on the number of clusters in C. We

can assume that the clusters c1, . . . , cm in C are sorted on increasing number of

vertices in ai, where ai is the cluster in A induced by the cluster ci in C. Similarly

we denote by bi the cluster in B induced by the cluster ci in C.

A cluster ci is a null cluster, if the induced cluster ai in A has profit of 0

(profit(ai) = 0). This occurs if ai does not contain any vertices or contains exactly

one, being a singleton cluster.



4.3. A LAZY STRATEGY 33

The first step in every induction is to prove the base case. Here we assume that

cluster C contains exactly one non-null cluster, i.e., c1, . . . , cj−1 are clusters such

that profit(ai) = 0, for 1 ≤ i < j and cj is the first cluster where profit(aj) > 0.

With other words, aj contains at least 2 nodes connected by 1 edge. Assume that

profit(cj)/profit(aj) = z′′ and that |aj | = l, |bj | = l′ and |cj | = l + l′.

We prove the base case of the induction also using induction and set for this

base case j to 1. In this case,

z = profit(C)/profit(A) = profit(c1)/profit(a1) = z′′

and we get that by using the inductive hypothesis (profit(B)
profit(C) ≥ r(z)), that

profit(B)

profit(C)
=

profit(b1)

profit(c1)
= 1−

√
1 + 4zl(l − 1)− l

z(l − 1)
≥ r(z),

since the ratio is increasing in l.

For the inductive case of the base case, we assume the result holds for j−2 ≥ 0

null clusters and one non-null cluster and prove it for j − 1 null clusters and one

non-null cluster. Let {c2, . . . , cj} be denoted by C ′ and let A′ and B′ be the

induced clusterings of C ′ in GA and GB. We set profit(C′)/profit(A′) = z′ and

have when we add null cluster c1 to the clustering that

z =
profit(C)

profit(A)
=

profit(C′) + profit(c1)

profit(aj)
= z′ +

profit(c1)

profit(aj)
,

giving us that z′ ≤ z and

profit(B)

profit(C)
=

profit(b1) + profit(B′)

profit(C)
≥ profit(c1)− |c1|+ 1 + profit(B′)

profit(c1) + profit(C′)
.

By the induction hypothesis we have that profit(B′) ≥ r(z′) · profit(C′) giving us

after proper substitutions that

profit(B)

profit(C)
≥ 1− z′

√
1 + 8z − 2z′

z2
−
√

1 + 8z − 8z′ − 1

2z
.

The right side is a decreasing function of z′ (the derivative is negative) so increasing

z′ to z yields profit(B)/profit(C) ≥ r(z). This proves the base case when C has

zero or more null clusters and exactly one non-null cluster.

For the general induction step we assume the formula holds for m− 1 clusters

and we prove it for m clusters. Let

z =
profit(C)

profit(A)
,
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C ′ = {c1, . . . , cm−1}, C = C ′ ∪ {cm},

z′ =
profit(C′)

profit(A′)

and

z′′ =
profit(cm)

profit(am)

.

By the induction hypothesis we have that

profit(B)

profit(C)
≥ r(z′) · profit(C′) + r(z′′) · profit(cn)

profit(C′) + profit(cn)

= r(z′)
z′(z − z′′)
z(z′ − z′′)

+ r(z′′)
z′′(z′ − z)
z(z′ − z′′)

The last expression decreases as z′′ tends towards z, again giving us profit(B)
profit(C) ≥ r(z),

thus proving our result.

Lemma 4.3.3. If, for a certain value of n, the selection in Step 2.3.1 yields true in

the lazy strategy, then profit(OPTn) ≤ a · profit(Sn) where a < c is some constant.

Proof. When the largest clusters in OPTn has size at most three, we have from

the proof of the greedy bound 4.1 that greedy has competitive ratio 1/4, and lazy

will do at least as well in this case, since it follows the greedy strategy. So, we can

assume that the largest cluster in OPTn has size at least four. This also means

that the size of the largest cluster in OPTn−1 is at least three.

We make a proof by induction on n, the number of steps in the algorithm.

The base cases when n = 1, 2 and 3 follow immediately, since lazy (and greedy)

computes optimal solutions in these cases, so a ≤ 4 can be chosen as the constant,

since the competitive ratio is 1/a ≥ 1/4.

Assume for the inductive case that Step 2.3.1 yields true at the n-th iteration

and assume further that the previous time it happened it was in iteration k (or

that the strategy followed greedy in this step). By the induction hypothesis we

know that profit(OPTk) ≤ a · profit(Sk) for some constant a < c. Let OPT ′k be

the clustering obtained from OPTn induced by the vertices v1 . . . vk. It is obvious

that profit(OPT ′k) ≤ profit(OPTk). Let Ekn be the set of edges between vertices

inside clusters of OPTn that have both endpoints among the vertices vk+1 . . . vn.

Similarly, we define E′kn to be the set of edges inside clusters that have one end
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point among the vertices v1 . . . vk and the other among vk+1 . . . vn. We now have

that

profit(OPT ′k) + |E′kn|+ |Ekn| = profit(OPTn).

Let S′n be the clustering solution in iteration n just before the strategy reaches

Step 2.3.1, i.e., when vertex vn is put in a singleton cluster. This gives us, since

profit(S′n) = profit(Sk),

profit(OPTn) > c · profit(S′n) = c · profit(Sk) ≥ c

a
· profit(OPT ′k)

Since profit(OPTn)
profit(OPT ′k)

≥ c
a , by Lemma 4.3.2 the ratio |Ekn|

profit(OPTn) ≥ r(
c
a).

Note that Ekn forms a clustering of vertices vk+1, . . . , vn that is independent

of how vertices v1, . . . , vk are clustered. Therefore, when a new cluster Sn is

recomputed in Step 2.3.1.1, it includes at least as many edges as both Sk and

Ekn together. Furthermore, profit(Sn−1) = profit(Sk) and profit(OPTn−1) ≤ c ·
profit(Sn−1), since otherwise Step 2.3.1.1 would have been done already in the

previous iteration. We have that

profit(Sn) ≥ profit(Sk) + profit(OPTkn) ≥ profit(Sk) + |Ekn|

= profit(Sn−1) + |Ekn|

≥ profit(OPTn−1)

c
+ |Ekn| ≥

profit(OPTn)

2c
+ |Ekn|

≥ profit(OPTn)

2c
+ r(

c

a
) · profit(OPTn).

The second to last inequality follows from Lemma 4.3.1, since the largest cluster

in OPTn−1 must have size 3, and the last inequality was given above.

We must guarantee that

profit(OPTn)

2c
+ r(

c

a
) · profit(OPTn) ≥ profit(OPTn)

a

to prove the lemma, which is equivalent to finding constants a ≤ 4 and c as small

as possible so that 1/(2c) + r( ca) ≥ 1/a. The expression holds for a = 4 and in

equality for c = (154 + 16
√

61)/9 ≈ 30.9960.

From Theorem 4.3.1 it follows that if c = (154 + 16
√

61)/9, the competitive

ratio for the lazy strategy equals to 9/(154 + 16
√

61) ≈ 0.032262.
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Chapter 5

Online Min-ECP Clustering

5.1 A Lower Bound

In this section, we prove that there cannot exist a deterministic strategy to solve

the MIN-ECP problem and would be better than n1−ε

2 -competitive. Additionally,

we prove that the greedy strategy for MIN-ECP yields a competitive ratio of n−2.

Theorem 5.1.1. Any deterministic strategy for Min-ECP clustering is no better

than n1−ε

2 -competitive, for every ε > 0.

Proof. An adversary provides the following vertices of an input graph in a se-

quence. First, one (k − 1)-clique, followed by one additional vertex connected

to one of the previously given vertices such that a lollipop graph is formed (see

Figure 5.1). We now consider different possibilities for clustering the k vertices.

Figure 5.1: A lollipop graph with a (k − 1)-clique and a vertex connected by a

single edge.

First, let us assume that the strategy has clustered the input in such a way

that the (k − 1)-clique is not clustered as a cluster. Then this clustering has at

least k − 2 disagreements. An optimal clustering contains only one disagreement,

between the (k − 1)-clique and a singleton cluster containing the vertex outside

37
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the clique. Hence, the competitive ratio in this case is at least (k − 2)/1 = n − 2

since the number of vertices is n = k.

Assume next that the strategy has clustered the input as one (k − 1)-clique

and one singleton cluster. In this case, the adversary provides k − 1 independent

cliques of size m, where each of the vertices in an m-clique is connected to one

particular vertex of the original (k − 1)-clique as visible on Figure 5.2.

k−1 m

m

m

m

Figure 5.2: Each of the (k − 1) vertices in the central clique is connected with

m edges to an m-clique.

The strategy can at best cluster the k−1 m-cliques as clusters, thus generating

m(k − 1) disagreements. An optimal solution will, for m sufficiently large, cluster

the vertices in the original (k − 1)-clique in each of the new cliques, generating a

solution of k− 1 (m+ 1)-cliques. This solution has
(
k−1

2

)
disagreements. If we set

m = (k−2)t/4, where k is chosen so that m is an integer and t is some sufficiently

large integer, then the competitive ratio becomes

m(k − 1)(
k−1

2

) =
(k − 2)t−1

2
≥ 1

2

(
n1/(t+1)

)t−1
≥ n1− 2

t+1

2
=
n1−ε

2
,

for all ε > 0, since the number of vertices in the input is

n = m(k − 1) + k =
(k − 2)t

4
(k − 1) + k ≤ (k − 2)t+1,

proving the lower bound.

5.2 The Greedy Strategy for Min-ECP

Greedy strategy for Min-ECP problem clusters the arrived vertex Vi in such a way

that the number of edges between clusters is minimised. Vi is clustered together

with the nodes with which it shares the most edges with. If Vi does not have an

edge to all the nodes in any existing cluster, it is put into a singleton cluster.
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Theorem 5.2.1. The greedy strategy for Min-ECP clustering is no better than
(n−2)

2 -competitive.

Proof. We let an adversary generate the same input sequence of n = 2k vertex

pairs as in the proof of Theorem 4.2.1. Greedy generates 2
(
k
2

)
disagreement edges

whereas the optimum solution has only k disagreement edges. The competitive

ratio is, by using Definition 3.4.1,

2
(
k
2

)
k

= k − 1 =
n− 2

2
.

Definition 5.2.1. We define that a solution S to Min-ECP clustering is maximal,

if S cannot be improved by the merging of any clusters. A strategy for Min-ECP

clustering is called maximal, if it always produces maximal solutions.

Greedy belongs to the class of maximal strategies.

Theorem 5.2.2. Any maximal online strategy for Min-ECP clustering problem is

2n− 3-competitive.

Proof. Consider a disagreement edge e connecting vertices v and v′ outside any

cluster produced by the maximal strategy MAXn on n vertices. We have two cases:

if e is also a disagreement edge in OPTn, there is a disagreement edge in OPTn

adjacent to v and v′.

Now, if e is not a disagreement edge in OPTn, then one of v and v′ connects

to a vertex u, assume it is v, such that the edge e′ = (v, u) is a disagreement edge

in OPTn. If no such vertex u exists, then MAXn would have clustered v and v′ in

the same cluster, a contradiction, so u does exist.

In this way, we have proved that to each disagreement edge in MAXn, there

must be an adjacent disagreement edge in OPTn.

Consider now a disagreement edge e in OPTn. Potentially, all its adjacent

edges can be disagreement edges for MAXn, giving us in the worst case 2n − 4

adjacent disagreement edges different from e and one where they coincide. Hence

the worst case competitive ratio is 2n− 3.

From our observation that greedy belongs to the class of maximal strategies

we have the following corollary.

Corollary Greedy is 2n− 3-competitive.
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Chapter 6

Conclusions and Future Work

After presenting an overview of the graph theory and online algorithms, we intro-

duced the problem of Online Clique Clustering with objective functions Max-ECP

and Min-ECP. The criterion for Max-ECP was to maximise the number of edges

inside the cluster and for this purpose two algorithms are described, Greedy and

Lazy.

The natural greedy approach for Max-ECP clusters vertices into groups by

merging every newly arrived vertex with the biggest cluster that it is possible to

merge it with. We prove that this approach is at best inversely proportional to

the number of vertices in the input ( 1
(|V |−2)).

The Lazy approach on the other hand follows the greedy approach, however, at

a certain point starts to behave differently - Lazy clusters the vertices initially into

singleton clusters and at a moment, when a threshold is meat, merges the newly

arrived vertices into clusters that maximise the objective function (bringing the

most profit). The competitive ratio of Lazy (compared to an optimal offline version

OPT) that we achieved and proved is 9/(154 + 16
√

61) ≈ 0.032262. We simulated

both Greedy and Lazy on the example graph on figure 4.6 where Greedy scored a

profit of 168 whereas Lazy resulted in 188 edges inside clusters. A difference of 20

is significant and should not be ignored.

We have proved a lower bound for Min-ECP and showed that there cannot

exist a deterministic strategy that would be better than n1−ε

2 -competitive, for any

ε > 0. Additionally, we proved that greedy for Min-ECP is no better than (n−2)
2 -

competitive. Moreover, we showed that greedy belongs to a class of Maximal

41
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Strategies and any strategy that is Maximal is at most 2n− 3-competitive.

The next step is to identify possible modification of the strategy and parameters

in order to achieve a better competitive ratio where the criterion is to maximise

the number of edges inside clusters (Max-ECP).

A Lower Bound for Online Min-ECP Clustering has been proven in Section 5.1

to be linear for every deterministic strategy, however, not much has been done to

investigate developing a non-deterministic strategy for both Min-ECP and Max-

ECP.

On the applied side one can find challenges in Genetics where Clustering is

being used. One such example is CRISPR[10] where Lazy could be used to map

the responses of proteins that act on genes into groups. CRISPR stands for clus-

tered regularly interspaced short palindromic repeats, which are oddly repetitive

stretches of DNA found in bacteria and archaea. This sequences interact with

proteins and form a microbial defence system against viruses. Additionally, one

of the most promising applications of gene expression analysis is the classification

of tissue types according to their gene expression profiles where Lazy can be used

to classify types of cancer by mapping similar types into clusters. In cancer re-

lated studies, the data consist of expression levels of many thousands of genes in

different types of tissues, both benign and malign. By translating this problem to

a graph we can investigate, if Lazy can be used as a classifier.
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