

UNIVERZA V LJUBLJANI

FAKULTETA ZA RAČUNALNIŠTVO IN INFORMATIKO

Zoran Nebić

Agilni razvoj programske opreme v plansko
vodenih organizacijah

MAGISTRSKO DELO

Ljubljana, 2016

UNIVERSITY OF LJUBLJANA

FACULTY OF COMPUTER AND INFORMATION SCIENCE

Zoran Nebić

Agile software development in a context of
plan-based organizations

MASTER THESIS

Advisor: Professor Viljan Mahnič, PhD

Ljubljana, 2016

UNIVERZA V LJUBLJANI

FAKULTETA ZA RAČUNALNIŠTVO IN INFORMATIKO

Zoran Nebić

Agilni razvoj programske opreme v plansko
vodenih organizacijah

MAGISTRSKO DELO

Mentor: prof. dr. Viljan Mahnič

Ljubljana, 2016

iv

v

i. Acknowledgements

I would like to thank my advisor, Professor Viljan Mahnič for guiding and supporting me
over the years. You have set an example of excellence as a mentor and instructor, getting me
back on track after I almost gave up.

I would like to thank my fellow students, collaborators and colleagues who contributed to this
research. Without you this thesis would have never been possible.

I would like to thank my family for the love, support and constant encouragement I have
gotten over the years. In particular I would like to thank my dad. Without you I would have
never restarted this research, I know it meant a lot to you. I would also like to thank my sister,
my brother and Biserka: each one of you help me, in your own way, in everything I do.

I would also like to thank all my amazing friends, both old and new. You have helped shape
me into what I am today, and will continue doing that in the future. In particular I would like
to thank Milica. You have been a great encouragement and inspiration in the past couple of
years and I hope will be in many years to come. I would also like to thank Vitomir. You are
not only my friend, but also my chosen family.

ii. Dedication

I would like to dedicate this thesis to my dear mother. It was you who helped build the
intellectual curiosity that brought me to the world of academia in the first place. Even though
my life is on a different path now, critical thinking and open-mindedness remained. Thank
you!

vi

iii. Index

i. Acknowledgements ... v

ii. Dedication ... v

iii. Index ... vi
iv. List of Figures .. viii
v. List of Tables ... viii
vi. Abstract .. ix

vii. Povzetek magistrske naloge ... ix

a. Prispevek k trenutni raziskavi .. ix

b. Ključni rezultati iz teorije ... x

c. Ključni rezultati iz prakse .. xi
d. Omejitve raziskave .. xii
e. Nadaljnje raziskave in obeti ... xiii

1 Introduction.. 1

1.1 Motivation ... 1

1.2 Expected Results ... 2

1.3 Structure of the Thesis ... 2

2 Theoretical Background .. 4

2.1 Software Development in Practice .. 4

2.2 Heavyweight Models ... 5

2.2.1 Waterfall... 5

2.2.2 Discussion of Waterfall .. 9

2.3 Agile Development Methods... 10

2.3.1 Scrum ... 10

2.3.2 Kanban ... 13

2.3.3 Lean Software Development .. 14

2.3.4 Extreme Programming (XP) .. 15

2.3.5 Feature-Driven Development (FDD) ... 16

2.4 Conclusions ... 16

3 Waterfall versus Agile Development Methodology .. 18

3.1 Chapter Introduction.. 18

3.2 Company A: Agile / Scrum ... 18

3.3 Company B: Agile turned waterfall .. 20

3.4 Summary of Practice ... 23

vii

4 Case Study and Results ... 24

4.1 Research Questions .. 24

4.2 Research Tools ... 24

4.3 Data Collection and Analysis .. 25

4.4 Main Results .. 25

4.4.1 Demographics ... 26

4.4.2 General employee satisfaction .. 29

4.4.3 Waterfall development experiences.. 32

4.4.4 Perceived satisfaction during waterfall projects ... 34

4.4.5 Agile development experiences .. 35

4.4.6 Perceived satisfaction during agile projects ... 38

4.5 Conclusions .. 40

5 Summary of the Thesis ... 43

6 References .. 45

7 Appendix .. 50

7.1 Questionnaire ... 50

viii

iv. List of Figures

Figure 1: Implementation steps to develop a large computer program for delivery to a
customer. (Adopted from [42]) .. 6
Figure 2: Critical steps and iterations during Waterfall development [42] 6
Figure 3: The ideal iterative interaction between phases during Waterfall [42] 7
Figure 4: Sprint Cycle (Adopted from [44]) .. 11
Figure 5: Lean approach to building integrity (Adopted from [45]).. 15
Figure 5: Age distribution of the respondents .. 26
Figure 6: Age distribution comparison between Company A and Company B....................... 27
Figure 7: Highest level of education .. 27
Figure 8: Duration of company affiliation ... 28
Figure 9: Familiarity of technologies ... 28
Figure 10: Responses to the question "I feel valued as an employee" 29
Figure 11: Clarity of job requirements comparison ... 30
Figure 12: Adequacy of job training .. 30
Figure 13: Job satisfaction comparison between Companies A and B 31
Figure 14: Job satisfaction across all the respondents ... 32
Figure 15: Distribution of roles in waterfall methodology within the companies 33
Figure 16: Maturity of agile methodology components (higher is better) 34
Figure 17: Satisfaction while working in waterfall methodologies .. 35
Figure 18: Roles performed within agile methodology practice ... 36
Figure 19: Relative maturity level .. 37
Figure 20: Perceived satisfaction in Agile projects – combined data for both companies 38
Figure 21: Perceived satisfaction in Agile projects ... 39

v. List of Tables

Table 1: Rough comparison between Waterfall and Agile Development 10

ix

vi. Abstract

Agile software development has increasingly been used in the last fifteen years with the goal
of improving traditionally time-consuming and rather non-user friendly process of developing
software code. As implications of agile development and its impact on employees are still
unclear, it is important to understand the benefits, opportunities and limitations of this
development or collaboration mechanism. Thus, empirical evidence with implications for
decision makers in the field of corporate policy and software development is an open research
field.

This master thesis analyzes the potentials of agile software development and how this
approach can be used to support the development processes in companies, in terms of
efficiency, shorter time-to-market as well as better customer fit of the developed products or
services. By exploring some of the key features of different methods and processes, the
potentials and limitations of the selected approaches are analyzed and linked to recent
literature insights.

Keywords: agile development, Scrum, Kanban, corporate organizations, financial services

vii. Povzetek magistrske naloge

To poglavje vključuje povzetek magistrske naloge ter teoretične in praktične učinke, omejitve
in predloge za nadaljnje raziskave.

a. Prispevek k trenutni raziskavi

Odkar so se pred petnajstimi leti začele uvajati agilne metodologije, se razvoj programske
opreme premika od tradicionalnega, zaporednega poteka dela k bolj fleksibilnim možnostim
ter dvosmernim ali vzporednim procesom – še zlasti v podjetjih.

Poleg izboljševanja dragih, zamudnih in uporabniku neprijaznih procesov dostave programske
opreme je namen agilne metode razvoja programske opreme povečati fleksibilnost in
prilagodljivost ter se bolje prilagajati tržnim razmeram in povpraševanju strank.

Medtem ko je pred petnajstimi leti razvoj programske opreme potekal tako, da je ta lahko
ostala nespremenjena deset let, se danes izdaje programske opreme ali zahteve spreminjajo
zelo hitro. Ker so posledice agilnega razvoja in njegov vpliv na podjetja in razvojne ekipe še
zmeraj neznane, smo opravili empirično raziskavo, da bi razumeli prednosti, priložnosti,
tveganja ter omejitve agilnega razvoja in mehanizmov sodelovanja.

x

Ker nismo našli dovolj empiričnih dokazov z jasnimi usmeritvami za odločevalce s področja
politike gospodarskih združb in razvoja programske opreme, smo s svojim delom prispevali k
upravljanju agilnih metodologij v primerjavi s tradicionalnimi procesi, da bi raziskali in
razumeli odprto področje raziskav.

Ta magistrska naloga vključuje analizo zmožnosti agilnega razvoja programske opreme in
kako lahko ta pristop uporabimo za podporo procesom razvoja v podjetjih s ciljem večanja
učinkovitosti, skrajševanja časa do prodaje na trgu in boljše prilagojenosti razvitih izdelkov in
storitev strankam. Z raziskovanjem ključnih lastnosti različnih metod in procesov smo se
osredinili na vzpostavitev procesov agilnega razvoja v praksi podjetja. To smo povezali s
teorijo in najnovejšimi dognanji iz literature.

b. Ključni rezultati iz teorije

Razvoj programske opreme je ena najmočnejših industrij, ki po eni strani ustvari vse več
služb in podjetij ter po drugi veliko raziskovalnih tem. Razvoj programske opreme je danes
ena od glavnih dejavnosti v podjetjih, pa naj gre za vzdrževanje obstoječih programskih
rešitev in sistemov za potrebe vsakodnevnega operativnega poslovanja ali za posodabljanje
poslovanja z uvajanjem novih orodij in digitalizacijo podjetja z novimi tehnologijami.
Metodologije razvoja programske opreme so v obeh primerih izjemnega pomena.

Za empirično raziskavo smo izbrali bančno industrijo, torej uveljavljeno industrijo, v kateri
trenutno potekajo racionalne spremembe. Zato lahko sklepamo, da je tudi razvoj programske
opreme temeljni del procesa sprememb. Da bi pridobili celovit vpogled v to neraziskano
področje, raziskava temelji na kvalitativnih metodah raziskovanja, kar vključuje empirični
vprašalnik in ankete s strokovnjaki v primerjalni študiji primera.

Prvi korak magistrske naloge je bil pridobiti znanje o razvoju programske opreme v teoriji,
kot je opisano v literaturi. Vodilni programski inženirji teorijo razvoja programske opreme
pogosto opisujejo s povsem tehničnega vidika. Akademski svet vsekakor zavzema analitični
pristop pri razlaganju novih metod pri razvoju programske opreme.

Na primer tradicionalni proces razvoja programske opreme oz. tako imenovani slapovni
model je mogoče primerjati z vidiki vodenja projekta (programske opreme). Po drugi strani pa
so izbrane agilne metodologije, ki jih obravnavamo in ki vključujejo Scrum, Kanban, vitek
razvoj programske opreme, ekstremno programiranje ter funkcijsko voden razvoj programske
opreme, obrazložene s procesnimi koraki, tehnologijami, dostavo rezultatov in metodami
sodelovanja.

Prvi del te magistrske naloge vključuje pregled najnovejše literature in empirične študije
primerov iz zadnjih dveh desetletij. To poglavje vključuje različna dognanja iz začetnega
raziskovanja te teme in iz pregleda literature. Zajema tudi definicije plansko vodenega razvoja
programske opreme in spremembe proti modernim in agilnim metodologijam razvoja.

xi

Natančneje, 2. poglavje vključuje razprave o Scrumu (2.3.1), Kanbanu (2.3.2), vitkem razvoju
programske opreme (2.3.3), ekstremnem programiranju (2.3.4), funkcijsko vodenem razvoju
programske opreme (2.3.5) in slapovni metodi (2.2.1).

Med začetnim raziskovanjem literature smo pridobili naslednje ključne ugotovitve:

1. Slapovni ali tradicionalno strukturirani procesi razvoja so močnejši pri opredelitvi
zahtev, infrastrukture, vmesnikov, in kar je najbolj pomembno – pričakovanj in
funkcij za stranke na začetku razvoja.

2. V poznejših fazah so stroški in napor zaradi spreminjanja zahtev v slapovni metodi
zelo visoki. Testiranje in povratne informacije od stranke pa dobimo šele v
poznejši fazi procesa.

3. V nasprotju s slapovno metodo začetna vzpostavitev agilnega procesa zahteva
precej truda in časa, da proces dostave nove programske opreme postane učinkovit
proces z različnimi vlogami in odgovornostmi.

4. Vendar ko je agilni proces vzpostavljen, je dostava funkcij in povratnih informacij
hitrejša, stranka je lahko vključena v odločanje, hkrati pa se zmanjša kompleksnost
razvoja zaradi sprotne dostave posameznih inkrementov končnega izdelka.

c. Ključni rezultati iz prakse

Kot je mogoče videti v raziskavi trenutne literature o digitalnem bančništvu, je bilo pri
bančnih inovacijah ali agilnem razvoju (2. poglavje) opravljenih veliko raziskav, ki se
navezujejo na proizvod, projekt ali težave med procesom. Hkrati pa trenutno stanje raziskav
ponuja veliko odprtih vprašanj, na primer: katera metodologija razvoja programske opreme se
prednostno uporablja v bančništvu ali kako izbira metodologije vpliva na zadovoljstvo članov
ekipe, kakovost razvoja in zrelost procesa.

Da bi odgovorili na zastavljena vprašanja, smo si v 3. poglavju natančneje ogledali dva
praktična primera razvoja programske opreme v bančništvu. Podjetje A je primer agilnega
razvoja, medtem ko se podjetje B ukvarja s prehodom iz agilne metode v slapovno metodo.
Analizirali smo agilno metodologijo, ki je bila zastavljena v razmeroma neprijaznem okolju,
poleg tega smo si ogledali spremembo metode iz agilne v slapovno v občutno manj
strukturiranem in definiranem okolju. Na koncu smo oba primera primerjali in postavili
konkretna raziskovalna vprašanja za primerjavo teorije s praktičnimi primeri.

Čeprav se je v podjetju A zdelo, da z agilno metodologijo vse poteka, kot je treba, in je tesno
sledila teoriji in praksi metode Scrum, je bil projekt ukinjen po prvi fazi zbiranja sredstev. Ko
so pri razvojni in vodstveni ekipi nastale težave pri promociji projekta v velikem podjetju in
pri iskanju nadaljnjega financiranja, se je proces razvoja upočasnil. Rezultat te inovativne
iniciative je bila povsem razvita aplikacija – delujoča in integrirana v sistem podjetja –,
vendar je bila kljub temu po končanem razvoju redko uporabljena v praksi.

xii

Čeprav so se v podjetju B metodologije, strukture, finančni in drugi sporazumi ves čas
spreminjali, je okolje ostalo osredotočeno na pomembnost razvoja proizvoda, na njegovo
kakovost in funkcionalnost. Grožnje temu projektu so bile bolj notranje kot zunanje težave.

Na podlagi analize obeh primerov smo opravili anketo za člane ekipe v podjetju A in podjetju
B. Podrobnejša analiza rezultatov ankete in grafični prikaz podatkov sta predstavljena v 4.
poglavju.

Ključni rezultati:

a) Agilni razvoj je mogoče uspešno uporabiti v bančnem sektorju.

b) V določenih primerih se je morda primerno vrniti k slapovni metodi.

c) Zadovoljstvo članov ekipe v podjetju se odraža v projektih.

d) Medtem ko pravilna uporaba metodologije (agilne ali druge) ni garancija za uspešnost
projekta (podjetje A), njena odsotnost ali nestabilnost (podjetje B) lahko povzroči
dodatne težave v že tako občutljivem in zapletenem procesu razvoja programske
opreme.

Študija primerov je še pokazala, da teoretičnih konceptov ni zmeraj enostavno prenesti v
prakso. Pri tem bi lahko bila glavna težava ta, da se velika podjetja ves čas spoprijemajo s
spremembami in ne zmorejo zasnovati procesa dostave programske opreme iz nič, temveč
morajo prilagoditi trenutni model dostave (ali pogosto več modelov, ki potekajo hkrati).

Izbira kvalitativne metode za naše raziskovalno delo in še zlasti to magistrsko nalogo je bila
zelo dragocena, saj je podala zelo zanimiv vpogled v praktične primere. Empirične raziskave
v industriji in teorija, ki vključuje tradicionalni razvoj programske opreme, gredo z roko v
roki na področju metodologij agilnega razvoja.

Zato predlagamo nadaljevanje raziskav, saj pričakujemo, da se bodo nenehno dogajala nova
odkritja in rezultati za razvojne ekipe, stratege, odločevalce, tj. podjetja na splošno.

Na splošno velja, da bodo omejitve pri implementaciji novih konceptov in sprememb pri
glavnih procesih vedno vodile do kompromisov. Če se osredinimo samo na pravilno
integracijo standardiziranega procesa namesto na temeljne vrednote, lahko ogrozimo tudi
vzpostavitev agilne metodologije. Pri tem smo ugotovili, da če vsi pomembni deležniki, torej
člani ekipe, razumejo uporabljeno metodologijo, lahko hitro zavzamejo vloge in odgovornost,
ter najpomembnejše – lahko delajo kot ekipa.

d. Omejitve raziskave

Čeprav to raziskovalno delo ponuja pester nabor odgovorov na raziskovalna vprašanja, se
zavedamo tudi omejitev pri svojem delu:

 Izbrali smo kvalitativno metodo raziskave, kar pomeni, da na svoja vprašanja
odgovarjamo z opisnimi sklepi in ne s kvantitativnimi podatki.

xiii

 Čeprav je bila anonimnost udeležencev v anketi zagotovljena, so bili zelo zadržani pri
kritiziranju podjetja. To je lahko razlog za pozitivne odgovore o zadovoljstvu ekipe.

 Raziskovalno delo se je osredotočalo na proces razvoja in ne na njegove rezultate.

 Zaradi nadaljnjih omejitev, kar se tiče časa in podatkov, se zavedamo, da naši rezultati
niso univerzalni.

Ker so nekateri analizirani podatki notranji podatki podjetij, ta magistrska naloga ne podaja
popolnih odgovorov na raziskovalna vprašanja, temveč ponuja vpogled v primere podjetja v
srednji in vzhodni Evropi. Na odprto vprašanje, denimo, katera metoda je boljša za
upravljanje deležnikov ali izkušnjo stranke, ni bilo mogoče odgovoriti.

e. Nadaljnje raziskave in obeti

V nadaljnjih raziskavah bi bilo zanimivo primerjati ta dva primera v zvezi z učinkovitostjo
procesa, številom programskih napak, velikostjo ekipe, stroški razvoja, investicijo, strategijo
in perspektivo stranke.

Ne glede na to, ali so razvoj programske opreme in povezane metodologije v povezavi z
bančništvom analizirani v akademskem, komercialnem ali družbenem kontekstu, si ta tema
zasluži nadaljnjo raziskavo.

1 Introduction

1 INTRODUCTION

1.1 Motivation

The Agile Manifesto emerged in 2001 promising a revolution in the area of software
development, leading to faster time-to-market, better software and, ultimately, happier
customer and developer. It has brought “unprecedented changes to the software engineering
field”, and led to introduction of many software methods, tools, techniques and best practices
[23]. Today, fifteen years into this practice, the topic remains fresh and it is still debatable
whether agile methodologies fit all the industries and types of projects.

One example of an established traditional industry which is currently going through a rational
change – whether in terms of digitalization of previously analogue processes, or disruptively
novel services to customers, such as video chatting, crowdfunding or bitcoins – is banking. In
essence it is perceived as completely opposite to modern establishments in the idea of a
startup companies.

While a startup is built from a greenfield, not being afraid to be disruptive, different, and
following this Silicon Valley mantra: “Fail Fast, Fail Often” [8], banks are perceived as being
pillars of stability, and also a topic of special interest in the aftermath of 2008 banking crisis.

Although most of such traditional or large organizations have similar needs to change and
adapt to market influences, they all need compelling evidence before adopting new methods
and technologies and deploying it on a larger scale because of their size and complexity [34].
In most cases, new technologies and processes are not exchanged, but integrated with existing
ones. Hence, the costs invested into changes are higher, the complexity of different processes
and systems rises and in particular, the aspect of people getting used to their new roles and
responsibilities can cause further delays in development and delivery in product development.

The banking sector is also well known to rely on large and monolithic legacy systems [18],
developed in outdated and hard to maintain programming languages [48], not suitable for
agile development [16], and having to catch up with rapid advancements in software
development.

The mentioned characteristics make banking a perfect industry for observing agile
methodologies in practice, and this thesis will be based on personal experience from two
different multinational banking groups, with varying levels of project complexity and agile
acceptance level.

While case studies that analyze agile methodologies and provide an insight into software
development are existent in India [16], Pakistan [52], the US [12], [33], or Scandinavian
countries [28], [38], this thesis contributes to research by providing an overview of agile
practice in the CEE region, which seems interesting but not yet sufficiently investigated.

Introduction 2

1.2 Expected Results

Even prior to its “official” start in 2001 agile technologies have been very interesting to the
practitioners, resulting in sharp rise of published papers from 2000 to 2003, then being picked
up by rising numbers of research papers starting from 2003 through 2005 [24]. Considerable
research has been conducted with relation to product, project or process issues [21], but still
leaving many topics unanswered, specifically adaptability and extension of agile methods,
and, somewhat surprisingly also fundamental topics such as “what constitutes agility” [1].

This thesis aims to contribute to the field by providing analysis of potentials of agile in
traditional, plan-based companies, and its results in practice. In this context several
approaches will be evaluated for introducing agile teams in more traditional structure [28]
[12]. The study will also be investigating the emerging change from an individual work
towards self-managing teams, and providing an explanation to why this shift requires a
change in corporate processes, systems, collaborations tools, and above all, a reorientation not
only by developers but also by the management [36].

In reference to current findings in literature, agile methodologies have an impact on both
quality and quality improvements. Following the literature stream of experiments and case
studies that compare agile and waterfall development methods, this thesis includes both
theoretical investigations and frameworks as well as empirical evidence to provide
implications for software development practitioners in large enterprises.

The theoretical background in the first part of the thesis includes a literature review on
definitions of agile methodologies, including SCRUM, Kanban, i.e. in particular. The second
part of the thesis includes the research framework, arguments and survey questionnaires that
were derived from relevant case studies. The third part of the thesis is an in-depth analysis of
the conducted survey to other literature insights. The aim is to develop basic implications and
prospects of agile methodologies in banking industry based on the individual survey
experience and results.

1.3 Structure of the Thesis

Since the introduction of agile software development in 2001, software development –
especially in corporate settings – is increasingly shifting from traditional, rather sequential
workflows towards more flexible options and bidirectional or parallel processes. Obviously
the main reasons for such change are reaching from an increase in delivery flexibility, to a
higher customer satisfaction and adaptable project costs.

The first step in this thesis is to understand the software development practice in theory, as it
is described in literature. On the one hand, software development theory is mostly discussed
by some of the leading corporate software engineers from a rather technical perspective. On

3 Introduction

the other hand, academia seems to have a rather analytical attitude to explain the new methods
in software development. Chapter Theoretical Background includes an overview of the latest
literature and empirical case studies from the last two decades. Various insights that result
from the initial research of this topic and a literature review are discussed in this chapter. This
includes definitions of heavyweight software engineering, as well as the emerging changes
towards modern, agile development methodologies. In particular, Chapter 2 includes a
discussion of Scrum (2.3.1), Kanban (2.3.2), Lean Software Development (2.3.3), Extreme
Programming (2.3.4), and Feature-driven Development (2.3.5) next to the Waterfall method
(2.2.1).

The practical experience of both traditional and agile development methodologies is discussed
in form of an empirical case study in Chapter Waterfall versus Agile Development
Methodology. Hereby, two practical examples from corporate settings from the CEE region
are examined. In order to understand exemplary set-ups or organizations of software
development teams in the banking sector, this part of the thesis focuses on discussing
Waterfall and agile development from a practical point of view.

At the beginning of the study the question arises, whether the discussed methodologies are
implemented in alignment with theoretical assumptions, or to what extent they were adapted
or modified. Particularly corporate or managerial expectations to this case study would
include an answer to the question of which methodology is most efficient or brings the best
results. Since agile development is increasingly moving into the mainstream, this chapter
includes some basic implications for choosing the appropriate form of software development
for corporate settings. The chapter concludes with comparative arguments of both
methodologies.

In order to underline the case study with empirical data, Chapter Case Study and Results
contains the research framework, including concrete research questions (4.1) that were
designed to look into the described cases by providing a qualitative questionnaire or expert
interviews to team members. Further, this chapter includes a description of the research
process, including the used tools (4.2), as well as data collection and analysis steps (4.3).
Eventually, Chapter 4 concludes with the main results of the study (4.4) and conclusions to
the conducted research (4.5).

A summary of the thesis, as well as an outlook into further relevant problem statements or
open research topics that could not be included into this research work due to the scope of the
thesis are discussed in Chapter Summary of the Thesis. The remainder of the thesis includes a
reference list and the questionnaire that was used for the case study.

Theoretical Background 4

2 THEORETICAL BACKGROUND

2.1 Software Development in Practice

According to current literature, the process of software development is strongly linked to the
process of project management, or IT-project management in particular. In reference to [41],
organizations should develop and follow a well-defined project management process in order
to achieve the best delivery results. Furthermore, the main reasons why projects fail are
related to poor definitions or planning of requirements, resources, schedules, or unpredictable
risks. In order to mitigate such risks, a shift from a traditionally organized software
development process towards a flexible and adaptable process, in terms of product
development, is expected.

Since the traditionally organized software development teams are said to accurately
understand their customers’ needs and document these in requirement lists or feature
descriptions at the beginning of a development process, it is expected that the efforts for
feature changes and bug fixing will be minimal [45]. In other situations, i.e. when: a) it is not
possible to define the project scope or subordinate features at the beginning of the project, or
b) a customer feedback is needed for developing functional or visual details, an agile
methodology [11] can provide better results in terms of time-to-delivery, customer
satisfaction, or to some extent even team satisfaction. This thesis aims at exploring
particularly such differences or similarities between traditional and agile development
methodologies.

In order to understand, distinguish and compare different methodologies, this chapter focuses
on basic definitions and limitations of relevant software development methods. Based on the
literature discussion in this chapter, the projects or processes which are selected for the
empirical study are later classified into waterfall or agile methods and compared along the
research questionnaires.

5 Theoretical Background

2.2 Heavyweight Models

Traditional ways of software development are specified as heavyweight methodologies in
literature. They are based on a rather sequential process of development, including phases of
definition, design, coding, testing and eventually implementation of the software.

This thesis will focus on agile development and the benefits towards heavyweight
methodologies. Yet, in order to understand and determine the two ways of software
production, this section includes a discussion about traditional software engineering based on
the example of a structured, heavyweight method, - the Waterfall model. It is followed by a
discussion of common agile practices: Scrum (2.3.1), Kanban (2.3.2), Lean Software
Development (2.3.3), Extreme Programming (2.3.4), and Feature-driven Development (2.3.5)
next to the Waterfall method (2.2.1).

2.2.1 Waterfall

Waterfall development was initially described by Winston Royce [42] in 1970 based on his
experiences with the development of large software systems for the aircraft industry.
Regardless of size or complexity, Royce coins two essential steps of software development:
analysis and coding. In case of very simple implementation concepts, Royce narrows down
the process of small software development into exactly these two steps. Particularly if the
final product is to be operated by the developers themselves, this system seems both efficient
and intact.

However, organizing large software manufacturing only along the two phases is critical and
even “doomed to failure” [42]. Even though some of the additional development steps are not
going to contribute to the final product directly or at all, because of the larger size and
complexity, the development process needs to be extended.

Therefore, the process to support large-scale or complex software development which is
delivered to a customer can be described as following: 1) define systems requirements, 2)
define software requirements, 3) profound analysis, 4) program design, 5) coding, 6) testing
and eventually 7) operations. The following figure illustrates the sequential process. By
definition, each phase is succeeded by the next unidirectional process step.

Theoretical Background 6

Figure 1: Implementation steps to develop a large computer program for delivery to a customer. (Adopted from [42])

However, this strictly sequential process seems risky and in practice, examples show that
there is a step from the testing stage back to the program design, or even to the requirements
definition. This is illustrated in the following figure.

Figure 2: Critical steps and iterations during Waterfall development [42]

The rollback process happens mostly because the testing stage, which is scheduled rather late
in the development process can point out changes or differences between the analyzed and
eventually experienced solutions or possibilities. In order to fit the violated requirements or
designs, the change of the requirements can reach from light modifications up to substantial
changes in the design, which is a rather disruptive approach to the Waterfall methodology.

7 Theoretical Background

In this case, the process steps would have to be repeated and could cause up to 100 percent
postponements in delivery or increases in costs or other efforts. Ideally, a sequential but
bidirectional approach is noted to be fundamentally sound, as shown in the following
illustration. This almost spiral process is also described as Spiral Development in literature.
[30]

Figure 3: The ideal iterative interaction between phases during Waterfall [42]

According to literature, besides analysis and coding, which are enough to support a simple
software development process, five additional features must be added to the basic approach to
eliminate most of the development risks. These are described and discussed in the following.

Step 1: Program Design comes first

Before the initial analysis phase, the author inserts a preliminary program design phase, in
order to assure that the software will not fail because of technical resources, timing, or data
flux reasons. This way, both the program designers and analysts contribute to a meaningful
design process which will culminate in the proper allocation of time and technical resources.

This procedure presumes that: 1) the design process is started with program designers, not
analysts or programmers; 2) the data processing modes, interfaces and functions are designed,
defined and allocated even at the risk of being wrong; 3) an overview document that is
understandable, informative and current is written and acknowledged by all members of the
team.

Step 2: Document the Design

One of the common characteristics of Waterfall development is the issue of documenting
decisions. Certainly, Waterfall development requires more documentation than most

Theoretical Background 8

programmers, analysts, or program designers are motivated to put down. However, one of the
important rules of managing software development is the “ruthless enforcement of
documentation requirements” [42].

Various studies and books describe the documentation process as crucial to the holistic
software development process. Documentation is often described as an indicator for the
monetary value of the code. Undoubtedly, a well-documented code can beneficially support
the development process during the testing phase, continuing through operations as well as
redesign. [26] states that traditional software development processes i.e. the Waterfall model,
are characterized by “rigorously defined practices, extensive documentation, and detailed
planning and management.”

Similar to this approach, [32], who describe software engineering as not only the code and
programs but also all associated documentation and configuration data that is required to
make the software operate correctly. They further determine the differences between
professional and amateur software development by the documentation level. If a program is
written for a personal usage, documentation or user guides are optional, but if other users or
co-developers are involved, a professional documentation is required. For example, [45] have
a simplified view on the Waterfall process, and at the same time the authors put
documentation besides requirements gathering and analysis as one of the three most important
pillars of Waterfall.

Step 3: Do it twice

Following the documentation procedure, which is the most important process step and success
factor, [42] argues that the software delivered to the customer should in fact not be the first
finished deployment, but the second version. This step is somehow of importance, since the
delivered software should be quality assured and strongly tested before it gets to the customer.
Therefore, I would argue that this step is not obligatory or can be solved with the next step.

Step 4: Plan, Control and Monitor Testing

The testing phase is undoubtedly the phase which requires the most manpower, time efforts,
management decisions or schedule risks. Testing is particularly a high risk since it is
scheduled very late in the development process, and at that stage the alternatives or fallback
possibilities are most expensive or impossible. Therefore, instead of repeating the
development process twice as discussed in the previous step, it would be beneficial to bring
the testing phase forward in the development cycle. The feature of early-stage testing within
agile development is a strong advantage over traditional methodologies. Further advantages of
agile will be described in the next section, such as the stronger involvement of customers into
the production process.

Step 5: Involve the Customer

Undoubtedly, agile methodology stands for collaborative development of software and a
highly customer-oriented approach. Yet, at traditional approaches it is not less important to

9 Theoretical Background

involve the customer in a formal way already at the beginning, with commitments to features
and final delivery. Giving the customer room for changes after the requirements definition
will cause trouble and high expenses, in contrast to agile methodology.

2.2.2 Discussion of Waterfall

The prior literature analysis and discussion of the Waterfall model leads to three conclusions
which are described in this section.

Traditional or sequential software development can to some extent be aligned to aspects or is
based on the process of Project Management. Both approaches show a need for process stages
or project streams which will not necessarily contribute to the production of software, but are
yet necessary. In terms of project management, this would include project communication,
project management or steering tasks, project controlling, or optional project marketing. In
terms of software development, the steps which have less or a negative impact on the delivery
timing include documentation, decisions or steering rounds, and other organizational aspects.
It is one of important tasks of the Project Manager to sell the extended development approach
(which includes more than analysis and coding) to both the customer and the development
team.

From the time-related aspect, the sequential Waterfall model seems to be beneficial in the first
part of the process, whereas the requirements are strongly discussed and analyzed before
being set. Also, the fact that system requirements and infrastructural limitations are
considered in the program design phase is a plus, if no big changes are expected at a later
process stage. However, if some important system constraint or unexpected factor is
occurring, the efforts and costs changes within a Waterfall process literally explode and are
exponentially rising towards the end of the process. The following table shows a very rough
comparison of the Waterfall and agile methodology.

 Waterfall Model Agile Methodology

be
ne

fit
s

In the early stage of the process, Waterfall
or traditional, structured development
processes are stronger in definitions of
requirements, infrastructure, interfaces,
and most important – customer
expectations and features.

During an initial setup of an Agile
process, some notable efforts and time is
needed to take the delivery process to an
efficient, well-practiced process with
different roles and responsibilities.

Theoretical Background 10

dr
aw

ba
ck

s
In a later stage, the costs and efforts to
change requirements are exploding. Also,
testing and therefore also customer
feedback is scheduled only at a very late
process stage.

Once the Agile process is set up, the
delivery of features and feedback are
faster, the customer can be involved into
decisions and the complexity of the
production seems to be reduced by the
sliced product delivery.

Table 1: Rough comparison between Waterfall and Agile Development

Eventually, in waterfall, team roles are sufficiently defined and it is important to clarify the
responsibilities among the team members. This is very similar to the agile methodology, since
project roles are as important in both approaches. The thesis will further explore the roles and
responsibilities among team members and their contribution to the production. Due to
limitations in time and complexity for this work, the aspect of how much the team members
can contribute or change within the process, open questions will remain after the analysis and
can be researched in a further case study.

2.3 Agile Development Methods

In contrast to the traditional software development, agile development methods can be
described as more flexible, adaptable and to some extent lightweight models. Compared to the
previously discussed Waterfall model, Agile development is not limited to a sequential
workflow, but it also allows parallel streams [47] and above all, a much faster processing and
delivery.

Most of the agile methods promote iterative development in small increments and have a
strong focus on teamwork. A project plan or holistic designs are outlined only at a high level,
while the current iteration is going further into details. The teams are working self-organized
and decentralized and cover end-to-end functionality [45]. Unlike the traditional approach, the
teams equipped with the higher authority, rather than being managed or permanently
inspected by a decision board. In an agile environment, progress is measured easily by
executable (tested and working) code.

In order to discuss agile development, and as a preparation for the latter case study, this
section includes an overview of the common practices, such as Lean Software Development,
Scrum, Kanban, Extreme Programming (XP) or Feature-Driven Development (FDD).

2.3.1 Scrum

11 Theoretical Background

The term “Scrum”, which also has roots in rugby football, where it refers to a “tight-packed
formation of players with their heads down who attempt to gain possession of the ball” [53],
i.e. an “all-at-once” process [47], was introduced to information technology in the late 1990s
[43].

The Scrum approach is a general agile method, and it is widely spread across companies in
the CEE region. However, Scrum rather focuses on managing iterative development than on
specific technical approaches to agile software engineering. Scrum does not include the use of
programming practices such as pair programming and Feature-driven (or test-driven)
development methods. It can therefore also be used along with a technical agile approach,
such as Extreme programming (XP), to provide a management framework for the project.

Referring to Barton [9], the Scrum method stands for a “constant search to simplify complex
things” by iteratively reducing the size and complexity, i.e. studying small segments of a large
setting and making it simpler through a well understanding.

There are three phases in Scrum [44]. The first stage is an outline planning phase where you
establish the general objectives for the project and design the rough software architecture,
similar to the Step 2 within Waterfall, which was explained in the previous section.

Figure 4: Sprint Cycle (Adopted from [44])

Scrum is an extremely efficient and streamlined process of managing and tracking teams. This
happens particularly in the series of incremental sprint cycles. The cycles build the central
phase of Scrum, which is also the main differentiator from all other approaches. Eventually, a
Scrum project closes with a wrap-up of the project, a completed documentation and user-
manuals, as well as a retrospective and lessons learned from the project.

Going into details of the Scrum sprint cycle, it can roughly be described as a planning and
delivery unit. Each Sprint consists of a planning of the work to be done, a voting and selection
of the features which will be developed within the concurrent Sprint, and finally the
development of the committed features.

A Scrum Sprint has following characteristics [44], [45], and [20]:

Theoretical Background 12

 Sprints are a fixed length, usually timed between two and four weeks;
 They correspond to a release development in Extreme programming method, which

will be described later in this chapter;
 A list of work to be done, the so called “product backlog” is the starting point for each

sprint planning;
 A successful sprint planning meeting implies that the product backlog was reviewed,

prioritized, the risks and obstacles were assigned.
 The customer is closely involved into the sprint planning and can ask for new

requirements or influence the prioritization of the backlog at the beginning of every
sprint;

 The review and selection of the features to be implemented involves all project team
members, which can also impact the priorities of the features;

 Hence, the selection and voting process is organized democratically in contrast to the
organization and decision making approach from the traditional development.

 After the selection and common agreement on the sprint content, the team follows
their sprint goals rather self-organized;

 All team members meet on a daily basis for a very short update meeting, a so called
“Daily stand-up” (which is limited to around 15 minutes and the participants are
usually standing in order to keep the meeting short and focused) to review the progress
and reprioritize work if necessary;

 During this stage, the team members are not having alignments with the customer or
the rest of the organization, instead the so-called “Scrum master” acts both to support
the team and the development process, as well as to protect them and absorb external
distractions or requests.

 At the end of a sprint (or at the beginning of the next cycle), the team gets together for
a lessons learned or a so-called “Retrospective”. Hereby, it’s not about the features or
technical input. The retrospective is a place to discuss the team-related topics rather
than technical expertise.

 A separate meeting, the so-called “Sprint review” is open to the customer,
stakeholders and the rest of the organization, it includes a presentation and review of
the developed features. With a review meeting, the current sprint closes, and the next
one starts, until the project scope was accomplished.

As the explained characteristics indicate, the Scrum method allows more than a single Project
Manager to take decisions. Unlike a common manager, the Scrum master is rather a facilitator
[44] who prepares meetings, tracks the backlog, takes notes on decisions, measures the
progress, and leads the communication process. Moreover, in the scrum approach, all team
members, stakeholders or the customer can take a stronger influence in the development
process.

In its original form, Scrum was designed for teams where all team members could get
together every day and join the daily stand-up meetings. However, product or software

13 Theoretical Background

development increasingly involves teams that are distributed or team members from different
locations. Consequently, there is not only one valid Scrum process, but it is also individually
modified [25] or developed into a method for distributed development environments – which
are also part of the latter case study in this thesis.

2.3.2 Kanban

Besides Scrum, Kanban is one of the widely spread iterative approaches of software
development. Besides Lean, Kanban was also introduced in the manufacturing industry in
Japan, in the 1950s. Kanban stands for flow control, it was developed to support the just-in-
time production [4]. The software industry has been increasingly using Kanban in managing
software development projects, as it shows a large potential to increase the interactions
between the team members [37].

Similar to the Scrum board, the main characteristic within the Kanban method is the Kanban
(i.e. Japanese word for signboard), which is used to document the workflow. According to an
empirical study by [37], during their study, they observe that “with Kanban you are aware of
what other people are doing and you can always help them or monitor their work”. However,
the final results of their study reveal that the importance of the Kanban board may actually
decrease when the interpersonal communication rises. A very positive benefit is, that this
setting seems to foster communication among team members, even if there is no collaboration
in between.

Although the effects of Kanban are often analyzed based on practical experience [47] or
systematic literature reviews [4], there appears to be a lack of reported scientific research
addressing Kanban in the context of software development. In fact, Kanban in software
engineering is still a young and unknown topic, as it was only introduced into this context in
2004 by David J. Anderson [6].

Studies show that the benefits of Kanban include customer satisfaction, improved software
quality and lead time delivery, an earlier feedback and reduction in customer defect reporting,
improved communication between stakeholders as well as increased developer motivation.
However, around half of the experiments appear to be experience reports, or are reports at a
rather general level.

The literature also revealed that Kanban was often mixed with other agile practices by
organizations. But, in order to use such “hybrid” approaches, further efforts on educating the
employees as well as the organizational culture were also revealed by a large literature review
[4]. Eventually, as there is no unified way of operating a Kanban model, a combination of
other agile methods and Kanban is described as beneficial.

Looking towards the case study in this thesis that researches the question of teams and their
motivation, the expected results from questionnaires and deeper interviews should contribute

Theoretical Background 14

to the empirical research and add further examples of agile methods in practice, or agile
versus waterfall (e.g. [46]) to the current research state.

2.3.3 Lean Software Development

Lean software development may also be considered as a rather hybrid approach. In particular,
as argued by Barton [9], organizations that have adapted their software development system
based on Scrum consider their work as Lean implementation. However, Scrum is considered
as Lean not because of the similarity to a lean product development by Takeuchi and Nonaka
[49], but because of its adaptive system.

Historically, the origin of lean product development or productions originates from the
Japanese industry and is sometimes coined as the “Toyota Production System”. In contrast to
heavyweight approaches such as Waterfall, Lean is alluding to ‘lightweight’ and quite
opposite to bureaucracy or regulations [45].

In reference to [45], the Japanese approach of Lean production is further considered as a
synonym for the increase of productivity, flexibility, speed of turn-around, and quality by
continuous improvement and continuous adaptation to a changing environment.

Lean software development is based on the best practices of Lean production, and it was
shaped by Tom and Mary Poppendieck [39]. The authors argue that truly lean organizations
have a strong competitive advantage because they respond much disciplined and rapidly to
market demands, rather than trying to predict the future. Lean software development is all
about creating software that is able to adapt to changes in its domain – so to say it provides
“high discipline along with high responsiveness to change” [40].

The approach involves a set of following guidelines:

 Eliminate Waste: Focusing on doing only what adds value for customers and
therefore doing it without delays;

 Amplify Learning: Using frequent iterations and regular releases to provide
feedback;

 Delay Commitment: Deciding at the last responsible moment;
 Deliver Fast: The maturity of a lean organization can be measured by the speed of

responding repeatedly and reliably to customer needs;
 Empower the Team: By assembling an expert workforce, providing technical

leadership and delegating the responsibility to the workers, the process is
decentralized and democratized.

 Build Integrity in: Although decentralized and democratized, the process relies on
having disciplines in place to assure that a system will integrate and delight
customers at any moment.

 See the Whole: Using measurements and incentives which allow focusing on the
overall goal.

15 Theoretical Background

Figure 5: Lean approach to building integrity (Adopted from [45])

Simplifying a complex development process in terms of reducing the complexity of software
stacks or an ongoing implementation is extremely difficult and requires a lot of experience in
how to slice work into chunks. The idea behind Lean software development is to keep the
overall process flexible enough to be able to respond to scope changes.

Even though it is described as lightweight and further away from bureaucracy, the process
needs to be organized and monitored. This approach needs powerful tools to support the
collaboration and communication within and across teams, and can be supported by Web 2.0-
based tools.

2.3.4 Extreme Programming (XP)

Unlike Scrum, Kanban or Lean software development, which focus on the organization of the
development process, “eXtreme Programming” (often abbreviated as XP) [10] also implies
modeling activities, or the use of specific programming practices, such as a test-first
approach.

Similar to a Sprint from the Scrum approach, extreme programming also includes series of
releases. A Scrum sprint thereby corresponds to a release development in the XP method.
Extreme programming also includes requirements modeling, such as user stories and
sketches, it is very explicit about documentation and business decisions [5]. However, it also
minimizes modeling efforts by taking a test-first approach to design a requirement in which
you develop your tests before you develop your code.

In fact, this may let you think that the approach is similar to the traditional methods, where
you plan and think about your software before you actually build it. Because of the stage of
understanding what should be built, extreme programming seems to require less modelling
efforts. What really distinguishes this development method from the other discussed methods
is the fact that developers usually team up into pairs (Pair Programming) as well as
particularly the test-before-developing approach. In this sense, it is crucial to clearly
understand the customer requirements and transform them into code.

Theoretical Background 16

2.3.5 Feature-Driven Development (FDD)

One of agile methods that are based on a strong requirements engineering is the so called
Feature-driven Development. The requirements are hereby described in an object-oriented
manner, including the term “feature” as the main characteristic [35]. The approach of Feature-
Driven Development is defined by three phases: Initiation, Methodology Construction and
Termination.

The Initiation phase includes the definition of features, frameworks, classes, and the
architecture of the methodology. It is followed by the Construction phase, in which a project
manager forms the teams in order to prioritize the development of the features. It seems
obvious that this approach is rather similar to the Waterfall method, at which a project
manager is empowered to setup and define the team and their tasks. In contrast to that, an
agile setting like Scrum is rather autonomous and democratic. Within the final phase of
Termination, the product is tested, deployed and maintained. Again, in reference to the
traditional methodologies, this final stage, which includes a formal definition and
documentation of the used methodology can be described as similar to a Project Definition
document as seen in Waterfall.

However, Feature-Driven Development is one of the young agile methodologies. It was
initially coined in 1999 by Peter Coad and Jeff De Luca in their work related to Java modeling
with UML [19]. The so called Coad Methodology was a predecessor of the Feature-Driven
Methodology and is strongly related to UML.

Similar to Scrum, within FDD the features are described in a language which is clear to both
the developers and the customers. They are cut into small deliverable tasks that can be divided
into short iterations. Hence, multiple related tasks are put together into a work package at the
start of an iteration phase, which is scheduled between one and three weeks. After a work
package is completed, the results are given to the customers for testing, and the next iteration
starts [17].

The next section includes a brief conclusion on the insights from the literature review.

2.4 Conclusions

This section provides a summary of the discussed methods. A first comparison on the
traditional versus agile methodology was provided in Section 2.2.2. Besides the comparative
view that was provided earlier, the remainder of this research will focus on open questions
after the literature review, such as:

1) How to describe waterfall and agile software development in practice?
2) Does any of the two methods affect the satisfaction of team members?

17 Theoretical Background

3) Does a selection of one of the two methods affect the quality of development?
4) How mature is the development process disregarding the used methodology?

In order to response to the questions above, it is important to point out that the traditional
Waterfall sequence is said to be cost-intensive and rather restricted to the sequential workflow
of the process. As argued earlier, it is originally based on two main steps, analysis and coding.
Later enhanced with further steps, however, the process also includes some steps which are
not going to contribute to the final product directly or at all, but because of the larger size and
complexity, the development process needs to be administrated. In comparison to this, an
agile method seems to be the right method in case of an ongoing delivery of software,
constant development requirements or a “sliced” financing model.

The goal of the following case study, which is described in Chapter 3 is to find answers to the
mentioned questions.

Waterfall versus Agile Development Methodology 18

3 WATERFALL VERSUS AGILE DEVELOPMENT METHODOLOGY

3.1 Chapter Introduction

In the comparative study two banking corporations are viewed side by side. The companies
themselves and the projects done within the companies share many similarities, but also
exhibit many differences. The author has directly been involved with both companies,
working in projects being compared in the following sections. The conclusions of the case
study have been subsequently examined by then-colleagues of the author, but a certain degree
of bias is to be inferred.

The companies are not going to be named to avoid possible prejudice to the conclusions, and
for legal reasons.

Company A is a multinational banking cooperation with headquarters in Austria. It has
branches or subsidiaries, as well as joint ventures, in a number of CEE countries, serving
retail and corporate clients, as a full-service bank. By asset size it is placed in the top 100
world banking groups [51].

Company B shares with Company A many characteristics: it is also a multinational banking
corporation, with a strong focus on CEE countries (e.g. Czech Republic, Slovakia, Serbia,
Slovenia, Croatia etc.), serves all clients ranging from retail to large corporate clients, and is a
full-service banking group. Some of the differentiating characteristics include: wider market
presence (including Turkey, Poland, Russia, Ukraine, etc.), higher total assets (about four
times) [51] and higher relative position in the European sector.

Business and market specifics are not taken as a factor in this survey, as it was deemed that
they have little or no impact to the everyday work of the delivery team member.

3.2 Company A: Agile / Scrum

Project examined in the Company A was part of a wider initiative within the area of medium
to larger corporate clients, which was regarded at the time to be within the overall strategy of
the corporation framed within the statement: "We want to be the first bank of every medium
company in the country".

The effort was organized not simply as a project, or a group of projects, but within the new
organizational structure, with a clear hierarchy. Every project within this structure was
initiated by the department head, through direct contacts with potential external clients (large
corporate clients) or internal customers (e.g. key account managers). After a certain period of
inception, the ideas were formed into vaguely described products, the staffing of the

19 Waterfall versus Agile Development Methodology

department was initiated, and the development methodology was chosen to be Scrum, using
Java programming language, as is common within the company.

Majority of people hired internally were former project managers, with significant knowledge
and experience in banking industry. The selection was done as a mix of internal and external
employees in order to make so called "innovation factory", and mostly given the task of
product owners and scrum masters. Several external developers were hired on a limited
contract to join the team in their development process. In total, at its prime, the extended agile
team had about ten people, including facilitators, testers, business partners, team leads, etc.

Team set up was done with extensive support of an external consulting company, which
helped setup trainings in Agile methodologies, specifically Scrum. The consultants had
significant experience with implementation of Scrum in numerous companies, including the
ones that had remote working places, and those that had very complex projects with many
teams, being synchronized through "Scrum of scrums". Training was also attended by mid
and higher management, as well as business counterparts of the expected projects. The
general feeling after the trainings was overtly positive, and enthusiastic. The support of the
external company extended into the implementation (helping with scrums, weekly
retrospectives), and testing.

In retrospective, this approach has all the characteristics of a well thought and well executed
transformation from a general waterfall approach, dominant in the company, to an agile
methodology of scrum.

However, the external environment has changed significantly within the frame of a few
months. This change is summarized in a changed credo of the top management "We want, as
has always been in the past, to remain the best retail bank in our markets".

This change has been gradual, but nonetheless disruptive: the financing was cut, and changed
from lump-sum to iterative, gate-based process (similar to stage-gate model, Cooper), where
the team (or management) had to go periodically for approval of additional funds.
Additionally, the original scope of 4-5 projects/products was cut to one, with all the others put
on best-effort scenario, e.g. minimum external costs can be involved, and/or other
departments have to be bought-in to become investors.

External environment was also the cause of another perceived problem: a limited involvement
of internal clients. Due to budgetary limitations the project was forced to widen the scope of
the product from larger corporates to small and medium enterprises as well. With such
distributed ownership often some divergent ideas happen, which can ultimately threaten the
delivery of the project. Taken into consideration the threat to the future of the department, the
scrum master and the product owner, both internal employees of the department started more
often to compete for the dominant role in running the relationship with the business.

During the implementation phase budgetary problems became more obvious, and this put
more pressure on the external team members. Internal members grew also restless because no

Waterfall versus Agile Development Methodology 20

additional projects could be started, so they were increasingly outsourced to different
departments, for running traditional waterfall projects.

In the end the product was launched, but no subsequent data can be acquired on whether it is
used and the user satisfaction. Out of the starting 10 team members, 2 remain. This brings us
to conclusion, that even the best structured agile transformation processes will remain
unsuccessful if not reflecting the general strategy of the company.

3.3 Company B: Agile turned waterfall

Company B started a significant, multi-year, multi-million-euro project of revamping the
whole customer-facing banking portal, including public website, internet and mobile banking,
as well as building a brand new development department from scratch, in one of CEE
countries.

Although the aforementioned components are closely interweaved, the same content being
delivered on all channels through Omni-channel approach, and using the same Service-
oriented architecture (SOA), in this case study for clarity and simplicity we focus only on
Internet-banking component.

Project kick-off was in August 2014, starting with the scope. At this point the time dimension
of the project was set to 10 months, from inception to delivery, with top management
influencing heavily this decision. Starting with this target date all the planning, resource
allocation and infrastructure scoping was reverse-engineered in order to meet the deadline.

Starting with the scope, and cost, the requests for proposal were requested from the partners
of Company B, both for technology stack, and the actual implementation. Two different
partners were selected, first partner (from now on: Framework partner) for development
framework, and second partner (from now on: Development partner) for implementation, and
the development department was to be placed into one of the CEE countries with booming IT
scene.

Development partner at the time of winning the tender did not have any employees in the
chosen country, and service-oriented architecture was not present. After the initial hiring
those early teams started working on mockups and we formed an opinion that these
prototypes were not properly communicated to the management, resulting in unrealistic
expectations. One of the interviewees said: “What they did then can hardly be called
development”.

Government of the project was given to Development partner, with their project managers and
team leads. They also employed the large number of developers, bringing them to about 50 at
their peak. Company B internally and externally employed an additional about 20 of (internal
and external) team leads, business analysts, scrum masters, project managers, project
management office, testers, management, etc.

21 Waterfall versus Agile Development Methodology

The selected family of methodologies was agile, specifically Scrum, but no real, in-depth
training was given, and no supervision was present to ensure adhering to agile principles,
resulting with each team within the development department practically running its own
scrum-like approach.

Supervision was kept internally to Company B, but without hands-on approach, the Company
B supervision had to rely on feedback they received from Development partner.

Approximately 6 months in the project, in February 2015, the second office was setup at a
different location, and first employees were hired for this office, with some employees being
transferred or commuting between the offices.

In March 2015, first services were exposed on Enterprise service bus (ESB), being the
backbone of the SOA architecture, and for the first time allowing end-to-end integration.
Product-owner (PO) group got extended at this time, in an attempt to bridge the apparent
problem of understanding the requirements of the project.

In June 2015, the project was placed in User acceptance test stage, and some 1500 defects
were recorded, making it apparent that the deadlines have not been met and that there was
some lack of understanding from the management on the stage and maturity of the project. At
this time the developers were grouped into two streams: fixing stream and evolution stream,
making the complexity even harder to manage.

At this time sprints, with sprint planning, daily stand-ups and retrospectives are taking place,
but the general problem was reported as being “The seniority of the factory was really low,
making it difficult to build self-managing teams”.

Development partner at this time pointed out the problems were caused by the changing
technology stack from Framework partner, but in general this was not held enough to excuse
for Development partner’s poor management of the project.

Therefore, in August 2015, the project management and team leads were internalized,
keeping, for the time being, developers employed with Development partner.

In September 2015, all the distributed teams were dismissed and the single office was kept.
The development was almost fully internalized, with Framework partner now being in charge
of technical leading and refactoring. Teams were reshuffled trying to distribute seniority in
most efficient way. Scrum was used for new development, while Lean software development
was employed for bug fixing.

By November 2015, several deadlines were broken, leading to final departure from Scrum
(December 2015), reverting gradually to waterfall methodology. Delivery is done at the end
of each day. In a morale boosting attempt the “end of development” was announced, even
though it was clear that not all the necessary features are ready to be shipped or haven’t even
started to be developed.

Next “go-live” date was scheduled for January 17, 2016, at which time there were still 500
unresolved bugs. By April 2016, number of bugs is reduced to about 100.

Waterfall versus Agile Development Methodology 22

At this point the development is done through an interesting combination of methodologies “a
mix of everything, maybe best called Defect driven development”:

 All the new development is done in sprints of 3-4 weeks which result in code
being delivered to system-integration environment

 Bug fixing on this code is done through lean software development which is
concluded by the unit being published on user-acceptance environment

 After bug fixing the unit is deployed to production environment
 There are no scrum masters, no sprint planning, but the role of product owner is

kept
 Tasks are allocated to team members by the respective team leader who then tracks

the statuses

It is currently unclear about the consequences of such changes in methodologies before the
product is fully shipped. While [46] conclude that it is not completely uncommon that
companies fallback to waterfall when they see that their current approach is failing this
approach was not fully taken because it was concluded that no full waterfall can be achieved
at this stage.

At the time of writing this thesis the product is in pilot phase and is yet to be shipped to full-
range external clients, as the customer (i.e. business side of the corporation) refuses to accept
the product which is performing worse in speed or quality. Those issues still remain to be
resolved.

This case study brings us to conclusion that even the projects which are fully aligned with the
corporate strategy, provided with enough funds and other resources, can struggle to meet the
goals. Principal causes can be found to be:

 arbitrary set deadlines by the management,
 insufficient monitoring of the process,
 changing development framework,
 junior developers,
 changing organizational structure,
 changing employment,
 big fluctuation of employees,
 lack of experience of the management,
 postponing the decisions until it was too late,
 not adhering to the principles of agile.

Given such history, it is not to be expected that anything will change for the better when the
methodology itself changes.

One of the working theories when approaching this company and this project was that IT
projects will suffer from the environment more than internally. This was to be expected
because Banking and financial industry came to be regarded as rigid and resisting the change,
but from our interviews and personal experience with Company B and its partners we came to

23 Waterfall versus Agile Development Methodology

conclusion that most of the reasons for poor performances are coming from internal reasons,
listed above.

3.4 Summary of Practice

In the preceding sections we looked at two examples from the banking industry, with very
different environments and experiences encountered. While in the Company A it seemed that
everything was set up perfectly for success, the environmental circumstance prevailed and in
the end the project was abandoned. The outcome of the rather innovative initiative, a fully
developed application – even though functional and integrated with company’s systems – was
rarely used in practice after development.

In Company B, the methodologies, structures, financial and other agreements were
continually changing, but the environment stayed focused on the necessity of the product
development, and its quality and functionality. In this case the project seems endangered with
its internal problems, and not the external issues.

As a result of these two short studies, we can conclude that while proper application of a
methodology (agile or otherwise) is not a guarantee of a successful project (Company A), its
absence or instability (Company B) can attribute to additional difficulties in otherwise
anyways sensitive process of software development.

Case Study and Results 24

4 CASE STUDY AND RESULTS

Following the literature review in Chapter 2 and the discussion of Waterfall versus Agile
methods in practice in Chapter 3, this chapter focuses on the hands-on research process
behind this thesis. The chapter is organized as following: an introduction into the derived
research questions in Section 4.1; the used research tools in Section 4.2; explanation of the
data collection and analysis in Section 4.3; the main study results in Section 4.4, and
eventually conclusions on the conducted research in Section 4.5.

4.1 Research Questions

Besides the introductory theoretical comparison of the two software development approaches
in Chapter 2 and the insights into practical cases of both methods in Chapter 3, this section
focuses on answering the following research questions in a deeper sense:

1) Is there a singular recipe for introducing agile software development in corporations?
2) Which factors affect the satisfaction of team members?
3) Which factors affect the quality of development in both methods?
4) How mature is the development process disregarding the used methodology?

Eventually, in order to develop basic conclusions for corporations on the one side, and
contribute to academia on the other side, this research work focuses on answering the research
questions after insights into theory and literature on software development, enhance the
insights with remaining open or unanswered questions and compare the theory to practical
examples of software development

4.2 Research Tools

For the purposes of this questionnaire a relatively simple tool was required, having the
following characteristics:

- Online tool, to provide for territorial distance and time difference between the
participants

- Supporting principal question types: e.g. multiple choice, short answer, long answer,
Likert scale, mandatory and optional answers, and basic presentation/exclusion logic

- Data export and basic reporting

Having in mind the abovementioned requirements, as a principal data collection tool we
selected online platform – SurveyGizmo, primarily for the reasons of speed and flexibility of

25 Case Study and Results

building an online survey. Since the survey was by invitation only and we didn’t require any
marketing or tracking tools we selected the Basic plan.

Later in the process, when extracting and analyzing the details of the survey, we used
Microsoft Excel to compare quantitative data and provide visual survey insights.

4.3 Data Collection and Analysis

The data was collected through the above mentioned research tools during the period between
June and August 2016. In terms of time-dependency, it is not crucial for the case study at
what moment the data was collected, as the case study focuses on the impact of a particular
methodology on the final product development. In case of a rather quantitative analysis of the
two methodologies, such as the questions, which approach is more effective, i.e. produces less
bugs or proves a faster bug-fixing process, the time variable would be crucial.

We applied the previously used framework or questionnaire by [7]. However; the questions
were adapted to the examined cases. In particular, the questions concerning the appreciation
or recognition of team members were pointed out to understand the motivation of team
members in their particular role. The adapted questions from the original study [7] was used
to question the maturity of agile development methodology, which was also applied within
this research work. An additional questionnaire part was added to the initial survey, in order
to examine the employees’ satisfaction, as well as the appreciation of a specific methodology.

We used an online survey to collect data from team members from both Case A and Case B.
The developed questionnaire contains multiple-choice questions based on Likert scale, as well
as open-ended questions. The team members’ participation to the study was optional and there
were no preselection criteria on who should participate in the study. Also, the participants
could choose to remain anonymous during the study, which was used rarely. In general, we
found all roles among the respondents to the survey, so it can be said that the survey results
are broad and holistic. Due to the limitations within this research work, the survey was not
decoded based on gender, age, etc. The focus of this study was a comparative view on the two
cases, rather than insights into demographic data.

SurveyGizmo, the selected research tool offers a variety of visualizations of the questionnaire
results and therefore also allows interesting insights into results of the study. For example, we
created multiple visualizations of selected questions and thereby compared Company A to
Company B and to the overall result. Our experience with the tool has shown that it is very
supportive during empirical analysis, including the setup, monitoring and evaluation of the
questionnaires. The next section provides a detailed analysis on several research questions.

4.4 Main Results

Case Study and Results 26

The survey was filled out 12 times, with 6 respondents from the Company A, and 6 from
Company B. This was within the expected range, as the invitations were targeted to relevant
team members that also expressed the readiness to participate in post-survey interviews. Out
of all the participants who started the questionnaire very high 80% finished all the mandatory
questions. Remaining 20% were taken into consideration when observing the aggregated
results, but were excluded from comparison between the companies. In the following sections
main results are examined.

4.4.1 Demographics

Figure 6: Age distribution of the respondents

Figure 5 shows overall distribution of participant ages, with similar number in the age group
of 35-44 and 25-34, with a remaining 13% below 25. It is also interesting to compare the
Company A and Company B with regards to age, as shown in Figure 6.

13,3

46,7

40
18 to 24

25 to 34

35 to 44

27 Case Study and Results

Figure 7: Age distribution comparison between Company A and Company B

It is interesting to see that Company A has exactly the same proportion of people in the range
of 25-34 as Company B has in the 35-44 range, and almost the same result is for the
proportions in 25-34 and 35-44 respectively. This discrepancy can be explained by the newly
formed team in the completely new department in Company B.

Education structure is the same for both companies, and highest level is in both cases 60%
Master (or similar) degree, and 40% Bachelor, as can be seen in Figure 7.

Figure 8: Highest level of education

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

18 to 24 25 to 34 35 to 44

Age distribution

Company A Company B

40

60

Bachelor's degree

Master's deegree

Case Study and Results 28

Another data corroborating the aforementioned picture of Company B running a startup-like
project is the comparison of years of company affiliation (Figure 8).

Figure 9: Duration of company affiliation

In Figure 8 we can again observe that majority of respondents in Company A have more than
5 years of affiliation, while the respondents from Company B have 1-2 years, which means
that they were hired specifically for the project, and have no prior affiliation with the
company.

It is notable that all the participants state that they have experience in agile methodologies,
and most state experience in waterfall, as can be seen in Figure 9.

Figure 10: Familiarity of technologies

000% 010% 020% 030% 040% 050% 060%

Less than 3 months

6 months to a year

1-2 years

2-5 years

more than 5 years

Company B Company A

000%

020%

040%

060%

080%

100%

120%

Waterfall
development

Spiral
development

Agile
development

Other - Write
In

Overall

Company A

Company B

29 Case Study and Results

When comparing both companies, the biggest difference is that all the participants from
Company B state that they are familiar with Waterfall development, compared to only 50%
from Company A. This also confirms the observances about the methodology uncertainties
and methodology switching in Company B.

4.4.2 General employee satisfaction

In this section of the questionnaire we tried measuring overall satisfaction of the
employees/contractors with the company in question. Given the number of respondents it
would be statistically irrelevant trying to correlate to methodologies in a relevant company.
Therefore, the main goal was to get participants thinking about their job satisfaction prior to
discussing the employed methodologies and to provide context information for planned
personal and targeted interviews.

When asked whether they feel valued as employees (or contractors) the responses in both
companies were identical: 16,7% strongly agreed, 50% agreed, 33,3% neither agreed nor
disagreed, but counting in the anonymous responses, there is a drop in “agree” and “strongly
agree and a rise in “strongly disagree”, as seen in aggregated chart on Figure 10.

Figure 11: Responses to the question "I feel valued as an employee"

Even though the number of responses are too few to form firm conclusions, we would suggest
a theory that the really disgruntled employees feel reluctant to share their dissatisfaction in
fear of provoking retaliation in the job environment, even though it would be really interesting
for this or future studies to investigate the sources of this dissatisfaction.

6,7

33,3

46,7

13,3 Strongly disagree

Neither agree nor disagree

Agree

Strongly agree

Case Study and Results 30

When looking into job requirements, in the case of Company A, the distribution is more
evened on the scale, and more on the positive side, having 50% agree, or strongly agree, as
compared to 16,7% in Company B. This can be seen on Figure 11.

Figure 12: Clarity of job requirements comparison

Even larger contrast appears in the following question: “I receive the training I need to do my
job well”, where Company A has 66% of responses in Agree or Strongly agree, while again
only 16,7% of Company B employees feel the same, as shown in Figure 12.

Figure 13: Adequacy of job training

All the rest of the questions asked in the area of employee satisfaction can be examined in
Figure 13.

000% 010% 020% 030% 040% 050% 060%

Disagree

Neither agree nor disagree

Agree

Strongly agree

Company B Company A

000% 010% 020% 030% 040% 050% 060%

Disagree

Neither agree nor disagree

Agree

Strongly agree

Company B Company A

31 Case Study and Results

Figure 14: Job satisfaction comparison between Companies A and B

From figure 13 we removed the neutral positions in order to highlight the leaning positions,
remaining answers show that while in both companies respondents are satisfied with their
work schedules, on most other questions Company A satisfaction rates lower. The most
obvious discrepancy is shown in the “job advancement” question, where Company B positive
responses amount to double of negative, and exactly the opposite can be seen in Company A.

There can be multiple explanations for this: perhaps the maturity of the team and relatively
more rigid structure in Company A also accounts for lower vertical mobility. It is also
observed that, on average, respondents from Company A have been working for the company
longer (see Figure 8), and are of higher average age (see Figure 6). While this research cannot

017%

017%

017%

033%

017%

033%

083%

017%

050%

017%

017%

017%

017%

017%

My supervisor cares
about me as a person.

I am satisfied with my
current work schedule.

There is a clear path
for job advancement.

My thoughts and
opinions are heard.

I have job security.

The Company clearly communicates
its goals and strategies to me.

Company A job satisfaction

Strongly disagree Disagree Agree Strongly agree Buffer

017%

033%

033%

083%

033%

067%

067%

017%

050%

017%

017%

My supervisor cares
about me as a person.

I am satisfied with my
current work schedule.

There is a clear path
for job advancement.

My thoughts and
opinions are heard.

I have job security.

The Company clearly communicates
its goals and strategies to me.

Company B job satisfaction

Disagree Agree Strongly agree

Case Study and Results 32

provide answers for this due to scope and time restrictions it would be an interesting topic for
future research.

Full scope of answers, including the neutral responses, and additionally the survey postings
for which no company affiliation could be determined (e.g. partial, anonymous, etc.) can be
seen in Figure 14.

Figure 15: Job satisfaction across all the respondents

Numbers depicted in Figure 14 don’t differ greatly from those previously discussed, even
though by including anonymous replies we see a negative rise in a category which was
previously completely positive: “work schedule”. This is in line with prediction that
employees with a negative experience with the company will avoid disclosing it within the
survey.

4.4.3 Waterfall development experiences

In this section (and contained subsections) we explored both the maturity of the waterfall
methodology in each of the companies, and the personal experience of waterfall development
within the respective company.

Our respondents have been filling a variety of roles, which can be due to very flexible
environment (or chaotic) or due to the roles being poorly defined on the respective company’s
level. The reported spread of roles can be seen in Figure 15.

027%

027%

033%

053%

033%

053%

053%

033%

073%

020%

053%

033%

027%
My supervisor cares

about me as a person.

I am satisfied with my
current work schedule.

There is a clear path
for job advancement.

My thoughts and
opinions are heard.

I have job security.

The Company clearly communicates
its goals and strategies to me.

Strongly disagree Disagree Neither agree nor disagree Agree Strongly agree

33 Case Study and Results

Figure 16: Distribution of roles in waterfall methodology within the companies

While usually Waterfall doesn’t define the role of a Product owner, one of the respondents
reported this role in the freely editable answer field. This is interesting, and good topic for the
post-survey interviews. When comparing the respondents by company we observed that
employees of Company A reported 5 roles, while the employees of Company B reported 8,
including the freely editable entry.

Maturity of waterfall process was measured by statements reflecting the target properties
which a waterfall methodology should have: well developed project plan, formal process, etc.
Each of the offered responses has an associated value, starting with 0 in case of complete non-
conformity to the principle, 1 when partially conforming, and 2 when fully conforming.
Several statements could have in some cases the same values, as it was perceived to bring the
same benefit to the maturity of the process. Results of this sections can be seen in Figure 16.

000% 010% 020% 030% 040% 050% 060% 070%

Developer

Business analyst

Technical analyst

Project manager

Architect

Quality Assurance

Team lead

Solution manager

Product owner

Company B Company A

Case Study and Results 34

Figure 17: Maturity of agile methodology components (higher is better)

As can be observed in Figure 16 “Requirement management” (including a formal sign-off)
and “Quality assurance” are regarded as the strongest points of the waterfall implementation
in both companies. On the other hand, the weakest points of overall waterfall implementation
are “Understanding of user needs” (and their analysis) and “Stability of the scope”. In both of
these weak points the perception is that components are significantly worse in Company A in
comparison to Company B. One area where perception in Company A is significantly better is
“Post-production maintenance”, probably due to maturity of the environment, not necessarily
the methodology.

4.4.4 Perceived satisfaction during waterfall projects

In this section of the questionnaire we attempted to measure perceived satisfaction with the
company and the team within the context of waterfall methodology. The block consisted of 6
questions using Likert scale. If each option was valued from minimum 1 points for highest
dissatisfaction to maximum 5 points for highest satisfaction, then all participants’ answers
across all questions show 63,77% of maximum possible outcome.

Satisfaction perception per question is shown in Figure 17.

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Project management plan

Understanding of user needs

Requirements management process

Functional requirements document

Stability of the scope

System design document

Quality assurance

Release management

Post-production maintainance

Overall Company A Company B

35 Case Study and Results

Figure 18: Satisfaction while working in waterfall methodologies

What we find interesting about Figure 17 is how the answers shifted from mostly negative
(the first question asked is shown in the bottom of the graph) to mostly positive, and it is also
pretty interesting to observe the abrupt switch. From “When faced with difficulty I find ways
to resolve them” to which most respondents (88,90%) answered “With some difficulty”, to
the very next question “I am proud of the work I do for my company” 87,5% answered either
“Somewhat” or “Very enthusiastic”.

4.4.5 Agile development experiences

Agile development block of questionnaire followed the main principle of waterfall block:
general characteristics, maturity and satisfaction. In this and following two sections we will
present and interpret the corresponding data. Our correspondents were first asked to provide
some background information on their roles within the respective company, the results can be
seen in Figure 18.

056%

044%

089%

044%

044%

022%

075%

056% 033%

078%

How do you feel about the company

How do you feel about your
work at the company

When faced with difficulty I find
ways to resolve them.

I was/ I am/ proud of the work that I do
 for my company

I was (I am) enthusiastic about the work that I do
for my company

I find (I found) the work that I do for my company
of meaning and purpose

Very negative Negative Neutral Positive Very positive

Case Study and Results 36

Figure 19: Roles performed within agile methodology practice

Those participants who reported being a part of a delivery team had one or more of the
following roles (each role having equal frequency of occurrence):

 Development
 Testing (QA)
 Specialist
 Process Coordinator
 Kanban Master
 Team Lead
 Project manager

Following three groups questions were designed to measure the maturity of the waterfall
process. Having in mind a relatively high number of questions in this group (37) instead of
the Likert scale we used Yes/No questions asking the participants to select “Yes” if they
mostly agree, or “No” if they mostly disagree. While the idea behind this block was to have
everyone select either option, we allowed questions to be skipped.

For the purpose of interpretation of agile methodology maturity, we assigned (1) point to
“Yes” answers and (0) to “No”. Graphical view of the results can be seen on Figure 19.

Delivery team
member

36%

Scrum master
7%

Product owner
43%

Project
Manager

7%

Architect
7%

37 Case Study and Results

Figure 20: Relative maturity level

Reported characteristics of agile in Company B suggest lower maturity than in Company A,
which was expected due to more thorough education strategy and more structured approach of
Company A to Agile methodology (as described in chapter 3).

When looking into individual questions, in a large number of answers Company A showed
significant positive difference. If we single out only the questions where the maturity index
(percentage of „Yes“ answers in all answers to a question) difference in favor of Company A
is more than 40% we get this list:

 If used, hardening (or stabilization) iterations are scheduled in advance (+42%)
 There is a clear and common understood definition of done/acceptance tests for

completed features (+43%)
 Dependencies are well-managed (+50%)
 End-of-iteration demos occur (+50%)
 Unit testing occurs (+50%)
 Stories are estimated in points (+63%)
 Stories (user requirements) are written in a way that describes how a user can benefit

from the feature (+67%)
 Retrospectives occur periodically (+67%)

Number of points where Company B is more mature is significantly shorter, even when the
difference threshold is lowered to 20% it yields only 7 questions:

 Scope of each release is planned in advance (+20%)
 Team members work on finishing each iteration as a team, helping each other along

the way as needed (+25)
 Team members pair-program at appropriate times (+25%)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

Company A Company B Overall

Maturity

Maturity

Case Study and Results 38

 Product management or someone in that role is integrally involved (+27%)
 Iterations are loaded to the right capacity (+33%)
 Code reviews occur (+63%)

From the comparison of major advantages between Company A and Company B we conclude
the relative strengths of Company A are in the requirements and process management, while
Company B is stronger in the technical and practical aspects of software development (e.g.
code review, pair programming, team work).

4.4.6 Perceived satisfaction during agile projects

As part of the survey we measured the perceived satisfaction of the participants who reported
having experience with agile methodologies in the company relevant for the survey. Findings
are shown in Figure 20.

Figure 21: Perceived satisfaction in Agile projects – combined data for both companies

In Figure 20 the neutral answers have been removed for easier readability of the trend across
answers. Interestingly the most neutral answers were present in the question “How do you feel
about your team” which might mean that the employees in general are cautious when
expression opinions about others, especially when it might be perceived as a personal and not
professional opinion.

Resolving job related problems present a difficulty a significant 58% of participants, which
we find might pose a problem in the future if it is not dealt with.

017%

050%

017%

042%

042%

025%

017%

042%

042%

025%

050%

033%

025%

How do you feel about your team?

How do you feel about your
work in the team?

When faced with difficulty I find
ways to resolve them.

I am proud of the work that I
do for my team.

I am enthusiastic about the work
that I do for my team

I find the work that I do for my team
of meaning and purpose

Buffer Very dissatisfied Dissatisfied Satisfied Very satisfied Buffer

39 Case Study and Results

All other questions yielded prevailingly positive answers, ranging from 67-75% of positive
(satisfied or very satisfied) answers, with only exception of “Team satisfaction” where the
positive is 42%, but additional 50% are neutral.

When analyzing results at a company level we generated data visualized in Figure 21.

Figure 22: Perceived satisfaction in Agile projects

When comparing the data between the companies, not only does the perceived satisfaction in
Company A seem lower, but the extremes are also more pronounced. In order to compare the

017%

067%

033%

050%

033%

033%

033%

033%

050%

033%

How do you feel about your team?

How do you feel about your
work in the team?

When faced with difficulty I find
ways to resolve them.

I am proud of the work that I
do for my team.

I am enthusiastic about the work
that I do for my team

I find the work that I do for my team
of meaning and purpose

Company A

Very dissatisfied Dissatisfied Satisfied Very satisfied

017%

017%

033%

033%

050%

033%

017%

050%

050%

017%

017%

050%

033%

033%

How do you feel about your team?

How do you feel about your
work in the team?

When faced with difficulty I find
ways to resolve them.

I am proud of the work that I
do for my team.

I am enthusiastic about the work
that I do for my team

I find the work that I do for my team
of meaning and purpose

Company B

Very dissatisfied Dissatisfied Satisfied Very satisfied

Case Study and Results 40

companies in absolute terms we created „satisfaction index“ by associating points to answers
following the principle:

 Strongly Disagree (1)
 Disagree (2)
 Neither agree nor disagree (3)
 Agree (4)
 Strongly agree (5)

and then dividing it by the maximum possible number of points for the relevant group of
participants.

The resulting „satifaction indicators“ came rather close: 67% for Company B, and 69% for
Company A. While Company A has more responses which are either „Disatissfied“ or „Very
dissatisfied“ it also has more of the „Very Satisfied“ responses actually bringing its index
ahead of Company B.

4.5 Conclusions

This research work can be summarized along the following four research questions which
were derived from the literature research.

1) How to describe waterfall and agile software development in practice?

Our study shows that Company A, the example of agile development method in practice, had
a clear and defined production process and stakeholders, but somehow less defined team
roles. Even though the process was considered as stable, a further development of the product
was discontinued due to insufficient project funding or undefined strategy, and the first
release of the product was eventually rarely used.

Compared to this, Company B, which we described as switching from agile to waterfall
development, can be described as continuously changing. Its methodologies, structures,
financial and other agreements were continually adapted, but the environment stayed focused
on the necessity of the product development, and its quality and functionality. In this case the
project seemed endangered with its internal problems, and not the external issues.

As a result, a proper application of a methodology (waterfall or agile) as it is described in
literature, or a stable environment are not guarantees of a successful project, but rather
additional complexity factors in the anyways sensitive processes of software development.

2) Which factors affect the satisfaction of team members?

41 Case Study and Results

To answer the team-related question, our study shows that the team members in Company A
were slightly older and their company affiliation was longer (5 years) than in Company B (1-2
years). Interestingly, both methodologies show that team members are (strongly) satisfied
with their jobs and roles. However, in case of Company A or the agile methodology, the
requirements to the roles and team responsibilities were perceived as clear and well accepted
– even though the first question shows the opposite.

In terms of contracting or employability, there was a notable difference between internal
employees and external – to some extent temporary contracted – team members and
consultants in both companies. This issue is rather notable on the organizational or
administrative side. For example, external and internal employees usually use different
systems to track their work efforts, holidays, etc. Yet, this indifference is rather noted from a
human resources or people development perspective. In terms of collaborative team
performance, this difference was not perceived neither during the projects, nor during the
conducted surveys. In reference to the questions about the team affiliation, both internal and
external employees react with the feeling of equal team membership.

3) Which factors affect the quality of development?

If we consider that specific training is influencing the quality of development, we may notice
the difference in training and specific education of both teams. While in Company A (agile
development) team members strongly agreed that they receive the training they need to do
their job well, it seems that Company B (waterfall) could invest into raising the trainings for
team members. Yet, agile development teams seem to feel secure (and therefore satisfied) in
their position if the overall strategy is known and executed.

As a result, we can argue that the choice of methodology has less impact on the quality of
product development when compared to the organizational factors, such as budgeting,
strategy, communication and other business factors. One of the results of this research work is
that the implementation of agile development methodology requires a change not only in
managing the teams, but also in providing the right collaboration and communication tools, as
well as a mind-shift in managerial expectations. For example, agile development includes a
constant delivery of software, which is also regularly presented to the managers or
stakeholders; however, the presented software at the review or demo meetings in an agile
setting are mostly not final products, but rather a work-in-progress. Hence, managers or
stakeholders need to be educated that the process is rather ongoing than sequential.

4) How mature is the development process disregarding the used methodology?

During the literature research we experienced that there are countless proposals to agile
development in practice. Later, within the empirical study we noted that proposals emerge
within companies and each company seems to have an individual approach to product
development. Both company examples show that agile development is a young methodology.

Case Study and Results 42

It seems as if there is no perfect or standardized agile process to be implemented in practice.
While waterfall seems to exhibit a higher level of maturity in theory, our study results
describe agile development as the more mature development method.

43 Summary of the Thesis

5 SUMMARY OF THE THESIS

This chapter includes a summary of the thesis as well as the theoretical and practical
implications, limitations, and suggestions for further research

Software development is one of the most propulsive industries generating more and more jobs
and businesses on the one hand, and research topics on the other hand. It is not new that
software development is among the core operations within companies. Whether it is
maintaining the existing software and systems, to so call „run the business“, or introducing
new tool and digitalizing the business through novel technologies, to innovate – software
development metodologies play a major role in both cases.

We chose the banking industry for our empirical study, since it is considered as an established
traditional industry which is currently going through a rational change. Therefore, we assume
that software development is core part of the change process as well. In order to receive
qualitative answers to a rather unchartered research field, this research work is based on
qualitative research methods, including an empirical questionnaire and expert interviews in a
comparative case study.

During the initial literature research, we derived the following key insights:

1. Waterfall or the traditional, structured development processes are stronger in
definitions of requirements, infrastructure, interfaces, and most important – customer
expectations and features in an early stage of development.

2. In a later stage, the costs and efforts to change requirements in Waterfall are
exploding. Also, testing and customer feedback is scheduled only at a very late
process stage.

3. In contrast to Waterfall, during an initial setup of an Agile process, some notable
efforts and time is needed to take the delivery process to an efficient, well-practiced
process with different roles and responsibilities.

4. Once the Agile process is set up, the delivery of features and feedback are faster, the
customer can be involved into decisions and the complexity of the production seems to
be reduced by the sliced product delivery.

As seen during the research of current literature in the field of digital banking, banking
innovation or agile development – which can be found in Chapter 2; considerable research
has been conducted with relation to product, project or process issues. Yet, many topics are
left unanswered, such as: which is the beneficial software development methodology in the
field of banking, or how does the selection of a methodology affect the satisfaction of the
team members, the quality of development, or the process maturity.

In order to answer the stated questions, we have taken a deep insight into two practical cases
of software development in banking in Chapter 3. Company A is the example of agile
development, while Company B deals with a shift from agile to Waterfall. On the one hand,

Summary of the Thesis 44

we analyzed agile methodology which was well set up within a rather unhospitable
environment. On the other hand, we discussed a shift from agile towards waterfall in a
significantly less structured and defined surrounding. Eventually, we compared the two cases
and tried to derive further research questions in order to compare theory with practical
examples.

Based on the previous research steps, we have conducted a survey to interview team members
from both Company A and Company B. A deeper analysis can be found in Chapter 4.

The main results include that: a) agile development is successfully applicable in banking
environments; b) there might be cases when it is appropriate to revert to waterfall and c) team
members’ satisfaction with the company gets reflected in projects.

Although this research work delivers a very broad set of answers to the research questions, we
are aware of the limitations of our work, such as:

 We have selected a qualitative research method, which means that we provide
descriptive conclusions to our questions, not quantitative data.

 Even though the anonymity of the survey applicants was guaranteed, they were
reluctant to criticize the company. This could be a reason for positive answers related
to team satisfaction.

 This research work focused on the development process itself, not on the outcomes.

Due to further limitations in time and data, we are aware that our results are not universal.
Since some of the examined data is considered as internal data from corporations, the thesis
does not provide a fully proven answer to the research questions, but rather an insight into the
corporate examples in the CEE region. For example, it was not possible to answer the open
question of which method is better for stakeholder management or customer experience.

For further research, it may be interesting to compare the two examples in relation to: process
efficiency, number of bugs, team size, costs of development, investment, strategy, and above
all the customer perspective.

Essentially, no matter whether software development and related methodologies in the context
of banking are analyzed in an academic, commercial or social context, the topics merit further
research.

45 References

6 REFERENCES

[1] P. Abrahamsson, K. Conboy and X. Wang, "‘Lots done, more to do’: the current
state of agile systems development research", European Journal of Information System, no.
18, pp. 281-284, 2009.

[2] P. Abrahamsson, M. Marchesi, F. Maurer (Eds.), Agile Processes in Software
Engineering and Extreme Programming, Proceedings of the 10th International Conference on
Extreme Programming, Sardinia, Italy, 2009.

[3] P. Abrahamsson, M. Marchesi, G. Succi (Eds.), Extreme Programming and Agile
Procresses in Software Engineering, Proceedings of the 7th International Conference on
Extreme Programming, Oulu, Finnland, 2006.

[4] M. O. Ahmad, J. Markkula and M. Oivo, "Kanban in software development: A
systematic literature review," 2013 39th Euromicro Conference on Software Engineering and
Advanced Applications, Santander, 2013, pp. 9-16. doi: 10.1109/SEAA.2013.28

[5] Ambler S (2002). Agile modeling – effective practices for extreme programming and
the unified process. Wiley, New York

[6] Anderson, David J., Kanban: successful evolutionary change for your technology
business. Blue Hole Press, 2010.

[7] T. Arthur: "Agile Adoption: Measuring its Worth", 2013., SAS Institute, Inc.

[8] R. Babineaux and J. Krumboltz, Fail Fast, Fail Often: How Losing Can Help You
Win, New York: Jeremy, P. Tarcher / Penguin, 2013.

[9] B. Barton, "All-Out Organizational Scrum as an Innovation Value Chain," System
Sciences, 2009. HICSS '09. 42nd Hawaii International Conference on, Big Island, HI, 2009,
pp. 1-6. doi: 10.1109/HICSS.2009.57

[10] Beck, K. Extreme Programming Explained - Embrace Change. Reading, MA:
Addison Wesley Longman, Inc. 2000.

[11] K. Beck et al. Manifesto for Agile Software Development.
http://www.agilemanifesto.org, Apr. 2001.

[12] A. Begel and N. Nagappan, "Usage and Perceptions of Agile Software Development
in an Industrial Context: An Exploratory Study," First International Symposium on Empirical
Software Engineering and Measurement (ESEM 2007), Madrid, 2007, pp. 255-264. doi:
10.1109/ESEM.2007.12

[13] B. Boehm, W. Brown and R. Turner, "Spiral development of software-intensive
systems of systems," Proceedings. 27th International Conference on Software Engineering,
2005. ICSE 2005., Saint Louis, MO, USA, 2005, pp. 706-707. doi:
10.1109/ICSE.2005.1553673

References 46

[14] Cadle, J., Yeates, D., 2008. Project Management for Information Systems. 5th ed.
Harlow, England: Prentice Hall.

[15] M. Ceschi, A. Sillitti, G. Succi and S. De Panfilis, "Project management in plan-
based and agile companies," in IEEE Software, vol. 22, no. 3, pp. 21-27, May-June 2005. doi:
10.1109/MS.2005.75

[16] S. Chopra, "Implementing Agile in old technology projects," Reliability, Infocom
Technologies and Optimization (ICRITO) (Trends and Future Directions), 2014 3rd
International Conference on, Noida, 2014, pp. 1-4. doi: 10.1109/ICRITO.2014.7014757

[17] Ashraf Ferdouse Chowdhury and Mohammad Nazmul Huda, "Comparison
between Adaptive Software Development and Feature Driven Development," Computer
Science and Network Technology (ICCSNT), 2011 International Conference on, Harbin,
2011, pp. 363-367. doi: 10.1109/ICCSNT.2011.6181977

[18] I. Christou, S. Ponis and E. Palaiologou, "Using the Agile Unified Process in
Banking," IEEE Software, vol. 27, no. 3, pp. 72-79, 2010.

[19] Coad,P.,Lefebvre,E.,DeLuca,J. (1999). Java Modeling in Color with UML:
Enterprise Components and Process. Prentice-Hall.

[20] D. Cohen, M. Lindvall, and P. Costa. An Introduction to Agile Methods. Advances
in Computers, pages 1–66, 2004.

[21] O. C. de Melo, S. D. Cruzes, F. Kon and R. Conradi, "Interpretative case studies on
agile team productivity and management," Information and Software Technology, vol. 55, no.
2, pp. 412-427, 2013.

[22] T. Dingsøyr et al. (eds.), Agile Software Development, DOI 10.1007/978-3-642-
12575-1_1, ©Springer Verlag Berlin - Heidelberg 2010

[23] T. Dingsøyr, S. Nerur, B. VenuGopal and M. Nils Brede, "A decade of agile
methodologies: Towards explaining agile software development," The Journal of Systems and
Software, vol. 85, no. 6, pp. 1213-1221, 2012.

[24] T. Dybå and T. Dingsøyr, "What Do We Know about Agile Software
Development?," IEEE Software, vol. 26, no. 5, pp. 6-9, 2009.

[25] A. Elshamy, A. Elssamadisy, “Applying agile to large projects: new agile software
development practices for large projects”, Proceedings of the 8th international conference on
Agile processes in software engineering and extreme programming, June 18-22, 2007, Como,
Italy.

[26] H. C. Estler, M. Nordio, C. A. Furia, B. Meyer and J. Schneider, "Agile vs.
Structured Distributed Software Development: A Case Study," 2012 IEEE Seventh
International Conference on Global Software Engineering, Porto Alegre, 2012, pp. 11-20. doi:
10.1109/ICGSE.2012.22

47 References

[27] Taghi Javdani Gandomani, Hazura Zulzalil, Abdul Azim Abdul Ghani, Abu
Bakar Md. Sultan and Mina Ziaei Nafchi, “OBSTACLES IN MOVING TO AGILE
SOFTWARE DEVELOPMENT METHODS; AT A GLANCE“ Journal of Computer
Science, Volume 9, Issue 5, Pages 620-625. DOI : 10.3844/jcssp.2013.620.625

[28] L. Gren, R. Torkar and R. Feldt, "Work Motivational Challenges Regarding the
Interface between Agile Teams and a Non-Agile Surrounding Organization: A Case
Study," Agile Conference (AGILE), 2014, Kissimmee, FL, 2014, pp. 11-15. doi:
10.1109/AGILE.2014.13

[29] Hassan Hajjdiab and Al Shaima Taleb, “ Adopting Agile Software Development:
Issues and Challenges. International Journal of Managing Value and Supply Chains
(IJMVSC) Vol. 2, No. 3, September 2011. DOI: 10.5121/ijmvsc.2011.2301 1

[30] H. A. Henke, "Spiraling up and down the spiral development staircase [software
development process]," Professional Communication Conference, 1994. IPCC '94
Proceedings. Scaling New Heights in Technical Communication., International, Banff, Alta.,
1994, pp. 401-405. doi: 10.1109/IPCC.1994.347490

[31] Kabira, M., Rusub, L.: A Framework for IT Project Development in a Large
Company (2013), Procedia Technology, Volume 9, pp. 687-696

[32] Kotonya, Gerald, and Ian Sommerville. Requirements engineering: processes and
techniques. Wiley Publishing, 1998.

[33] T. J. Lehman and A. Sharma, "Software Development as a Service: Agile
Experiences," 2011 Annual SRII Global Conference, San Jose, CA, 2011, pp. 749-758., doi:
10.1109/SRII.2011.82

[34] M. Lindvall et al., "Agile software development in large organizations," in Computer,
vol. 37, no. 12, pp. 26-34, Dec. 2004. doi: 10.1109/MC.2004.231

[35] R. Mahdavi-Hezave and R. Ramsin, "FDMD: Feature-Driven Methodology
Development," Evaluation of Novel Approaches to Software Engineering (ENASE), 2015
International Conference on, Barcelona, Spain, 2015, pp. 229-237.

[36] N. B. Moe, T. Dingsøyr and T. Dybå, "A teamwork model for understanding an agile
team: A case study of a Scrum project," Information and Software Technology, vol. 52, no. 5,
pp. 480-491, 2010.

[37] N. Oza, F. Fagerholm and J. Münch, "How does Kanban impact communication and
collaboration in software engineering teams?," Cooperative and Human Aspects of Software
Engineering (CHASE), 2013 6th International Workshop on, San Francisco, CA, 2013, pp.
125-128. doi: 10.1109/CHASE.2013.6614747

[38] M. Penttinen and T. Mikkonen, "Subcontracting for Scrum Teams: Experiences and
Guidelines from a Large Development Organization," 2012 IEEE Seventh International

References 48

Conference on Global Software Engineering, Porto Alegre, 2012, pp. 195-199. , doi:
10.1109/ICGSE.2012.16

[39] M. Poppendieck. (2016, July 12), An Introduction to Lean Software Development
[Online]. Available: http://www.leanessays.com/2004/06/introduction-to-lean-software.html

[40] M. Poppendieck, T. Poppendieck, Lean Software Development - An Agile Toolkit,
Addison Wesley, 2003.

[41] Richman, L., 2002. Project Management Step-by-Step. New York: AMACOM.

[42] Royce, Winston W. "Managing the development of large software
systems."proceedings of IEEE WESCON. Vol. 26. No. 8. 1970.

[43] Schwaber K, Beedle M (2001) Agile software development with scrum. Prentice
Hall, Englewood Cliffs, NJ

[44] Sommerville, I., 2011. Software engineering. 9th ed., Boston, Massachusetts: Pearson
Education.

[45] Stober, T., Hansmann, U., 2010. Agile Software Development: Best Practices for
Large Software Development Projects. Berlin, Heidelberg: Springer.

[46] K. Sureshchandra and J. Shrinivasavadhani, "Moving from Waterfall to Agile,"
Agile, 2008. AGILE '08. Conference, Toronto, ON, 2008, pp. 97-101. doi:
10.1109/Agile.2008.49

[47] J. Sutherland, "Future of scrum: parallel pipelining of sprints in complex
projects," Agile Development Conference (ADC'05), 2005, pp. 90-99., doi:
10.1109/ADC.2005.28

[48] Z. Šochová and E. Kunce, "A Story About Dinosaur Called Mainframe and a Small
Fly Agile," in 2012 Agile Conference (AGILE 2012), Dallas, TX, 2012.

[49] H. Takeuchi and I. Nonaka, "The New New Product Development Game," Harvard
Business Review, 1986.

[50] K. Terlecka, "Combining Kanban and Scrum -- Lessons from a Team of Sysadmins,"
Agile Conference (AGILE), 2012, Dallas, TX, 2012, pp. 99-102. doi: 10.1109/Agile.2012.20

[51] Tor, M. and Sarfraz, S. (2013): „SNL: Data Dispatch: Largest 100 banks in the
world “. SNL Interactive, S&P Global Market Intelligence. Visited on July 19, 2016 on
https://www.snl.com/InteractiveX/Article.aspx?cdid=A-26316576-11566.

[52] R. Tufail and A. A. Malik, "A Case Study Analyzing the Impact of Software Process
Adoption on Software Quality," Frontiers of Information Technology (FIT), 2012 10th
International Conference on, Islamabad, 2012, pp. 254-256., doi: 10.1109/FIT.2012.52

[53] Wikipedia contributors. (2016, August 15). Scrum (software development) [Online].
Available:

49 References

https://en.wikipedia.org/w/index.php?title=Scrum_(software_development)&oldid=73463234
4

[54] Wood, Stephen, George Michaelides, and Chris Thomson. "Successful extreme
programming: Fidelity to the methodology or good teamworking?." Information and Software
Technology 55.4 (2013): 660-672.

[55] R. Yin, Case Study Research: Design and Methods, SAGE Publications, 2013.

Appendix 50

7 APPENDIX

7.1 Questionnaire
This is an integral overview of the types and interdependencies of the questions asked. Each
question was formed so it can be used in an online, highly targeted survey and offline as
either a classical survey, or as a part of structured interviews.

Opening Comments

Invitation for the survey was sent to individuals for whom the professional affiliation and
experience was established in advance, therefore the invitation was customized and had
additional directions included. One example of aforementioned targeting instructions reads as
follows:

 “In your case the survey is intended to be focused around your experiences with
Company A/B, regardless in which company you were formally employed when
working for Company A/B. If you no longer work for the Company A/B, I would ask
to try and apply your experiences relating to the time when you worked for Company
A/B”,

directly referring to the company by name instead of the placeholder.

The text we used additionally to the invitation follows.

 Welcome to the software development practices survey!

Thank you for agreeing to take part in this important survey, measuring your personal
opinion and experiences with different software development methodologies.
Questions of this survey will adapt to your personal professional background, but on
average it should take 5-15 minutes to complete.

The results of this survey can be used in an aggregated and anonymous form in a
master thesis at University of Ljubljana, Slovenia. In case you want a copy or some
more information please contact me at [email]

Be assured that all answers you provide will be kept in the strictest confidentiality.

Demographic Information

In highly targeted surveys like these it can be deemed unnecessary to list the full scope of
demographic information (e.g. there will be no participants 17 and younger, and no
participants without at least some college), but we decided to keep the scope in the area of
general public, to avoid that any participants feel they belong in an outlying group (e.g.
among the oldest, or among the least educated).

 What is your age:
o 17 or younger

51 Appendix

o 18 to 24
o 25 to 34
o 35 to 44
o 45 to 54
o 55 to 64
o 65 to 74
o 75 or older

 What is your highest level of education?
o Less than high school
o Graduated high school
o Trade/technical school
o Some college, no degree
o Associate degree
o Bachelor's degree
o Master's degree
o Other advanced degree (PhD, MD, etc.)

 How long have you been working for the company named in your invitation (whether
directly or as a consultant/external on a project)?

o Less than 3 months
o 3-6 months
o 6 months to a year
o 1-2 years
o 2-5 years
o more than 5 years

 With which of the following software development methodologies have you worked
in the current company?

o Waterfall development
o Spiral development
o Agile development
o Other - Write in:
o Exclusive / None of the above

Employee satisfaction

This set of questions was designed to measure general employee satisfaction with their
employer. Each question was mapped to standard five-point Likert scale:

Appendix 52

 Strongly Disagree (1)
 Disagree (2)
 Neither agree nor disagree (3)
 Agree (4)
 Strongly agree (5)

The questions in this section are as follows.

 I feel valued as an employee / contractor.
 My job requirements are clear.
 I receive the training I need to do my job well.
 My supervisor cares about me as a person.
 I am satisfied with my current work schedule.
 There is a clear path for job advancement.
 My thoughts and opinions are heard.
 I have job security.
 The Company clearly communicates its goals and strategies to me.

Additionally, in this section there was an option to include comments in answer to the
following optional question:

 What suggestions do you have for the improvement of your current company?

Waterfall development experiences

This section appeared in the online version of the questionnaire only if the employee
answered that s/he has experience with Waterfall methodologies in the Demographics section
of the questionnaire. In the offline version the employee was directed to skip the section if no
previous experience with methodologies belonging to this group existed.

This section had the goal of measuring the maturity of the waterfall methodology used, and
employee’s understanding of elementary building blocks of such methodology.

 Which role(s) have you been performing within the Waterfall methodology in the
named company?

o Developer
o Business analyst
o Technical analyst
o Project manager
o PMO
o Release manager
o Architect
o Quality Assurance
o Team lead
o Solution manager

53 Appendix

o Other - Write in:

 In waterfall, generally speaking, project management plan has been prepared, together
with other planning documents

o Yes, its content has been communicated to all the stakeholders, and is available
on a collaboration platform

o Yes, but its content (deadlines, resources, scope) sometimes changes
o Yes, but its content (deadlines, resources, scope) changes often
o No, there is a fixed budget, time or scope plan
o Not relevant for me/ I don’t know

 While doing waterfall I think user needs have been well analyzed and understood
o Yes, the needs are known in advance of implementation
o Yes, but user needs change during implementation sometimes
o Yes, but user needs change during implementation often and/or significantly
o No, I think the user needs are not understood or analyzed enough
o Not relevant for me / I don’t know

 While we work in waterfall, the client is aware of their needs and confirms them by a
formal process (sign-off)? Sign-off is done before the development?

o Yes, sign off is the official start of development
o Yes, but often development starts before the sign-off
o In reality development starts well before the sign-off of requirements

 Is there a detailed Functional Requirements Document reflecting user needs in your
waterfall implementation?

o Yes, the document is comprehensive, up-to-date, and free from unresolved,
high-risk implications

o Yes, but the document is either not comprehensive, or up-to-date, or has some
high-risk implications

o Yes, but the document has multiple weak areas
o No, the document either not exists or is not useful
o Not relevant for me / I don’t know

 How often does the scope change after official sign-off of business requirements in
your waterfall implementation?

o Always

Appendix 54

o Often
o Sometimes
o Rarely
o Never

 Is Systems Design Document focusing on how to deliver the required functionality
created in your waterfall implementation?

o Yes, right architecture for implementing the requirements is well understood
o Yes, but there are some uncertainties about the right architecture, it is slightly

not understood
o Yes, but there are big uncertainties, or changes to the architecture
o No, the architecture is not present or not understood at all
o Not relevant for me / I don’t know

 Do Quality assurance staff and end users in your waterfall implementation test the
delivered system to demonstrate that it conforms to requirements set out in the
Functional Requirements Document

o Yes, QA are well equipped with test cases, fast to find major bugs and provide
a detailed report on the issues

o Yes, but the test cases are not thorough, or some major bugs get missed, or the
testing report is not available

o Yes, but the QA process has significant problems which causes major bugs to
get unnoticed or not reported

o No, QA does not exist or is not useful
o Not relevant for me / I don’t know

 Are releases in your waterfall implementation published into production environment
according to a set procedure, after resolution of problems identified in the Integration
and Test phases

o Yes, releases are well defined, process is known, and release to production
seldom causes extended downtime, or need a rollback

o Yes, releases are defined, but the process is not known, or extended downtime
is needed, or rollback is sometimes needed

o Yes, releases are sometimes defined, but not stable, or not known
o No, releases are not defined, or are informal
o Not relevant for me / I don’t know

 Are post-production problems in your waterfall implementation documented and
resolved according to procedure

55 Appendix

o Yes, all the defects that are noticed are recorded and there is a clear process of
assigning them to the appropriate person/team and their fixing

o Yes, most defects are recorded, and there is a general process for assigning and
solving them

o Yes, defects are recorded, but often are passed around between assignees and
usually take a long time to solve

o No, defects are informally discussed, and sometimes solved
o Not relevant for me / I don’t know

Series of multiple-choice questions was then followed by an opportunity to insert an optional
comment on the Waterfall methodology within the company in question

 My general comment about Waterfall development methodology in my current
company

Company satisfaction while using Waterfall methodology

This section was shown to the responders who indicated that they had experiences with
Waterfall methodologies in the targeted companies.

The section was designed to measure the individual perception of satisfaction with the
company and workplace during the time while practicing waterfall methodologies.
Responders were asked to evaluate their feelings in this context.

 How do you feel about the company while practicing Waterfall?
o Very Dissatisfied
o Dissatisfied
o Neutral
o Satisfied
o Very Satisfied

 How do you feel about your work at the company, while practicing Waterfall?
o Very Dissatisfied
o Dissatisfied
o Neutral
o Satisfied
o Very Satisfied

 When faced with difficulty, while practicing Waterfall, I find ways to resolve them.
o With much difficulty

Appendix 56

o With some difficulty
o Neutral
o Easy
o Very easy

 I am proud of the work that I do for my company while using waterfall.
o Not proud at all
o Mostly not proud
o Neutral
o Somewhat proud
o Very proud

 I am enthusiastic about the work that I do in waterfall methodology for the named
company

o Not enthusiastic at all
o Mostly not enthusiastic
o Neutral
o Somewhat enthusiastic
o Very enthusiastic

 I find the work that I do for the named company, in waterfall methodology, of
meaning and purpose

o Void of all meaning and purpose
o Mostly without meaning and purpose
o Neutral
o Mostly meaningful and purposeful
o Very meaningful and purposeful

Agile development – general section

This section appeared in the online version of the questionnaire only if the employee
answered that s/he has experience with agile development methodologies in the
Demographics section of the questionnaire. In the offline version the employee was directed
to skip the section if no previous experience with methodologies belonging to this group
existed.

This section had the goal of measuring the maturity of the agile methodology used, and
employee’s understanding of elementary building blocks of such methodology.

 Which Agile methodologies did you use in company named in your invitation?

57 Appendix

o Scrum
o XP
o Feature Driven Development
o Kanban
o Other-Write in: ___________________________________

Following the selection of methodologies used the responder was presented with a choice of
roles within the agile development.

 Which role(s) have you been performing within the agile methodology in the named
company?

o Delivery team member
o Scrum master
o Product owner
o Other – Write in: ___

Were the responder to choose in the previous question “Delivery team member” additional
question was shown:

 As a member of agile team in the named company I performed the following
activity(s)

o Development
o Testing (QA)
o Analysis
o Specialist
o Process Coordinator
o Kanban Master
o Team Lead
o Steward
o Project manager
o Other - Write in: ___

As the final part of the general section on agile development the user was presented with an
opportunity to express some comments on the agile adoption within the company:

 My general comment about Agile in my current company is: ____

Agile development – requirements management

This section of the questionnaire was created to collect impressions on elements which are
generally regarded as indicators of maturity of process with regards to requirements

Appendix 58

management. To limit the fatigue of responders the options were limited to “yes” or “no”,
depending on the prevailing side. The section was shown if the responder indicated s/he had
experiences with agile methodologies.

 Development feature list (backlog) is adequately prioritized
 There is a clear and common understood definition of done/acceptance tests for

completed features
 Scope of each release is planned in advance
 Stories (user requirements) are written in a way that describes how a user can benefit

from the feature
 Developers and testers work together in story/requirement implementation and

acceptance criteria
 Stories/requirements are broken down and small enough to be done in one

sprint/iteration
 Epics and/or theme concepts are used to help organize groups of stories.
 Incomplete stories are well-managed (e.g. finished in next iteration)

Agile development – process management

This section of the questionnaire was created to collect impressions on elements which are
generally regarded as indicators of maturity of process with regards to process management.
To limit the fatigue of responders the options were limited to “yes” or “no”, depending on the
prevailing side. The section was shown if the responder indicated s/he had experiences with
agile methodologies.

 Each team member creates a record of their tasks to help break down their
assignments (e.g. via a tool, owned by the member and updated when needed)

 Regular Daily Scrum Stand-ups occur
 Daily Scrum Meetings are not overly long
 Stories are estimated in points
 Iteration planning meetings occur
 Iterations are loaded to the right capacity
 Iterations do not change length
 Teams come prepared to the iteration planning meetings
 If used, hardening (or stabilization) iterations are scheduled in advance
 End-of-iteration demos occur
 Product is potentially shippable at the end of each iteration
 Blocks (impediments) are resolved quickly

Agile development – quality assurance

59 Appendix

This section of the questionnaire was collecting impressions of the responders regarding the
quality process and outcome of the agile methodology. The section was shown if the
responder indicated s/he had experiences with agile methodologies. The given options were
“yes” and “no”, depending on what the respondent felt was prevailing side.

 Testers participate alongside development.
 Dependencies are well-managed
 Defect levels are continuously monitored (low technical debt).
 Unit testing occurs
 Code reviews occur
 Architectural design for the product(s) is understood by the team
 Automated unit and/or acceptance tests are run as part of each automated build
 Team members pair-program at appropriate times
 Everyone that’s needed for this project is assigned, engaged, or available as needed
 Team members work on finishing each iteration as a team, helping each other along

the way as needed
 Management sets goals and gives the team freedom to deliver successfully
 Formal written documents are used to supplement rather than replace faster, more

informal communication
 Product management or someone in that role is integrally involved
 The team responds to change in a swift, non-bureaucratic way
 Coaching is utilized to help adopt agile practices
 Retrospectives occur periodically
 An appropriate level of action is taken based on retrospective feedback

Company satisfaction while using agile methodology

This section was shown to the responders who indicated that they had experiences with agile
methodologies in the targeted companies.

The section was designed to measure the individual perception of satisfaction with the
company and workplace during the time while practicing agile methodologies. Responders
were asked to evaluate their feelings in this context, and this was intended to be used in
contrast with satisfaction while practicing waterfall technologies.

 How do you feel about your team?
o Very Dissatisfied
o Dissatisfied
o Neutral
o Satisfied
o Very Satisfied

Appendix 60

 How do you feel about your work in the team?
o Very Dissatisfied
o Dissatisfied
o Neutral
o Satisfied
o Very Satisfied

 When faced with difficulty I find ways to resolve them.
o With much difficulty
o With some difficulty
o Neutral
o Easy
o Very easy

 I am proud of the work that I do for my team.
o Not proud at all
o Mostly not proud
o Neutral
o Somewhat proud
o Very proud

 I am enthusiastic about the work that I do for my team
o Not enthusiastic at all
o Mostly not enthusiastic
o Neutral
o Somewhat enthusiastic
o Very enthusiastic

 I find the work that I do for my team of meaning and purpose
o Void of all meaning and purpose
o Mostly without meaning and purpose
o Neutral
o Mostly meaningful and purposeful
o Very meaningful and purposeful

Your information

61 Appendix

In this short section the responders were offered to share their information for subsequent
interviews, and thanked for their time and participation in the survey.

