
Automatic adaptation of filter sequences for cell
counting

Uroš Čibej†, Jasna Lojk∗, Mojca Pavlin∗, and Luka Šajn†
†Faculty of computer and information science, University of Ljubljana

∗Faculty of electrical engineering, University of Ljubljana
Ljubljana, Slovenia

Abstract—Manual cell counting in microscopic images is
usually tedious, time consuming and prone to human error.
Several programs for automatic cell counting have been developed
so far, but most of them demand some specific knowledge of image
analysis and/or manual fine tuning of various parameters. Even if
a set of filters is found and fine tuned to the specific application,
small changes to the image attributes might make the automatic
counter very unreliable. The goal of this article is to present a
new application that overcomes this problem by learning the set
of parameters for each application, thus making it more robust
to changes in the input images. The users must provide only a
small representative subset of images and their manual count,
and the program offers a set of automatic counters learned from
the given input. The user can check the counters and choose
the most suitable one. The resulting application (which we call
Learn123) is specifically tailored to the practitioners, i.e. even
though the typical workflow is more complex, the application is
easy to use for non-technical experts.

I. INTRODUCTION

Cell counting on microscopic images of various types
is one of the fundamental tasks for many researchers and
practitioners in all life-sciences. Being such a fundamental
task, many automated solutions exist. Despite this abundance
of tools for automated counting, the majority of counting tasks
are still done manually by the practitioners. The main reasons
for this can be boiled down to two problems. The first problem
is the inaccuracy of the automated counters and the second one
the difficulty to use for non-technical experts. Our work is
focused on overcoming both of these problems, i.e. to develop
an accurate tool, and a tool that is simple to use out-of-the-box.

Currently several programs for cell counting are already
available. From many commercial solutions, such as Meta-
Morph, BioQuant, Image-Pro and SymenTec to free software,
such as ITCN ImageJ Plugin [5], CellProfiler [4], UTHSCSA
ImageTool [1], and CellC [10]. However, all of the existing
solutions require some additional input or even some image
preprocessing of the raw images, which is not only time-
consuming but can also be too complex to some biology field
experts. [3].

We already developed a cell counting tool called Cell-
Counter [7], with which we demonstrated that for a particular
application (i.e. cell viability estimation), a fixed set of filters
with specifically tailored parameters can give great results,
making the human counting almost obsolete and thus speeding
up the analysis of the experiment results in life-sciences by an
order of magnitude. This result is very important in practice,
however it is still not the silver bullet for all the problems one
might encounter in every such application.

The program was developed in collaboration with a re-
search group, who used cell counting as a way to determine
cell viability [2] and transfection efficiency [8] for certain
experimental settings. By fluorescently staining cell nuclei they
obtained fluorescent images with higher contrast compared to
BF or PC images, but it still left them with large number of
microscopic images to count, requiring a more efficient way
to process the images than manual counting.

To get an intuitive picture of all the problematic features of
the counting of cells, let us mention some of the problems, that
typically arise in practice: different types of assays resulting in
a large variety of images which are hard to generalize, inability
to detect individual nuclei in multinucleated cells, overlapping
cells, uneven illumination and other equipment related factors,
such as electronic and/or optical noise [6], that lead to images
having variable contrast and quality, low contrast of the im-
age, different cell shapes, internal cell structures, extracellular
debris, and varying density of cell culture.

Due to all these possibilities, there is a large set of varia-
tions that prevent a general solution for any circumstance to be
developed. The optimal tool would detect all these variations
without any user intervention. However, the many failed at-
tempts to find such a tool demonstrate that a different approach
is needed. The main goal of this article is to present such an
application, which is able to adapt to the specific use-case,
with (as little as possible) guidance from the user. The user
only provides a set of examples, from which the application
learns the general counting as accurately as possible.

Since one of the major objectives is also a widespread
usability of this application, the following goals are sought:

• the learning should be done as intuitively as possible,

• the result of the learning should be easily verifiable,
to ensure that the obtained results are sound,

• the workflow must not be too complex, avoiding any
technology related terms,

• the learning has to be a repeatable and incremental
process,

• the results of the learning and counting must be usable
also in other de-facto standard applications of the user-
base.

Automatic learning is a widespread area of research, so
there are plenty of possible approaches to developing such an
application. We define the learning as an optimization problem,

where the goal is to optimize the difference between the
counting results defined by the user, and the counting obtained
by the automatic counter. As mentioned above, the CellCounter
application used a predefined sequence of filters, where the
parameters were fine-tuned for a particular application. We
used this sequence as a general framework, and the parameters
of the image filters represent the vector which needs to be
optimized.

As the optimization method we chose an evolutionary
approach, because of the many positive features. Namely, the
evolutionary approach is very flexible, we can easily change
the goal function, stop the process at any point and get
feasible solutions, start from existing solutions and improve
the solution by interacting with the user.

The remainder of the article is structured as follows.
Section II. presents the learning application, section III. de-
scribes all the implementation details, the framework, and
the technologies used, section IV. describes the experimental
evaluation of the application, and finally, section V. concludes
the paper and gives directions for our future work.

II. DESCRIPTION OF THE APPLICATION

In this section we will first describe the application from
a purely user perspective. Since one of our basic goals is to
make the application as simple as possible for the end-user,
we managed to strip down all the unnecessary concepts. The
user does not have to be aware of any underlying algorithm
and technology and in the workflow it can only focus on the
images and the task at hand. This is an extremely important
aspect for the practical usability of such application. Many
similar applications overflow the user with technical terms and
make them specify various parameters of algorithms, of which
the end user should not be aware of.

The application is subdivided into two sub-application. The
first one being the learning part (Learn123) and the second the
counting part (Count123) of the application. In what follows
we describe in more detail the tasks that constitute a typical
workflow, starting with the learning part of the application.

A. Choosing a subset of images

The first task of the user is to select a representative subset
of images. The subset needs to be relatively small (typically
around 10 images) and the images spawn as many different
aspects of the entire set (i.e. different sizes of object, different
lighting conditions, different shapes, etc.).

B. Manual count

The second step for the user is to manually count the
objects in the images. The information that it provides are
only the approximate centers of the object. This is another
very useful simplification, since some counting tools require
the user to provide the contours, or at least the center and the
radius of the object. Providing only the centers speeds up this
step significantly.

C. The learning process

Once all the objects in the images have been manually
annotated, the learning process can be initiated. The length of
the learning process depends mostly on the size of the image
subset, the typical span of the learning is from 5 minutes to
about an hour. But the user can also participate in this ongoing
process, since a set of candidate counters is immediately
offered. This set is the set of currently best known counters and
the user can assess the given counters. If the user is satisfied
with the results he/she can interrupt the learning and use the
counter.

D. Assessing the quality of the counters

When the program finishes its learning process, the set
of 10 best counters is presented to the user. The user can
see the count of the automatic counter visually and compare
it to the counts made manually. If none of the counters is
satisfactory, the user can add new images to the testset, remove
some old images, and restart the learning process. Fig. 1 shows
an example of a counter assessment. Notice that the learning
does not start from scratch, it uses most of the information
learned from the previous learn run.

Fig. 1. The comparison of the manual and automatic count in a test image.
The small red dots represent the manual count, the larger green dots represent
the automatic counter.

E. Counting application

When a suitable counter is found by the above process, it
can be used in the second sub-application, the Count123. The
user can choose all the images in the set and the application
will visually present the results. All the results can thus be
checked and any point can be added or removed to correct
any errors.

The assessment can also find some images on which the
automatic counter behaves badly. These images (or one typical
representative) can be added to the testset and the new learning
process will adapt also to this type of images.

If the obtained results are satisfactory, they can be easily
exported and used in other applications for further data anal-
ysis.

Fig.2 show an overview of the workflow. Every part of the
workflow is technically neutral, agnostic about any algorithms
used behind the scenes.

Fig. 2. The user workflow in the Learn123 application.

III. IMPLEMENTATION DETAILS

The implementation details can be boiled down to three
aspects: (1) the modeling of the learning as an optimization
problem, (2) the algorithm used for the optimization, and (3)
the technologies used for the implementation.

A. The optimization problem

Intuitively, the objective of the learning process is to find
a counter (specified by a (numeric) vector) with minimal
counting error on the learning set. There are many possibilities
how to encompass this problem into a mathematical model, the
presented optimization model empirically demonstrated very
good results, showing its good applicability to real problems.

As the input, a set of k images is given:

Img = {img1, img2, . . . , imgk}.

For every image img, the manual count is given by a
sequence of points in the plane, indicating the (approximate)
centers of the identified objects:

Cman(img) = {p1, p2, . . . , pn}

The subject of the optimization is a vector of parameters

P = {param1, param2, . . . , paraml},

which uniquely define the automatic counter. These parameters
can be integer values, boolean values, real numbers, or certain
objects from specific sets, but without any loss in generality
we can assume only integer valued vectors.

The result of applying the counter defined by the vector P
to the image img will be denoted by the set of points:

CP (img) = {p1, p2, . . . , pm}.

Now for the most important part of the model, we have to
define the goal function (criteria), which will model what we
consider to be an accurate counter. Intuitively, there are two
criteria that a good counter should fulfill:

• the difference of the obtained counts (the numbers)
should be as small as possible, and

• the positions of the found objects should be as close
as possible.

These two intuitive criteria have to be modeled appropri-
ately and combined into a suitable goal function. We will first
define this function for one image img. The first criterion is
simple to model as a simple absolute difference between the
number of points found with the manual counts and number
of points with automatic counts on the same image:

∆(Cman(img), CP (img)) = ||Cman(img)| − |CP (img)||.

The second criterion compares all the points found with
the manual count and see how far are they from the points
found with the automatic counter.

The goal function for the second criterion was chosen as

D(Cman(img), CP (img)) =
∑

p∈Cman(img)

d(p, closest(p, CP (img)))

,

where d is the Euclidean distance between the two points,
and closest is a function that finds the closest point from a
given point to the given set.

This goal function is simple and fast to compute, but it
can run into problems on some corner cases where it prefers
degenerate counters. An example of the problem with this
function is given in Fig. 3. This problem will be amended by
combining the two goal functions. How these two goal func-
tions are combined is described together with the algorithm,
since it is more specific to the way the algorithm works.

The functions ∆ and D model the differences in counts
for a single image. Now we need to choose a suitable function
that combines the results of these two function on all images.
We experimented with a few variations, such as the maximum
value, the median value, and the average value over all images.
Empirically the simple average gives the best results, so the
goal functions which combine ∆ on all images is

G∆(P, Img) =
∑

im∈Img

∆(Cman(img), CP (img)),

and an equivalent definition is used for GD.

Fig. 3. An example of the D criterion matching between manual counts and
automatic counts. The circles represent automatic counts, the square represent
manual counts. This example also demonstrates the shortsightedness of this
goal function, which has to be amended with the function ∆.

1) Evolutionary algorithm: An evolutionary algorithm is
used for the minimization of the above defined optimization
problem. The main reason for this choice is the general
applicability of this algorithm, robustness, and the fact that
at any point there are feasible solutions available, which can
be immediately presented to the user for assessment. The
framework of each counter is a sequence of filters for which
we demonstrated in [7] to be a very adequate sequence for
counting cells in electronic microscope images. This sequence
of filters was manually fine-tuned for the specific application.
Namely, each filter has a set of parameters, and the final count
is very sensitive to the specific values of these parameters. The
sequence of filters (i.e. image-processing algorithms) used for
counting is as follows:

1) Enhance contrast - the images have typically a very
low intensity and a very low contrast. By enhanc-
ing the contrast, many more features of the image
are visible, and the results of the counting improve
dramatically.

2) Threshold - in the second step, the image is converted
to binary format. For this a threshold is set, by using
either a specific value of the threshold or one of the
13 possible algorithms.

3) Watershed - by thresholding we typically loose the
boundary between different cells, and by watershed-
ing [9] this merged objects are divided again.

4) Holefill - after the application of the above filters, the
objects are not uniformly filled. With this filter, the
holes in the objects are filled, making it more suitable
for the next detection step.

5) Particle analysis - the last step of the algorithm
detects the remaining blobs of active pixels in the
image and decides whether to add an object to the
count or not. There are a few parameters upon which
this decision is made - the most important being
the minimum radius, the maximum radius, and the
eccentricity of the object. With this parameters the
counter can adapt to count only specifically shaped
objects or objects with specific sizes.

The parameters for these filters represent the chromosome,
as it is shown in Fig. 4, and a typical evolutionary algorithm

Fig. 4. An overview of the basic chromosome.

is used to evolve from completely random counters to very
successful ones. The pseudocode for the algorithm is shown
in Algorithm 1

Algorithm 1 The outline of the learning algorithm
1: population = randomPopulation(populationSize);
2: for gen ∈ [1, 2, . . . , numGen] do
3: if gen ≤ numGen

10 or gen%2 = 0 then
4: goal = G∆

5: else
6: goal = GD

7: end if
8: rankedPop = sortByFitness(population, goal)
9: pop1 = select(rankedPop,populationSize)

10: pop2 = select(rankedPop, populationSize)
11: population = crossover(pop1, pop2)
12: population = mutate(population)
13: population = take(population, populationSize)
14: end for

Lines 3-6 of the pseudocode demonstrate the aforemen-
tioned combination of functions ∆ and D. The first 10% of the
generations, the fitness function is only ∆. After this starting
generations, the D function is used in every other generation,
eliminating possibly corrupt counters that accidentally count a
similar number of cells, but on completely different positions
that those obtained by the manual count.

The selection (lines 8-10) of the counters which are used
for creating a new generation is done with rank selection, i.e.
the probability that a counter is chosen is proportional to its
rank in the current population.

The crossover (line 11) used is a one-point crossover,
i.e. a random position in the chromosome is chosen and the
two chromosomes exchange the parameters to the left of that
position. The mutation (line 12) is not a bit-level mutation (as
it is usually the case with genetic algorithms), but we used a
mutation on the parameter level, where a uniformly random
value is chosen from the parameter domain.

Ultimately, to obtain the next generation, only the best
counters are chosen in line 13.

B. The technologies used

The program was developed in the programming language
Scala. Scala compiles to the JVM, making the Learn123
application completely platform independent. Furthermore, a
wide range of de-facto standard Java tools can be used as a part
of the application. We integrated the entire ImageJ application
into Learn123; for the users to help them further manipulate
the images as well as for the algorithm itself, since most of the
filters in the counting algorithm are directly used in ImageJ.
Since a lot of researchers use this tool for their everyday work,
they can use Learn123 just to find the appropriate counter and
then use it entirely in ImageJ.

IV. EXPERIMENTS

The algorithm was developed and optimized based on
microscopic images obtained from several experiments the
collaborating research group provided, but one experiment was
selected for the evaluation of the program efficiency.

The experiments were done on Chinese hamster ovary cells
(CHO) grown in Ham’s tissue culture medium for mammalian
cells (HAM) supplemented with 10% fetal bovine serum (FBS)
at 37 ◦C in 5% CO2-enriched air at saturation humidity.
All experiments were performed on 24h old cell cultures in
exponential growth phase.

The cell viability experiment was performed as described
previously [2]. Briefly, cells were incubated with increas-
ing concentration of polycationic polymer coated magnetic
nanoparticles for 24 h and stained with two fluorescent dyes;
Hoechst 33342, which stained cell nuclei, and propidium
iodide (PI), which differentially stained dead cells. At least 15
visual fields at 200 × magnification were taken of each sample
for each used fluorescent dye using a fluorescent microscope
(Zeiss 200, Axiovert, Germany). The images were recorded by
MetaMorph imaging system software (Visitron, Germany) and
saved in lossless TIFF format.

For the Hoechst dye 173 images were obtained and for
the PI dye 159 images were obtained. All these images were
manually counted. Then (for each dye separately) a small
training set was chosen (15 images for PI and 13 images
for Hoechst). The manual counting was done again using
Learn123 and the learning process offered a set of the best
counters (according to the function G∆). The best offered
counters were used to perform the automatic count on the
entire set of images. Figures 5 and 6 show a scatterplot of
the comparison between automatic count (x-axis) and manual
count (y-axis).

The results show a very good correlation between the
manual and automatic counts. Only a couple of images in the

entire set exhibit a somewhat larger error. But even these errors
can be easily detected by quickly skimming through the results
in Learn123, and manually add or remove the few erroneous
points.

Fig. 5. Scatterplot showing a very good correlation between manual counting
and automatic counting.

Fig. 6. Scatterplot showing a very good correlation between manual counting
and automatic counting.

V. CONCLUSION

We presented a novel application for cell counting. The
application enables regular, non-technical users to find better
suited automatic counters, tailored specifically for their set of
images. This is one step towards overcoming the problem of
huge variations of the problems set, which can only be solved
by a great adaptability of the application. Learn123 offers a
simple workflow in which the user can teach the program how
to count, by only giving example counts on a small subset of
all the images.

The presented method was used on a fixed sequence of
filters, however it can easily be extended to any sequence.
Our future goal is to extend this application for any sequence

of filters that can be defined as an ImageJ macro. With
this extension Learn123 will become a truly flexible tool,
usable not only for cell counting, but for many other counting
applications.

ACKNOWLEDGEMENT

This work was supported by Slovenian Research Agency
within projects J4-4324,J2-6758,J3-6794 and young re-
searchers program.

REFERENCES

[1] Uthscsa imagetool, home page. web, 2014.
http://compdent.uthscsa.edu/dig/itdesc.html.

[2] Vladimir Boštjan Bregar, Jasna Lojk, Vid Šuštar, Peter Veranič, and
Mojca Pavlin. Visualization of internalization of functionalized cobalt
ferrite nanoparticles and their intracellular fate. International journal
of nanomedicine, 8:919–931, 2013.

[3] Jiyun Byun, Mark R Verardo, Baris Sumengen, Geoffrey P Lewis,
BS Manjunath, and Steven K Fisher. Automated tool for the detection of
cell nuclei in digital microscopic images: application to retinal images.
Mol Vis, 12:949–960, 2006.

[4] Anne Carpenter, Thouis Jones, Michael Lamprecht, Colin Clarke,
In Kang, Ola Friman, David Guertin, Joo Chang, Robert Lindquist,
Jason Moffat, Polina Golland, and David Sabatini. Cellprofiler: image
analysis software for identifying and quantifying cell phenotypes.
Genome Biology, 7(10):R100, 2006.

[5] Sean R Gallagher. Digital image processing and analysis with imagej.
Current Protocols Essential Laboratory Techniques, pages A–3C, 2010.

[6] Kang Li, Eric D Miller, Lee E Weiss, Phil G Campbell, and Takeo
Kanade. Online tracking of migrating and proliferating cells imaged
with phase-contrast microscopy. In Computer Vision and Pattern
Recognition Workshop, 2006. CVPRW’06. Conference on, pages 65–
65. IEEE, 2006.

[7] J. Lojk, L. Šajn, U. Čibej, and M. Pavlin. Automatic cell counter for cell
viability estimation. In Information and Communication Technology,
Electronics and Microelectronics (MIPRO), 2014 37th International
Convention on, pages 239–244, May 2014.

[8] Igor Marjanovič, Maša Kandušer, Damijan Miklavčič, Mateja
Manček Keber, and Mojca Pavlin. Comparison of flow cytometry,
fluorescence microscopy and spectrofluorometry for analysis of gene
electrotransfer efficiency. Submitted for publication, 2014.

[9] Roerdink and Meijster. The watershed transform: Definitions, algo-
rithms and parallelization strategies. FUNDINF: Fundamenta Infor-
matica, 41, 2000.

[10] Jyrki Selinummi, J Seppala, Olli Yli-Harja, and Jaakko A Puhakka.
Software for quantification of labeled bacteria from digital microscope
images by automated image analysis. Biotechniques, 39(6):859, 2005.

