ePrints.FRI - University of Ljubljana, Faculty of Computer and Information Science

Data Fusion by Matrix Factorization

Marinka Zitnik and Blaz Zupan (2015) Data Fusion by Matrix Factorization. IEEE Transactions on Pattern Analysis & Machine Intelligence, 37 (1). pp. 41-53.

Download (963Kb)


    For most problems in science and engineering we can obtain data sets that describe the observed system from various perspectives and record the behavior of its individual components. Heterogeneous data sets can be collectively mined by data fusion. Fusion can focus on a specific target relation and exploit directly associated data together with contextual data and data about system’s constraints. In the paper we describe a data fusion approach with penalized matrix tri-factorization (DFMF) that simultaneously factorizes data matrices to reveal hidden associations. The approach can directly consider any data that can be expressed in a matrix, including those from feature-based representations, ontologies, associations and networks. We demonstrate the utility of DFMF for gene function prediction task with eleven different data sources and for prediction of pharmacologic actions by fusing six data sources. Our data fusion algorithm compares favorably to alternative data integration approaches and achieves higher accuracy than can be obtained from any single data source alone.

    Item Type: Article
    Keywords: data fusion
    Institution: University of Ljubljana
    Department: Faculty of Computer and Information Science
    Divisions: Faculty of Computer and Information Science > Bioinformatics Laboratory
    Item ID: 2862
    Date Deposited: 20 Nov 2014 09:57
    Last Modified: 29 Jan 2015 18:25
    URI: http://eprints.fri.uni-lj.si/id/eprint/2862

    Actions (login required)

    View Item