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Abstract:

Karstic landscape is a specific heritage, where surface and

underground are part of single landscape. Where underground

(caves, shafts...) played an important role in the development of

surface. Landscape where natural an anthropogenic processes

worked hand in hand. Caves were often treated as being separate

from the outside landscape, recorded in isolation form landscape

which they are part of. However, this complex heritage requires

integrative methodologies, that would integrate cave record with the

landscape.
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1. INTRODUCTION

Traditional landscapes, a result of millennia of natural processes and human engagement
with environment are under threat. A precondition for integrated landscape protection and
understanding is knowledge. Karstic landscape is a specific heritage, where surface and
underground are part of single landscape. Surface landforms (sink holes, shafts...) and
underground features (caves) are result of same long term processes which worked hand in
hand with anthropogenic processes in the long term development of landscape.



In order to approach this complex heritage we need to develop
integrative methodologies that allow us to treat surface and
underground heritage as single. Although recording of underground
heritage and landscape require different methodologies, our goal is to
integrate both datasets into single one. Only in this way we can
holistically approach this complex heritage. In the long term, the most
sustainable and productive method of protecting landscapes is
education and familiarising people with their complexity and time
depth. Three-dimensional (3D) technologies with potential for
visualizing heritage that is often difficult to observe and understand are
ideal tool for presentation of such complex heritage.

1.1 S
∨
kocjan Caves, UNESCO’s world heritage

S
∨
kocjan Caves [1] are situated in the Karst Plateau of South-West

Slovenia.
Kras (Carso, Karst) is a low carbonate plateau in the hinterground

of the Trieste bay. It connects Mediterranean with the Middle Europe.
Karst is known for typical landform such as doline or sinkholes,
underground rivers and caves and bora (burja), cold northern wind.
People have lived here and shaped their landscapes since Stone Age.
The stony landscape, lack of surface water, proximity of industrial
centre Trieste and road connections are the main factors that have

Figure 1. Panoramic view of

entrance to the S
∨
kocjan

Caves. (Photo: Borut Lozej;

owner: S
∨
kocjan Caves

archives).
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contributed to the formation of the typical cultural landscape, which is
rapidly disappearing.

S
∨
kocjan Caves are an exceptional limestone cave system which

comprises one of the world’s largest known underground river
canyons, cut into the limestone bedrock by the Reka River. (Fig. 1)
Dramatically roaring, the river disappears into the karst underground,
before passing through a vast and picturesque channel of up to 150m
in height and more than 120m in width, often in the form of rapids and
waterfalls. The canyon’s most spectacular physical expression is the
enormous Martel Chamber which exceeds two million cubic meters in
volume. It is no coincidence that karst research has its origin in this very
part of Slovenia, referred to scientifically as “Classical Karst”. The caves
support many endemic and endangered species, including the olm
(Proteus anguinus) along with many invertebrates and crustaceans.
The very particular environmental conditions of the collapse dolines
provide habitat for rare and threatened flora and fauna. 

Numerous archaeological sites suggest that vicinity of S
∨
kocjan has

been densely populated in prehistory. In Late Bronze Age a complex
ritual landscape emerges around S

∨
kocjan. Prehistoric landscape was

structured around caves as entrances to the underground with
evidence of ritual deposition of artefact in the caves. The whole
landscape was turned into monument, fixed, stabilised and made
durable by erection of hillforts on prominent hilltops. However, there
are also traces of daily life, cultivation of landscape in the form of
clearance cairns and earthen banks. Clearing and cultivation have in
many cases left a permanent and clear imprint on the landscape.
Most of the fields laid out during this time were reorganised and
overlain by medieval and later field patterns. Even so, whilst field
systems derived directly from the prehistoric field pattern are rare,
traces of prehistoric fields have been identified in several parts of the
Karst.

The exploration of the S
∨
kocjan Caves dates back to the early 19th

century; after that, the caves were explored with greater intensity for
another century. The underground Reka River was being explored by
various “boating techniques”, i. e. wooden rafts and boats, paddles,
poles, anchors, hooks, ropes and pulleys. Leading members of the
speleology division were searching for caverns and new paths, they
were measuring and surveying, while people from neighbouring
villages, one could say permanently employed “cave workmen”, and
cave guides chiselled the trails for them. The first map of the S

∨
kocjan

Caves was done in 1885. Anton Hanke drew the floor plan and cross
section of the caves from the first swallow hole to the 11th waterfall
after the end of the Müller Hall. As the first explorers penetrated
deeper into the underground world gradually, also maps of the cave
system were made gradually. The first complete map of S

∨
kocjan Caves
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was made hundred years ago (1913) by Anton Meeraus (Fig. 2). In the
early 1990s new measurements of the cave system were conducted
by the Institute of Karst Research. Impressively, the new measurements
revealed just one major error in early maps: following the end of the
Rinaldini Hall, the passage twists sharply from the direction of the
Dinarides to NNW, then turns due north in the final section, deviating
by about 30° from Hanke’s and Meeraus’ maps. Today, we have a
digital 1:500 scale map of cave system that shows every last detail,
including the locations of individual spotlights. 

1. Methodology

Laser scanning describes any technology which accurately and
repeatedly measures distance using laser pulse, by precise evaluation
of time needed for the laser pulse to travel from the object and back.
These measurements are transformed into a series of points (or a point
cloud) from which information on the morphology of the object being
scanned can be derived. 

Terrestrial Laser Scanning (TLS) is an effective method for producing
comprehensive spatial data which describe the geometry and
orientation of visible objects surfaces. The instrument, positioned on the
ground can produce millions of measurements in a very short time with
a dense cloud of geolocated points as a direct result [2, 3]. Single
capture and primary processing of these point cloud data can
accurately define high detailed shape of the measured object.
Collected data can be used for different purposes and applications

Figure 2. First complete

plan of the S
∨
kocjan

Caves was made at

1913 by Anton Meeraus

and published by

Sektion Küstenland des

Deutschen und

Österreichischen

Alpenvereins from Trieste

(Owner: Civico Museo di

Storia Naturale, Trieste).
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with further processing. Laser scanners are line-of-sight instruments,
therefore multiple scan positions are required to ensure complete
coverage of a structure.

Pulse based terrestrial 3D laser scanner Leica Scanstation C10 was
used. Pulse based instrument consists of a transmitter/receiver of
infrared laser pulses and scanning optics. Distance measurement is

Figure 3. Measuring in

the Great Hall in

S
∨
kocjan Caves (Photo:

Luka Rozman).
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based on the time-of-flight of the laser pulse, travelling and reflecting
from the surface of interest. Location of each point is acquired in a
polar coordinate system. The horizontal and vertical angles are modified
by the scanner device using an internal system of rotating mirrors.
Compared to conventional surveying methods, a TLS shows a very high
data acquisition speed (up to 50k pts/sec.) and very high spatial
resolution. Technical characteristics of the Scanstation C10 supplied by
the manufacturer show high maximum range (up to 250m for 90%
surface reflectivity) and high point accuracy. The main goal of this case
study was to measure shape characteristics of the Great Hall of S

∨
kocjan

Caves and to asses potential of the method for recording of caves (e.g.
[4] and many similar articles). Cave was measured (Fig. 3) on the 6th of
September 2013, during the night, when the cave is closed for visitors,
from 14 scanner positions, which were placed on easily accessible and
safe locations (Fig. 4). In general this is relatively low number of scanner
positions for such a complex morphological space. Consequently the
result of the primary product (3D point-phase model) suffers from
shadows (i.e. parts of the cave were not recorded as they were
obscured by other features). This can be systematically avoided by
placing a sufficient number of optimally located scanner positions. The
average point cloud density of 5-10mm was provided (Fig. 5).

Figure 4. Scan positions in the

Great Hall. Left: base plan

oriented to the north. Middle:

longitudinal cross-section

oriented NW-SE.

Figure 5. Visualisation of Great

Hall point cloud data coloured

by edge shading.
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After conducting field surveying and primary processing
(registration of scan-positiones, point cloud data filtration) 3D point —
phase model of the Great Hall was obtained. The model is generated
by a dense cloud of spatially located points. Otherwise the raster of
the points is adjusted to the requirements. Each collected point has an
intensity value obtained by reflection of the laser beam. Moreover,
each point can be colorized in the real RGB value with use of
integrated camera. To ensure quality staining of the points with RGB
value the sufficient and uniform illumination is required, though it is
difficult to achieve that in the cave environment. [2] 

The reflection intensity colour depends on the angle of incidence
of the laser beam and the characteristics of the measured surface.
The result of the measurements after primary data processing, was
edited and exported in standard ASCII format, which allows user to
independently manipulate the data in the commercial software tools
(AutoCAD, ArcGIS, etc.).

Airborne laser scanning Airborne Light Detection And Ranging
(LiDAR or Lidar), Airborne Laser Scanning or Airborne Laser Swath
Mapping (ALS or ALSM) is an active remote sensing technique, which
records the surface of the earth using laser scanning. [5] 

Transmitter, mounted on the airplane or drones, emits series of laser
pulses that reflect from the surface back to the receiver. By precise
measurement of time needed for the laser pulse to travel, altitude of
the aircraft can be calculated and transformed into the elevation of
the point on the surface of the earth. In this way a very precise 3D
image of the earth’s surface can be obtained. Lidar thus allows us to
observe ground beneath forest canopy. When laser pulse reaches
objects such as trees, part of it is reflected by the canopy, and part of
it travels to the ground where it is reflected back. By eliminating
canopy reflections, a precise image of forest floor can be produced.
This is especially significant in countries such as Slovenia, where as
much as sixty percent of the country is covered by forrest. 

Lidar allows very precise 3D mapping of the surface of the earth,
producing high resolution topographic data, even where surface is
obscured by forest and vegetation. The level of detail on digital
surface and terrain models produced from high resolution lidar
topographic data helps us enormously in identification of past events
which reworked and modified the surface of the earth.

ALS survey was conducted in December 2012. Ground conditions
were optimal, with no low leaf cover and compressed dry leaves
blanket. Average point density is 31,8 pts/m2, average distance
between points is 0,18m. Pulse density is 18,2 pts/m2 with 0,24m
average horizontal distance between points. Ground point density is
much lower, 61 pts/m2 with the 0,4m spacing between ground points
(Fig. 6). 
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The essential and critical phase in post- processing chain is
classification. Points in the point cloud must be classified to returns from
the ground and those from vegetation. Classified point cloud allows
interpolation of different digital elevation models. Digital terrain model
(DTM) is a representation of bare-terrain surface, free of any object,
such as trees, buildings, etc. Digital surface models (DSM) includes tops
of the buildings, trees, power-lines and other “landscape clutter”. For
archaeology a combination between DTM with some landscape
clutter is usually preferable.

1. RESULTS

The point cloud generated by TLS represents the topography of ceiling
and floor of the cave. Each point represents the relative elevation or
height of the hall. In this way a number of topographic maps of cave
floor and ceiling can be produced. 

These can be used for the comparison with existing maps,
generated by conventional methods and can represent their upgrade
as well. The essential difference among existing maps and maps,
measured by TLS, is reflected in the details, since TLS measurements
detect morphological forms and features of the surface with much
greater accuracy (Fig. 7).

By substracting elevations of ceiling and floor of the cave (in Z-axis)
elevation map of the cave can be visualized. The average elevation
of the Great Hall is 16,26m, while maximum height of the hall is 30,82m.
This enable also accurate calculation of the Great Hall’s volume. ALS
represents metrically accurate high resolution topographic data of the

Figure 6. High resolution

ALS surface topography

of the area around

S
∨
kocjan Caves
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landscape around S
∨
kocjan caves. Although it has much lower

resolution than TLS dataset, it is much more spatialy extensive. Thus it
can provide spatial context for the high resolution of TLS data. ALS
reveals landscape features such as sink holes, river valleys, collapse
dolines, their relation to manmade structures (hillforts, villages) and
traces of human engagement with the landscape; from prehistoric
field divisions, medieval fields, dry stone walls, lime kilns to traces of
20th century conflicts. 

Figure 7.

Hypsographic plan

of ground and

ceiling of Great Hall

analytically cleaned

of stalactites on

ceiling.

Figure 8. Integration

of the ALS surface

topography with

the TLS 3D model of

Great Hall. 
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Integration with ALS (Fig. 8) dataset of the surface above the cave
help us to establish spatial relations between Great Hall and
landscape above it. From the initial point cloud we can produce
transverse and longitudinal cros-sections and base plan in any
direction and location. In this way we can study the shape of cave
and its relation to surface (Fig. 9). By calculating height difference
between the surface and the cave ceiling in the z-axis direction we
can establish the thickness of the cave ceiling. The average thickness
of the Great Hall ceiling enclosure is 65m. Farthest point of the ceiling is
87,97m below the surface, the closest point is 49,76m below the
surface. The average altitude of the Great Hall ceiling is 345,75m, while
the maximum ceiling altitude is 364,48m and the lowest 322,32m. 

Figure 9. Left-top: highly

precise cross-section of

Great Hall as one of

result of TLS 3D model in

direction NW-SE, profile

a-a”. Left-bottom: cross-

section and relation of

cave to the surface in

direction NE-SW, profile

b-b”. Right:

hypsographic map of

ceiling thickness analysis.
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S
∨
kocjan Caves are prone to periodical flooding. Using TLS point

cloud data the extent of flooding can be estimate. To determine the
level of water, a horizontal plane had to be generated, which could
then be interactively raised or lowered on the Z axis (Fig. 10). Finally, a
3D mesh model was produced from point cloud using triangulation



method. In this procedure specific software which has ability to
convert large point cloud data in the TIN (triangulated irregular
network) model was used. Even though, 3D model to such an extent
that allows the processing of data by an average computer and
software was necessary to simplified. Obtained 3D model is suitable for
making of different cross-sections in any way and direction,
calculating volumes, illuminating studies, flood studies, geological dip
and dip directions analysis etc…(e.g. [7] and many other articles) 

Figure 10.

Simulation of the

process of cave

flooding on

diffferent level with

study of flood risk

of public available

parts of cave.

Figure 11.

Integration of the

ALS surface

topography with

the model and the

TLS 3D model of

Great Hall with the

protected heritage

areas (orange

areas) and

features

recognised on ALS

topography

(different colours).
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1. DISCUSION

This case study demonstrates the potential of both Terrestrial and
Airborne Laser scanning as well as their integration for the study of
complex heritage such as cavity. By using both methods we were able
to capture both underworld as well as landscape, where cave is
situated. Combination of two datasets enables us to understand the
cave system in its environment and to observe relations between
caves and landscape (both natural and anthropogenic) features (Fig.
11). This is a preliminary, proof of concept study demonstrating the
possibilities of laser scanning technology and integration of different
datasets. In the future, when the whole cave system will be scanned,
the integrated datasets will be used for integrated 3D landscape
modelling, paleo environmental studies, geological studies, planning,
management and presentation of such complex heritage.
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