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Povzetek

Multivariatni števni podatki so pogosti na področjih kot so šport, nevroz-

nanost in besedilno rudarjenje. Modeli, ki lahko natančno opravljajo fak-

torsko analizo, so potrebni zlasti za strukturirane podatke kot na primer

števne matrike s časovnimi vrstami. Predstavljamo Poissonovo faktorsko

analizo z latentnimi Gaussovimi procesi, ki je nova metoda za analizo mul-

tivariatnih števnih podatkov. Naš pristop omogoča analizo odvisnih po-

datkov, ki so povezani v latentnem prostoru s pomočjo Gaussovega procesa.

Zaradi eksponentne nelinearnosti v modelu ne obstaja analitična rešitev.

Zato smo razvili postopek maksimizacije pričakovane vrednosti z Laplacovim

približkom za lažjo uporabo. Predstavljamo tudi rezultate na različnih po-

datkovnih naborih, tako sintetičnih kot realnih, v primerjavi z drugimi meto-

dami faktorske analize. Naša metoda je kvalitativno in kvantitativno bolǰsa

za podatke iz ne-i.i.d. Poisson porazdelitev, saj so predpostavke, ki jih naredi,

primerne za podatke.

Ključne besede

faktorska analiza, Gaussovi procesi, latentni prostor, Poisson, števni podatki
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Abstract

Multivariate count data are common in some fields, such as sports, neuro-

science, and text mining. Models that can accurately perform factor analysis

are required, especially for structured data, such as time-series count matri-

ces. We present Poisson Factor Analysis using Latent Gaussian Processes, a

novel method for analyzing multivariate count data. Our approach allows for

non-i.i.d observations, which are linked in the latent space using a Gaussian

Process. Due to an exponential non-linearity in the model, there is no closed

form solution. Thus, we resort to an expectation maximization approach

with a Laplace approximation for tractable inference. We present results on

several data sets, both synthetic and real, of a comparison with other factor

analysis methods. Our method is both qualitatively and quantitatively su-

perior for non-i.i.d Poisson data, because the assumptions it makes are well

suited for the data.

Keywords

factor analysis, Gaussian process, latent space, Poisson, count data
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Razširjen povzetek

Z nedavnim povečanjem strojnega učenja skupaj z vedno več podatki, so

možnosti in potrebe po analizo različnih podatkov večje. Ti podatki so

lahko realni, binarni, števni itd. V tem magistrskem delu se bomo osre-

dotočali na analizo števnih podatkov, natančneje, na nenadzorovano učenje

iz večvariatnih števnih podatkov - matrike z nenegativnimi celimi števili v

celicah. Naš cilj je identificirati zmanǰsano predstavitev teh podatkov, kjer

zmanǰsamo število stolpcev brez izgube informacij. Z drugimi besedami,

delamo faktorsko analizo nad števnimi matrikami ob predpostavki, da je ver-

jetnost številk porazdeljena po Poissonovi porazdelitvi.

Poissonova faktorska analiza ni nov pojem. Obstaja veliko pristopov,

ki hočejo najti skrite faktorje iz števnih matrik, vendar večina metod je

narejenih za neodvisne podatke. Naša pozornost bo usmerjena na podatke

s strukturo kot na primer, analiza evolucije več koreliranih števcev čez čas.

Podoben primer lahko pogosto najdemo v športu - recimo, skozi košarkarsko

sezono lahko štejemo število metov (2 in 3 točk), preobratov, in prekrškov.

Opazimo lahko, da imamo več takih časovnih vrst čez eno leto. Poleg tega

vemo, da so pari teh števcev zelo korelirani kot na primer število zadetih

metov in število poskusnih metov. Torej obstaja neka latentna struktura nižje

dimenzije kot na primer en faktor za proste mete, en faktor za tritočkovni

met, itd. Bilo bi koristno, če bi te faktorje poznali. Prav tako bi bilo dobro

odstraniti šum ene tekme in videti kako se spreminja ta faktor čez čas. Na

primer, neka ekipa je mogoče začela sezono z nizko natančnostjo, ki pa se

proti koncu sezone počasi izbolǰsa. Število metov v eni tekmi je zelo šumno
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in odvisno od nasprotnika, ampak trend iz več kot 40 tekem mora biti očiten.

Hkrati hočemo gladko funkcijo čez čas.

Odločili smo se za latentne Gaussove procese. Gaussovi procesi

so relativno mlad neparametrični pristop, katerega popularnost narašča.

Neparametričnost pomeni, da ne predpostavljamo, kako se bodo faktorji

spreminjali čez čas (npr. pogosta predpostavka so avtoregressivni modeli,

kjer je naslednja točka verjetnostno porazdeljena glede na eno ali več preǰsnjih

točk), ampak pustimo podatkom, da določijo strukturo. Odvisno od jedrske

funkcije, ki jo moramo izbrati, se latenti prostor lahko počasi ali hitro sprem-

inja in je lahko odvedljiv (ali ne), itd.

S tem smo določili naš model, ki ima naslednji formalni opis. Naj

bo N , M , in D, število časovnih točk na vrsto, število časovnih vrst in

število latentnih faktorjev v tem zaporedju. Predpostavljamo, da lahko

določimo nek N × D latentni prostor (matrika X) nekoreliranih faktor-

jev iz danih N × M številk (matrika Y ). To lahko dosežemo v dveh

korakih. Najprej predpostavimo, da je Yij pogojno neodvisen od ostalih

številk v matriki in porazdeljen po Poissonovi porazdelitvi, če poznamo nje-

gov parameter λij, t.j, Yij ∼ Pois(λij). Struktura (časovna) in model ko-

relacije se skrivata v tej matriki parametrov Λ. Predpostavljamo, da je

Λ = exp(X · L + 1N · bT ), kjer je X latentni prostor, L je t.i. matrika

obremenitvenih faktorjev in b je vektor povprečja. Korelacije med opazovan-

imi vrstami dobimo s pomočjo L, med tem ko časovno korelacijo določimo z

apriorno porazdelitvijo nad stolpci matrikeX. Podrobneje, predpostavljamo,

da imamo D Gaussovskih procesov, vsak s svojo kovariančno matriko Kd, iz

katerih izvlečemo N-dimenzionalne korelirane vektorje: xd ∼ GP(0, Kd). Kot

jedrno funkcijo uporabljamo kvadratno eksponentno (Gaussovo) funkcijo:

(Kd)ij = σ exp((||ti − tj||2/ρd)2) + δ(i, j) · ϵ, kjer σ = 1 in ϵ = 0.001

zaradi identifikacije modela. Torej, parametri modela so Θ = {X,L, b, ρ},
katerih vrednosti popolnoma določajo model. Za apriorne porazdelitve os-

talih parametrov uporabljamo šibko informativne normalne porazdelitve.

Kljub preprosti definiciji je učenje parametrov tega modela težje zaradi
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nelinearnosti, ki se skriva v λ, in metode vzorčenja lahko trajajo veliko ur,

odvisno od števila podatkov. Zato smo razvili aproksimacijo z metodo mak-

simizacije pričakovanja (EM) za učinkovito sklepanje skupaj z Laplaceovo

aproksimacijo. Motivacija za EM je naslednja. če fiksiramo latentni prostor,

je iskanje najbolǰsih parametrov, kot je L, konveksen problem, ki je enos-

tavno rešljiv. Hkrati, če fiksiramo vse razen X, je problem spet konveksen

in lahko najdemo X, ki maksimizira logaritem posteriorne porazdelitve. Ker

EM zahteva pogojno verjetnostno porazdelitev X, ki nima zaprte rešitve,

jo aproksimirano z Gaussovo porazdelitivjo centrirano na maksimum (ker je

konveksna vX, je maximum edini in globalni). Gradiente in Hessovo matriko

vseh spremenljivk modela določimo zato, da lahko izračunamo vsako iteracijo

EM algoritma s katerokoli gradientno metodo kot na primer gradientni spust,

L-BFGS ali Newtonova metoda.

Učinkovitost aproksimacije primerjamo z dejanskimi vzorci iz metode

MCMC, ki vračajo natančno porazdelitev (če je model identficiran), in

aproksimacijo srednjega polja varijacijskega računa. Natančnost metode

primerjamo tudi z dvema ostalima metodama faktorske analize, kjer ena

uporablja Gaussove procese v latentnem prostoru. Za identifikacijo našega

modela uporabljamo inicializacijo z rezultati faktorske analize, in s fiksir-

anjem povprečja in variance latentnega prostora. Nad umetno generiranimi

podatki se naša metoda (PFALGP) in aproksimacije izkažejo kot najbolǰse

glede na prečno preverjanje, tudi kvalitativno glede na določene faktorje.

PFALGP najde enake faktorje, kot so resnični latentni faktorji, ki so generi-

rali te podatke.

Modele primerjamo na treh realnih podatkovnih naborih iz treh različnih

domen: besedila (twitter), šport (NBA), in računalnǐski vid (MNIST). Iz

vseh treh lahko sklepamo, da naš model da bolǰse napovede in najde bolj

informativne latente faktorje od ostalih metod. Iz twitter podatkov vidimo,

da naš model najde tedensko nihanje kot en faktor in konico na koncu tedna

kot drugi faktor. Na NBA podatkih vidimo, da naš model povezuje podobne

faktorje tudi če imamo samo dve latentne dimenzije. Vidimo tudi, da s
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povečanjem števila dimenzij lahko dosežemo manǰso napako. Interpretacija

faktorjev je zelo očitna pri MNIST podatkih, ko vizualiziramo latentni pros-

tor kot 2D sliko, in vidimo da naš model najde faktorje, ki ustrezajo 5

uporabljenim številkam.

V prihodnosti bi želeli najti bolǰsi način določanja števila faktorjev ali

celo marginalizacijo preko vseh števil ter pospešitev celotne metode, npr. z

redkimi Gaussovimi procesi ali aproksimacije kovariančne matrike z nizkim

rangom.



Chapter 1

Introduction

With the recent emergence of machine learning (ML) and the ever larger

amount of data available, there has been a surge of applying ML to differ-

ent kinds of data (real-valued, binary, count etc.). The two types of ML

commonly used on this data are supervised and unsupervised learning. The

former is more easily defined: it seeks to learn an association between the

data and labels. On the other hand, unsupervised learning seeks to find

structure in unlabeled data. This structure can be useful in and of itself,

although unsupervised learning is mostly used as a pre-processing step in

supervised learning. The data is usually put through some dimensionality

reduction technique such as Principal Components Analysis (PCA) and then

a supervised method learns the association between the resulting data and

the labels.

Our focus, however, is on the latent structure. The earliest approaches to

finding hidden structure in the data date back to the formulation of PCA and

factor analysis (FA) for continuous, more specifically Gaussian, data. The

former finds a unique rotation matrix such that the columns explain as much

variance as possible in descending order. The solution is easily obtained by

singular value decomposition. The latter is a broader method that seeks an

explanation of the data by a linear projection from a lower-dimensional space

that differs from the original data by more than just rotation. Its generality,

1



2 CHAPTER 1. INTRODUCTION

however, leaves too many degrees of freedom and there is no unique solution.

Unfortunately, the kind of data we are interested in is multivariate count

data, which is not amenable to analysis using these basic methods. What

we are trying to model is non-negative integer matrices, which arise in many

different areas including, but not limited to: number of auto insurance claims,

highway accidents, crimes, voting, user-item recommendation or, in general,

text analysis, images (computer vision), stock volume trading, and sports

matches statistics.

To illustrate with a specific example, in sports it is common to gather

information for each match, and this information is largely different counts.

In basketball, for example, each match records the number of shots (two-

point and/or three-point) attempted and made, number of fouls, rebounds

etc. Thus, our matches are the observations, and the features are the different

recorded counts, which clearly fits our criteria.

Our problem can more formally be stated as follows: let N be the number

of observations and M the dimensionality, so that we have at our disposal a

Y ∈ NN×M
0 non-negative integer matrix, where rows correspond to observa-

tions and columns to features. We can also think of having N data points

lying in anM -dimensional non-negative discrete space. Our chief assumption

is that the observations in M -dimensional space lie on a lower D-dimensional

continuous manifold X ∈ RN×D that is unknown to us, a manifold which we

seek to discern. This problem is generally called dimensionality reduction,

but we are considered in factor analysis , which has received considerable

attention in the literature. Most research, however, has tackled the continu-

ous, most commonly Gaussian, case for Y . Moreover, the observations Y are

usually assumed to be independent and identically distributed (i.i.d.) or at

least exchangeable. Our approach considers alternate formulations for both

assumptions. We wish to deal with data sets that are discrete and not contin-

uous like the Gaussian distribution. In addition, the data we are interested

in, such as basketball matches, has (a time-series) structure, so we forego the

i.i.d. assumption as well. Depending on our assumptions, we obtain different



3

Table 1.1: Comparison of the assumptions of different general model struc-

tures.

model unsupervised distribution latent mapping i.i.d

Poisson

regression [3] ✗ Poisson ✗ non-linear (exp) ✓

MVP [4] ✗ Poisson ✗ linear ✓

PPCA [5] ✓ Gaussian ✗ linear ✓

ICA [6] ✓ non-Gaussian ✓ linear ✓

FA [7] ✓ Gaussian ✓ linear ✓

PFA [8] ✓ Poisson non-negative linear ✓

GPLVM [2] ✓ Gaussian ✓ non-linear (GP) ✓

CLGP [1] ✓ Categorical ✓ non-linear (GP) ✓

GPFA [9] ✓ Gaussian GP linear time-series

PFALGP (ours) ✓ Poisson GP non-linear (exp) time-series

models (see 1.1 for an overview).

Our motivation stems from a recent work on using a Gaussian Process

for non-linear factor analysis of (multivariate) categorical variables by Gal et

al. [1]. Their use of latent variables mirrors the well-known Gaussian Process

Latent Variable Model (GPLVM) [2], except that it is the softmax inputs

that are projected from a latent space. Our goal is thus to transfer this

approach to count data and develop an unsupervised approach to modeling

multivariate count data using latent Gaussian Processes.
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Chapter 2

Related work

On the side of supervised multivariate count analysis several methods have

been developed [3, 4, 10]. Chib and Winklemann [3] develop a multivari-

ate generalized linear model (GLM) for Poisson and perform inference using

Markov Chain Monte Carlo (MCMC), used by Park and Lord [10] for mod-

elling intersection accidents. Although most methods for count data employ

Poisson likelihoods, a negative binomial regression in combination with a

copula to model the correlations has been used [11, 12, 13]. For copulas with

Poisson marginals see Bauerle and Grubel [14].

A general formulation of a M -variate Poisson distribution and regression

is given by Karlis et al. [4]. Unfortunately as the number of features M

grows, estimating the probability of a draw from such a multivariate Poisson

distribution requires summing over a large number of terms. This number

grows exponentially with M , and inference quickly becomes intractable with

this method.

Poisson Factor Analysis (PFA) [8, 15, 16, 17] is an overarching term for

latent models for (usually i.i.d.) count data. For a unified view of Poisson and

other discrete component analysis see Buntine and Jakulin [17]. Depending

on the prior distributions imposed on the latent factors we obtain different

aproaches from the literature. For example, placing a prior with support

on the positive reals results in non-negative matrix factorization. Different

5



6 CHAPTER 2. RELATED WORK

link functions for the observed data define different likelihoods, e.g. Poisson

for counts results in general PFA. For an overview of link functions and

distributions for the parameters in PFA see Wedel et al. [15].

Topic models like the well-known Latent Dirichlet Allocation (LDA) [18]

have been shown to be a type of non-negative matrix factorization. LDA can

be seen as PFA with a Dirichlet prior for the latent topic matrix [8]. Zhou

et al. [8] generalize this while developing a beta-binomial model for PFA

with possibly infinite latent variables. A more recent work by Acharya et

al. [19] tackles the case of time-dependent count data with the aforementioned

Gamma-Poisson PFA. This is achieved by adjusting the Gamma parameters

of a time-series point using the Gamma parameters of the previous point.

Most recently, Schein et al. [20] extend this by modeling temporal dependence

using the gamma shape parameter conditioned on the previous point’s shape

parameters.

Deep Exponential Families [21] is a recent generalization of factor analysis

in the prior-hyperprior direction, where the parameters of the latent variables

are again latent variables with an exponential family distribution, and so on

continuing ”deeper”. Similarly, Gan et al. [22] use a deep Boltzmann machine

as a prior for a binary latent variable that induces sparsity, such that each

observation is associated with only some of the latent factors. Improving on

this, Henao et al. [23] construct a ”deep” PFA by replacing the Boltzmann

machine with a whole latent PFA. Analogously, Zhou et al. [24] model Poisson

counts by constructing a Poisson-Gamma belief network. They draw the

shape parameter of a Gamma-distributed latent factor layer from a Gamma

prior, which in turn becomes another latent layer.

PFA can be augmented with a possibly infinite amount of factors by

using Bayesian nonparametrics [8, 16, 19, 25, 26] and marginalizing over

the number of factors. Titsias [16] develops a Gamma-Poisson feature model

with an implicitly infinite number of latent factors. Gopalan et al. [26] derive

an infinite Poisson-Gamma model by setting a Gamma Process prior (with

finite base measure to ensure a non-infinite dot product) on the latent space.
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Lopes et al. [27] use reversible-jump MCMC to include the number of factors

as parameter to be estimated.

Whereas most approaches model matrix data, Schein et al. [28] approach

count matrices as a special case of a second-order tensor, developing the

general case and applying it to dyadic events (matrices). For a coupled ma-

trix factorization such as words-documents and documents-users Gopalan et

al. [29] derive a shared latent space approach and apply it to topic modeling.

In econometrics, dynamic factor models are commonly used [30, 31, 32],

but usually for continuous data. Jung et al. [32], however, use a dynamic

factor model with a Poisson likelihood, but their temporal structure is an

autoregressive Gaussian.

Several approaches have been developed in the neuroscience literature for

Poisson spike counts of neurons [33, 9, 34, 35, 36, 37]. Cunningham et al, [33]

use an inhomogeneous Gamma interval process, with a truncated Gaussian

Process (GP) prior on the rate (because of the non-negativity). Petreska

et al. [34] link several markov chains to ensure temporal dependence, but

model the count data as Gaussian. Semedo et al. [36] model the neural

time dependence by adding temporal constraints on canonical correlation

analysis, whereas Archer et al. [35] use a Poisson linear dynamical system.

More recently, Park et al. [37] use the same dynamical system combined with

a GP prior across different trials (instead of across time).

Our derivation has several similarities with the method of Yu et al. [9],

which they call Gaussian Process Factor Analysis (GPFA). Like our ap-

proach, they use it to model multivariate Poisson data (neuronal activity

through time specifically), and they also use a GP prior in the time do-

main to ensure temporal smoothness, but their derivation otherwise follows

the standard factor analysis approach, because there is no non-linearity em-

ployed between the observations and the latent space, whereas we use the

log link. Their simplifying assumptions result in a tractable posterior, as the

the posterior is jointly Gaussian, whereas we have to resort to approxima-

tions. However, they do not employ a Poisson likelihood, but instead work
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with the square roots of the counts to do away with the heteroscedasticity

of the Poisson rate. This is because the variance of a Gaussian, which is

independent of its mean, cannot model the mean-variance relationship of the

Poisson properly.

So far we’ve considered a discretized view of time-series. By consider-

ing an N -by-M matrix we have implicitly binned the Poisson realization

events of M Poisson point processes into N time intervals (bins). There

is another group of related approaches from the stochastic process perspec-

tive, with considerable work being done on the most common approach: Cox

processes [38, 39, 40], the doubly stochastic Poisson point process. It is dou-

bly stochastic because the underlying rate λ is no longer constant, but can

vary through time. A suitably transformed Gaussian Process can be used to

model the non-negative point process intensity, e.g. by using the the log link

function: ln(λ(t)) ∼ GP(0, K) or the logit function: logit(λ(t)
λ∗ ) ∼ GP(0, K),

where λ∗ is some upper bound on the intensity [39]. This is used by Adams

et al. [39] for the one-dimensional case with MCMC sampling, whereas Lloyd

et al. [41] developed a variational approach.

For several linked point processes Miller et al. [42] use non-negative ma-

trix factorization on the intensity of each process through time. Gunter et

al. [40] develop the first Bayesian treatment of dependent Cox processes us-

ing convolutions to model the structure and MCMC for inference. Lloyd et

al. [43] develop Latent Poisson Process Allocation (LPPA) as a continuous

version of non-negative matrix factorization, being, in essence, a topic model

for Poisson point processes. In our areas of interest, however, the data are

already time-discretized (e.g. sports matches) and thus the continuous na-

ture of the point process can avoided, so that there is no need to invoke the

complex machinery needed to estimate the latent space and factors.



Chapter 3

Poisson Factor Analysis using

Latent Gaussian Processes

We now derive a factor analysis method for Poisson observations with a

latent space governed by Gaussian Processes. For convenience, we state our

notation once more: the observed data are Y ∈ NN×M
0 , where N and M are

the number of observations and Poisson-distributed features, respectively. In

addition, uppercase bold letters indicate matrices, whereas lowercase bold

letters indicate column vectors. The latent space is X ∈ RN×D where D

is its dimensionality. We assume that the observed count data are Poisson

distributed:

P (Y |Λ) =
N∏

n=1

M∏
m=1

Pois(Ynm|λnm) =
N∏

n=1

M∏
m=1

λYnm
nm e−λnm

Ynm!
(3.1)

where λnm is the rate parameter for the Y th
nm observation. Furthermore,

we assume that the counts are conditionally independent given the λ’s. The

underlying rates, however, are connected through an exponential nonlinearity

using the factor loading matrix L ∈ RD×M and the latent space X as follows:

Λ = [λnm] = exp(X · L+ 1M · bT ) (3.2)

where exp denotes elementwise exponentiation, b ∈ R+
M is a vector of base-

line rates for each feature and 1M is an M -dimensional vector of ones. The

9
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X ·L product models the dependence between the M features. More specif-

ically, we have:

λnm = exp(xT
n · lm + bm) (3.3)

where xT
n denotes the nth row of X and lm the mth column of L. To tackle

the time-series nature of our data, we put a Gaussian process prior on each

of the D N -dimensional vectors (columns of X):

xd ∼ GP(0,Kd) (3.4)

For the covariance matrix of the GP, we use the squared exponential (SE)

kernel, also known as a Gaussian kernel, whose ijth element equals:

(Kd)ij = σ2 exp(−1

2

(ti − tj)
2

ρ2d
) (3.5)

where for numerical stability, we add a small value ϵ2 to the diagonal to

ensure positive definiteness. Rewriting this in matrix notation we have:

Kd = σ2 exp(− 1

2ρ2d
T) + diag(ϵ2) (3.6)

where Tij = ||ti − tj||22, i.e. T is a matrix of dot products of the differences

(in case ti is multidimensional). Here ||x||2 =
√∑

i x
2
i denotes the L2 norm.

The parameters of this kernel are: the kernel variance σ2, the noise vari-

ance ϵ2 and the length scale ρ2d. The kernel and noise variance are fixed to

ensure identifiability, whereas each dimension of the latent space has its own

length scale ρ2d that is free to vary.

For the loading matrix and base rates, we employ weakly informative

normal priors elementwisely:

Ldm ∼ N (0, σ2
0), m = {1 .. M}, d = {1 .. D} (3.7)

bm ∼ N (0, σ2
0), m = {1 .. M} (3.8)

where we set the variance to a large value, e.g. σ2
0 = 100.
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3.1 Identification

Almost all factor analysis methods, both Bayesian and frequentist, are

plagued by unidentifiability [30, 44, 45]. A model is said to unidentifiable if

the same probability distribution is produced by two or more distinct sets

of parameters, or in other words, these parameters that can not be uniquely

distinguished on the basis of the data. For example, in a K-mixture model,

permuting the indexes of the latent variables (denoting which mixture each

point belongs to) does not change the probability, which means there are K!

equally likely configurations.

In our case, the factor loading matrix L and the latent space X are

doubly unidentifiable (ignoring the base rates at the moment), although their

product is identifiable. Too see this, notice that first, multiplying L by a

scalar and X by its inverse results in the same product. Second, even if we

fixed the scale of L or X, we can still rotate L by some amount, and apply the

inverse rotation to X to obtain an equivalent solution (actually any invertible

matrix will suffice, but a rotation is intuitively understandable) [45].

In Bayesian methodology, an unidentifiable modeled can sometimes be

fixed with a prior distribution on the parameters. For example, the issue of

scale for L and X is easily taken care of by assigning them normal priors.

In the case of X, since it is drawn from a GP, we give it a zero mean and a

variance of 1 in the SE kernelin Eq. 3.5, setting σ2 to 1 and ϵ2 to 0.001. The

rotational ambiguity is resolved by imposing a lower triangular structure on

L, with non-negative elements on the diagonal. Since L is M -by-D and not

square, the constraint applies to the D(D − 1) elements above the diagonal.

Other approaches include post-ex identification, by transforming the samples

to align them to the same mode [44]. We use weakly informative priors and

initialization using FA.
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3.2 Inference

Depending on the size of the model (number of samples, features etc.)

sampling-based methods can run from hours to days. In addition to MCMC

sampling in Stan [46], we employ auto-diff variational inference present in

Stan [46] as well as an Expectation Maximization approach with Laplace

approximation for more tractable inference.

3.2.1 Markov Chain Monte Carlo

We implemented the model in Stan [46], a general probabilistic programming

language written in C++, with an interface for R among other languages.

Stan uses Hamiltonian Monte Carlo [47], specifically the No-U-Turn Sampler

(NUTS) [48] to perform Markov chain Monte Carlo (MCMC) inference of

the posterior distribution. The bias of MCMC samples is zero, and the

probability distribution of the samples converges to the true distribution

as N → ∞. However, MCMC is slow for larger models, so we have also

employed approximations to the posterior for faster inference at the cost of

accuracy.

3.2.2 Variational inference

An alternative way of approximate inference are variational methods. This

entails choosing an approximate posterior distribution q(X), that is easier to

calculate than the true posterior distribution p(X|Y ; Θ). We briefly outline

variational inference below, though a longer overview can be found in Blei et

al. [49]. More formally, we are trying to find q(X) from our family of tractable

distributions that is closest to the intractable posterior p(X|Y ;Theta):

argmin
q(X)

KL(Q(X) || P (X|Y ; Θ) (3.9)
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To measure the ”closeness” of the two distributions we use Kullback-Leibler

divergence (KL), a non-negative asymmetric measure:

KL(Q || P ) =

∫
q(x) log

q(x)

p(x)
dx =

∫
q(x) log q(x)dx−

∫
q(x) log p(x)dx

= Eq(x)[log q(x)]− Eq(x)[log p(x)]. (3.10)

The asymmetry of KL divergence is a useful property, because KL divergence

penalizes areas of high p(x) and low q(x) and does not penalize areas of low

p(x) if q(x) badly approximates there. Intuitively, we want this because when

the probability of something occurring is high, we want the approximation

to be good, and we don’t care if we’ve badly approximated events with low

probability that aren’t likely to happen1. Thus, the specific KL divergence

in our case is:

KL(Q(X) || P (X|Y ; Θ) = Eq(x)[log q(X)]− Eq(x)[log p(X|Y ; Θ)] (3.11)

= Eq(x)[log q(X)]− Eq(x)[log p(X, Y ; Θ)] (3.12)

+ log p(Y ; Θ) (3.13)

Defining the Evidence Lower BOund as ELBO = Eq(x)[log p(X, Y ; Θ)] −
Eq(x)[log q(x)], we see that the marginal likelihood can be decomposed into

the ELBO and KL divergence, and maximizing the ELBO is equivalent to

minimizing the KL divergence:

log p(Y ; Θ) = ELBO +KL(Q(X) || P (X|Y ; Θ) (3.14)

and since KL divergence is non-negative, we see that the ELBO is a lower

bound on the marginal likelihood (also called the evidence), hence the name.

The main drawback of variational inference is that the variational ap-

proximation needs to be hand-derived for each model. An easier and less

error-prone way is to employ Automatic Differentiation Variational Inference

(ADVI) [50]. ADVI is a recent approach to so-called Black Box Variational

1The term variational inference is synonymous with KL(Q || P ), but there are methods

that use the opposite KL(P || Q), such as Expectation Propagation.
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Inference [51]. It leverages the fact that Stan already computes gradients au-

tomatically. Thus, ADVI uses the gradients of the model, i.e. the posterior

distribution, instead of resorting to gradients of the variational approxima-

tion as [51] requires, which leads to lower variance of the gradient. Since

Stan has the ADVI functionality, obtaining samples from the model posterior

is as effortless as changing one function in the code, to perform approximate

inference instead of MCMC sampling.

3.2.3 Laplace approximation

When full inference is too costly, we may use tractable methods to approx-

imate the posterior distribution. Since the logarithm is a monotonically in-

creasing function, the parameters that maximize the posterior also maximize

the log posterior. Let Θ = {L,b,ρ} denote all the unknown parameters

except the latent space X. The Laplace approximation entails using a Gaus-

sian centered at a maximum of the log posterior with a covariance that is

the inverse of the Hessian at that maximum.

The following identities will be useful in deriving the Laplace approxima-

tion:

vec(ABC) = (CT ⊗A) · vec(B)

tr(ATB) = vec(A)T · vec(B)

∂

∂x
K−1 = −K−1∂K

∂x
K−1

∂

∂x
xTSx = 2Sx

∂

∂xxT
xTSx = S

∂

∂x
ln detK = tr(K−1∂K

∂x
)

where S denotes a symmetric matrix, ⊗ is the Kronecker product, vec() is

the vec operator that stacks the columns of a matrix into one long vector,

tr() is the trace operator, ∂
∂x

denotes the gradient, and ∂
∂xxT is the Hessian

matrix. An overview of matrix calculus and the proofs of these identities can

be found in Petersen et al. [52].
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The log posterior is proportional to the joint:

L ∝ lnP (Y,X,Θ) = lnP (Y|X,Θ) + lnP (X) + lnP (Θ) (3.15)

=
N∑

n=1

M∑
m=1

ln Pois(Ynm | λnm) +
D∑

d=1

lnN (xd | 0,Kd)

+
D∑

d=1

M∑
m=1

lnN (Ldm | 0, σ2
0) +

M∑
m=1

lnN (bm | 0, σ2
0)

=
N∑

n=1

M∑
m=1

Ynm · lnλnm − λnm −
D∑

d=1

1

2
xT
dK

−1
d xd

−
D∑

d=1

M∑
m=1

Ldm

2σ2
0

−
M∑

m=1

bm
2σ2

0

+ const

where λnm = exp(xT
n ·lm+bm) as before. The above can be written more suc-

cinctly using matrix notation and by omitting constant terms not containing

X or Θ. Let Σ0 = diag(σ2
0) denote the diagonal prior covariance matrix of L

and b (though we are abusing notation since L and b are of different sizes).

We thus have:

L ∝ tr(YT lnΛ)− tr(Λ · 1M×N)−
1

2
xTK−1x− 1

2
lTΣ−1

0 l− 1

2
bTΣ−1

0 b

= tr(YT · (XL+B))− tr(exp
(
XL+B

)
· 1M×N) (3.16)

− 1

2
(xTK−1x+ lTΣ−1

0 l + bTΣ−1
0 b)

where exp() denotes elementwise exponentiation, B = 1N · bT is a N -by-M

matrix whose rows are the base rate vector bT , whereas K is the block-

diagonal matrix containing the covariance matrices Kd d = {1 .. D} on its

diagonal.

We now derive the gradient and hessian of L with respect to each variable.

Let y = vec(Y), x = vec(X), l = vec(L). We rewrite L in terms of x when

deriving its gradient:

L ∝ yT · ((LT ⊗ IN) · x+ vec(B))− 1

2
xTK−1x (3.17)

− vec(1M×N)
T · exp

(
(LT ⊗ IN) · x+ vec(B)

)
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where we omit terms not containing X as their derivative is zero. Taking the

gradient with respect to x we have:

∂L
∂x

= (L⊗ IN) · (y− exp
(
(LT ⊗ IN) · x+ vec(B))

)
−K−1x (3.18)

= (L⊗ IN) · (y− vec(Λ))−K−1x

and its Hessian is then:

∂L
∂xxT

= −(L⊗ IN) · diag(vec(Λ)) · (LT ⊗ IN)−K−1. (3.19)

To find the gradient with respect to l = vec(L) we again rewrite the log

posterior:

L ∝ vec(XTY)T · vec(L)− 1

2
vec(L)TΣ−1

0 vec(L) (3.20)

− vec(1M×N)
T · exp

(
(IM ⊗X) · vec(L) + vec(B)

)
= vec(XTY)T · l− vec(1M×N)

T · exp
(
(IM ⊗X) · l + vec(B)

)
− 1

2
lTΣ−1

0 l

so that the gradient is easily obtained as:

∂L
∂l

= vec(XTY)− (IM ⊗XT ) · exp
(
(IM ⊗X) · l + vec(B)

)
−Σ−1

0 l

= vec(XTY)− (IM ⊗XT ) · vec(Λ)−Σ−1
0 l (3.21)

and the Hessian is:

∂L
∂l lT

= (IM ⊗XT ) · exp
(
(IM ⊗X) · l + vec(B)

)
· (IM ⊗X)−Σ−1

0

= (IM ⊗XT ) · vec(Λ) · (IM ⊗X)−Σ−1
0 . (3.22)

For b we again rewrite L as:

L ∝ tr(YTXL)+ tr(bTYT1N)− tr(1M×N · exp
(
XL+1N ·bT

)
)− 1

2
bTΣ−1

0 b

(3.23)

where we used the cyclical property of the trace: tr(ABC) = tr(CAB) =

tr(BCA) and the fact that tr(A) = tr(AT ). The gradient now becomes:

∂L
∂b

= YT · 1N −

(
exp

(
XL+ 1N · bT

))T

· 1N −Σ−1
0 b

= (YT −ΛT ) · 1N −Σ−1
0 b (3.24)
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and the Hessian is:

∂L
∂bbT

= diag(ΛT · 1N)−Σ−1
0 (3.25)

Lastly, we derive the gradient update for the length scale ρd. The terms

of L not constant in ρd are:

L ∝ −1

2
ln detKd −

1

2
xT
dK

−1
d xd (3.26)

where we omit the absolute value of the determinant inside the logarithm,

because the covariance matrix is positive semi-definite by definition (resulting

in non-negative real eigenvalues and a non-negative determinant). Using the

chain rule, the gradient of L with respect to ρd is:

∂L
∂ρd

=
∂L
∂Kd

∂Kd

∂ρd
= −1

2

(
tr(K−1

d

∂Kd

∂ρd
) + xT

d (−K−1
d

∂Kd

∂ρd
K−1

d )xd

)
(3.27)

The gradient of Kd with respect to ρd is:

∂Kd

∂ρd
=

σ2

ρ3d
exp(− 1

2ρ2d
T) = ρ−3

d ·T ◦Kd (3.28)

where ◦ is the Hadamard product, i.e. elementwise multiplication of the

matrices. The final form of the gradient is thus:

−1

2

(
tr(ρ−3

d ·K−1
d (T ◦Kd))− ρ−3

d · xT
dK

−1
d (T ◦Kd)K

−1
d xd

)
(3.29)

3.2.4 Expectation Maximization

We can employ an Expectation Maximization (EM) scheme to find maximum

posterior (MAP) estimates of the parameters and an approximate posterior

distribution of X. To achieve this, we alternate between estimating X and

Θ. If we hold the parameters Θ fixed, we can maximize the latent X, using

the derived gradients. Neal and Hinton [53] provide an alternative view of

EM. They show that EM alternates between maximizing L with respect to

the model parameters, and maximizing with respect to the distribution of

the latent variables:

E Step: Set q(X) to the distribution that maximizes L. (3.30)

M Step: Set Θ to the values that maximize L.
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In our case, since there is no closed form for the conditional distribution

of the latent X we use a multivariate Gaussian for q(X) (called Laplace

approximation). Additionally, the terms in L that depend on ρ are disjoint

from those that depend on the L and b, so we can optimize them separately.

The E step makes use of the gradients derived in Eq. 3.18 and Hessian in

Eq. 3.19. Note that the Hessian is negative definite, because for any x and a

pre-and-post-multiplied positive diagonal matrix D we have: xT (LTDL)x =

(xTLT )D(Lx) = (Lx)TD(Lx) = yTDy > 0. Thus, if the Hessian is negative

definite everywhere, then L is strictly concave in X for fixed Θ. We can use

any first or second-order convex optimization method to find the posterior

mode, such as Newton’s method:

µx = µx −
∂L
∂x

(
∂L

∂xxT
)−1 (3.31)

Interestingly, the same situation arises for L and b in the M step. This can

be intuitively understood if we note that by fixing one of the two matrices,

we are essentially fitting multivariate GLMs. The Hessians of L and b can be

proven to be negative definite using the same argument and we can optimize

them using Newton’s method again:

µL = µL − ∂L
∂L

(
∂L

∂LLT
)−1 (3.32)

µb = µb − ∂L
∂b

(
∂L

∂bbT
)−1

Note that because each iteration of optimization for ρd requires inverting the

full covariance matrix, we only optimize the length scale once every several

iterations. At convergence, we center a multivariate Gaussian around the

modes with a covariance that is the inverse of the Hessian to obtain samples

of the approximate posterior. Thus we can find a local maximum of the

posterior by alternating between iteratively applying 3.30.
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Results

In the following datasets, we compare our Laplace approximate inference

(EM) approach to: a Hamiltonian MCMC in Stan (PFALGP), mean-field

ADVI in Stan (MF-ADVI), GPFA [9], and regular FA. All computation was

carried out on a consumer-grade laptop. Initial values for the factor loadings

were obtained using R’s factor analysis method factanal, and for the latent

space were obtained by taking the first D eigenvectors of PCA.

4.1 Synthetic data

First, we generated 100 data points with 10 features that come from 3 under-

lying latent factors, such that the first factor is a linear combination of the

first 4 features, the second factor of the next 3 features, and the last factor

from the last 3 features. The three factors can be seen in the first column of

Fig. 4.1. The first factor has the lowest length scale, whereas the last factor

has the highest, as is evident from the figure.

We performed 10-fold cross-validation to obtain the root mean squared

error (RMSE) of each method, shown in Table 4.1. We also report the com-

putation time, as it varied considerably. We see that the approximate expec-

tation maximization works as well as the fully Bayesian version implemented

in Stan. MF-ADVI performs considerably worse (one possibility is the mean-

19



20 CHAPTER 4. RESULTS

Figure 4.1: Synthetic data latent space, where each row corresponds to

one dimension. From left to right: ground truth, EM, PFALGP, MF-ADVI,

GPFA, FA.

model PFALGP EM MF-ADVI GPFA FA

RMSE 1.0132 1.085 1.5304 1.7246 1.8298

time[s] 326 6 40 341 1

Table 4.1: RMSE and time complexity of each method on synthetic data.

field assumption), but still better than GPFA and FA. As expected, FA finds

no time-structure, whereas GPFA struggles with the Poisson observations.

The same conclusion can be reached by looking at the latent dimensions in

Fig. 4.1. In the figure, we can see our approach correctly finds the latent

space, whereas other methods struggle.

Lastly, Fig. 4.2 shows the log posterior probability as a function of time,

or number of iterations until convergence. We can see that it quickly reaches

a good value (note the logarithmic x axis) and then more slowly converges

to the maximum.
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Figure 4.2: Value of the log posterior probability as a function of time

during one optimization of Laplace EM.

4.2 Real world data

In the following section, to illustrate our method on real-world data, we

present an analysis of three real-world data sets: twitter time-series data,

NBA season, and MNIST digits.

4.2.1 Twitter

Using the twitteR package in R, which employs the twitter API, we collected

all tweets from January 12, 2017 to January 20, 2017 that contain one of these

six phrases: gambia, senegal, yahya jammeh, adama barrow, basketball, nba.

We used twitter’s geographical information to only consider tweets in a 100

kilometer radius of the general New York Area, so that the language and

timezone are consistent across the data.

Hourly frequency of each of the six phrases in that week can be seen in

Fig. 4.3. We can see that there is a very distinct daily repeating pattern for

common words like basketball, and nba. On the other hand, a recent trans-

fer of power in Gambia (a small African country nestled inside of Senegal)

between the then-president Yahya Jammeh and the president-elect Adama

Barrow resulted in spikes of the other four phrases around January 19. Set-

ting D = 2, we try to find the underlying latent space corresponding to
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Figure 4.3: Histogram of the number of tweets per hour for six phrases in

the week of January 12-18, 2017.

Figure 4.4: Twitter data latent space, where each row corresponds to one

dimension. From left to right: ground truth, EM, PFALGP, MF-ADVI,

GPFA, FA. The x axis denotes time.

the Gambia event, and the baseline daily trend. The results can be seen

in Fig. 4.4. What we should be ideally seeing: one dimension with con-

stant intensity through time, but with daily fluctuations, and one dimension

with no fluctuations but a spike near the end (corresponding to the event).

It seems that some methods are close to the desired outcome, except the

”event” dimension is more noisy than expected.

Additionally, we perform the same quantitative analysis from the previ-

ous section, except that we use a rolling window approach instead of cross-

validation, since this is time-series data. This means that we test on folds
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model PFALGP EM MF-ADVI GPFA FA

RMSE 17.70 18.84 21.9 22.28 31.18

time[s] 341 8 64 452 7

Table 4.2: RMSE and time complexity of each method on twitter data.

Figure 4.5: RMSE as a function of the number of factors D from 2 to 8.

Green, red, and purple denote FA, GPFA, and PFALGP, respectively.

2-10, and we train only on previous folds. The results, shown in Fig. 4.2,

are once again as expected, with Poisson likelihood methods achieving lower

error than real-valued approaches.

4.2.2 Basketball

The 2014 NBA basketball season consists of N = 1311 games (including

the playoffs). For each game we have M = 10 count data features for

both teams, which include the number of 2-points attempted (2PA), 2-points

made (2PM), 3-points attempted (3PA), 3-points made (3PM), free throws

attempted (FTA), free throws made (FTM), turnovers (TOV), defensive re-

bounds (DRB), offensive rebounds (ORB), and fouls (FOU).

Before we present our analysis, we must specify the exact structure of

the model for this data. In contrast to the previous data sets, in basketball

we have match between teams, and thus we have two sets of counts of the
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Figure 4.6: Visualization of the factor loadings for D = 2.

aforementioned variables for each observation. Our approach was to split the

data by team, so that we haveNteam multivariate count matrices, whereNteam

is the number of teams in the season. We can think of it as training Nteam

separate PFALGP models, except we tie the matches together by a common

factor loading matrix. This is because we want the latent dimensions of each

team to map in the same way back to the count variables. We present the

reconstruction error of each method as a function of the number of factors

in Fig. 4.5. As expected, with more factors we can better approximate the

counts and separate the factors. This can also be understood from a matrix

algebra perspective, as D is an upper bound of the rank of the matrix Y ,

and increasing D allows for the approximation to span a larger subspace of

the M -dimensional matrix Y .

We can compare the closeness of each factor to all the others in Fig. 4.6.

Regular FA separates some pairs of factors well, such as two-point, three-

point, and free throws made/attempted. PFALGP, on the other hand, brings

closer some factors which are not obviously connected. At first glance, the

closeness of two points attempted to the number of fouls seems strange.

However, this can be confirmed using domain knowledge. Free throws given

to a team are a direct consequence of a foul on the other team. Thus,
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it is in fact expected that the number of fouls would be correlated to the

number of free throws attempted (given). In addition, we have the number

of offensive rebounds close to the number of fouls. This too, can be explained,

by noting that offensive rebounds commonly happen after the team misses

their (usually) second free throw, and is given a chance to take possession

of the ball again. Thus, with PFALGP, we glean more insight into the data

than with regular FA.

4.2.3 MNIST

Lastly, we present a slightly different qualitative comparison and analysis

of our method. Although we have so far specified Gaussian Processes as a

smoothness operation in time, it is not necessarily their only function. As

time-series impose one-dimensional constraints on the latent space, we can

similarly impose two-dimensional constraints on the latent space. An appli-

cation of 2-D constraints can be seen in images, where we want neighboring

pixels to be correlated. This can easily be incorporated into the GP co-

variance kernel by swapping the temporal difference for a difference in 2-D

coordinate space.

To illustrate this approach, we presented a small-scale analysis of

MNIST [54], the Mixed National Institute of Standards and Technology data

set of handwritten digits. It contains several thousand 28-by-28 pixel images

of digits and is one of the most used benchmarks in computer vision. A small

sample of these images can be seen in Fig. 4.7.

To showcase our method on this data set, we transform the image into

one long vector so that our data set Y consists of M images that take the

role of features and each pixel is one observation, so N = 28 · 28 = 784.

Furthermore, we binarize the pixel values to 0-1 as the image histograms are

distinctly bi-modal at 0 and 255, which should not be modeled as Poisson.

We take 10 images for each of the digits 0, 1, 2, 3, 4. Because we have

to fit 50 784-dimensional Gaussian Processes, we employ MF-ADVI for each

method instead of complete MCMC inference, which was intractable on this
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Figure 4.7: A few examples of 0-4 digits from MNIST used in our evalua-

tion.

data set. We also employ Laplace EM for PFALGP, as it is another tractable

alternative. By setting D = 5 our goal is to find 5 factors in this data set

that correspond to each of the digits. For visual ”ground truth” we take an

average of all the images of that digit.

The results of each method is shown in Fig. 4.8. We can see that the

Laplace EM approximation is by far the best in terms of corresponding to

the each digit. The other methods, which employ the mean field assumption

perform considerably worse, and as a consequence their subspace is not nearly

as well-separated.

Lastly, we can also visualize the factor loadings of each method. Since it

is a 5-dimensional space, we use multidimensional scaling to project it into 2-

D, which we show in Fig. 4.9. Surprisingly, all methods are quite successful

in separating most digits, judging by a quick visual inspection of the 2-D

plots.
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Figure 4.8: Visualization of the latent space, where each column corre-

sponds to one latent dimension. From top to bottom: ground truth, EM,

MF-ADVI PFALGP, MF-ADVI GPFA, FA.
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Figure 4.9: Visualization of the factor loadings in 2-D space using mul-

tidimensional scaling. Clockwise from top-left: EM, MF-ADVI PFALGP,

MF-ADVI GPFA, FA.
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Discussion

We see that PFALGP and the Laplace EM approximation perform the best

across all datasets. The reason MF-ADVI performs worse is probably due to

the too stringent independence assumptions of mean field, since the latent

space is correlated across time and non-i.i.d. Therefore, we see that it per-

forms much better on data sets where the time-series are not as correlated

or the length scale is smaller, so that values are not completely determined

by its neighbors. Furthermore, it is expected that the models that explicitly

model a Poisson likelihood will have better RMSE than models that can pre-

dict real values which never occur in our observations (such as GPFA and

FA).

We have thus presented a general approach to Poisson factor analysis,

although our model is used for time-series multivariate count data. Further-

more, since a diagonal GP kernel yields an i.i.d. latent space, our approach

generalizes i.i.d. multivariate counts. It improves on GPFA [9] by mapping

real-valued outputs through an exponential function that becomes the rate

of a Poisson variable. Although more mathematically complex, it results in

non-negative integer predictions that correspond to the actual observations,

as opposed to real-valued outputs from GPFA.

Since the added complexity arises in a lack of closed-form integral, we

developed a fast inference method using Expectation Maximization and the

29
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Laplace approximation, which uses the gradient and Hessian of the log of the

posterior. Consequently, we were able to fit dozens of Gaussian Processes

simultaneously in minutes, each with close to a thousand points. We pre-

sented our approach on several data sets, both synthetic and real, and show

it outperformed its real-valued counterpart in accuracy and speed. Thus, our

method can become a standard for factor analysis of dynamic count matrices,

or any kind of multivariate count data with non-i.i.d. structure in both its

observations and latent space.

Several things can be improved in future work. The number of latent

dimensions D is a parameter that has to be manually set. Except in cases

where we know the underlying factors there is no clear answer as to which

value is optimal - too few dimensions and the predictive power is too low, too

many and there is needless computation added. Promising work in Bayesian

nonparametrics may allow for marginalization over this number. In addition,

we have only experimented with the squared exponential kernel. It is possible

that other, possibly non-stationary, kernels could prove to be superior, or

at least attain equivalent results for a lower computational cost. Similarly,

we could use sparse Gaussian Processes to speed-up inference since we are

already approximating the posterior. Alternatively, we can possibly speed

up inference by using a low-rank approximation of the covariance matrix.
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[14] Nicole Bäuerle and Rudolf Grübel. Multivariate counting processes:

copulas and beyond. Astin Bulletin, 35(02):379–408, 2005.

[15] Michel Wedel, Ulf Böckenholt, and Wagner A Kamakura. Factor models

for multivariate count data. Journal of Multivariate Analysis, 87(2):356–

369, 2003.

[16] Michalis K Titsias. The infinite gamma-poisson feature model. In

Advances in Neural Information Processing Systems, pages 1513–1520,

2008.



BIBLIOGRAPHY 33

[17] Wray Buntine and Aleks Jakulin. Discrete component analysis. In

Subspace, Latent Structure and Feature Selection, pages 1–33. Springer,

2006.

[18] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirich-

let allocation. Journal of machine Learning research, 3(Jan):993–1022,

2003.

[19] Ayan Acharya, Joydeep Ghosh, and Mingyuan Zhou. Nonparametric

bayesian factor analysis for dynamic count matrices. In AISTATS, 2015.

[20] Aaron Schein, Hanna Wallach, and Mingyuan Zhou. Poisson-gamma

dynamical systems. In Advances in Neural Information Processing Sys-

tems, pages 5006–5014, 2016.

[21] Rajesh Ranganath, Linpeng Tang, Laurent Charlin, and David M Blei.

Deep exponential families. In AISTATS, 2015.

[22] Zhe Gan, Changyou Chen, Ricardo Henao, David E Carlson, and

Lawrence Carin. Scalable deep poisson factor analysis for topic model-

ing. In ICML, pages 1823–1832, 2015.

[23] Ricardo Henao, Zhe Gan, James Lu, and Lawrence Carin. Deep poisson

factor modeling. In Advances in Neural Information Processing Systems,

pages 2800–2808, 2015.

[24] Mingyuan Zhou, Yulai Cong, and Bo Chen. The poisson gamma belief

network. In Advances in Neural Information Processing Systems, pages

3043–3051, 2015.

[25] Sunil Kumar Gupta, Dinh Phung, and Svetha Venkatesh. A nonpara-

metric bayesian poisson gamma model for count data. In Pattern Recog-

nition (ICPR), 2012 21st International Conference on, pages 1815–1818.

IEEE, 2012.



34 BIBLIOGRAPHY

[26] Prem Gopalan, Francisco J Ruiz, Rajesh Ranganath, and David M Blei.

Bayesian nonparametric poisson factorization for recommendation sys-

tems. In AISTATS, pages 275–283, 2014.

[27] Hedibert Freitas Lopes and Mike West. Bayesian model assessment in

factor analysis. Statistica Sinica, pages 41–67, 2004.

[28] Aaron Schein, John Paisley, David M Blei, and HannaWallach. Bayesian

poisson tensor factorization for inferring multilateral relations from

sparse dyadic event counts. In Proceedings of the 21th ACM SIGKDD In-

ternational Conference on Knowledge Discovery and Data Mining, pages

1045–1054. ACM, 2015.

[29] Prem K Gopalan, Laurent Charlin, and David Blei. Content-based rec-

ommendations with poisson factorization. In Advances in Neural Infor-

mation Processing Systems, pages 3176–3184, 2014.

[30] John Geweke and Guofu Zhou. Measuring the pricing error of the arbi-

trage pricing theory. Review of Financial Studies, 9(2):557–587, 1996.

[31] Omar Aguilar and MikeWest. Bayesian dynamic factor models and port-

folio allocation. Journal of Business & Economic Statistics, 18(3):338–

357, 2000.

[32] Robert C Jung, Roman Liesenfeld, and Jean-François Richard. Dynamic

factor models for multivariate count data: An application to stock-

market trading activity. Journal of Business & Economic Statistics,

29(1):73–85, 2011.

[33] John P Cunningham, M Yu Byron, Krishna V Shenoy, and Maneesh

Sahani. Inferring neural firing rates from spike trains using gaussian

processes. In NIPS, pages 329–336, 2007.

[34] Biljana Petreska, M Yu Byron, John P Cunningham, Gopal Santhanam,

Stephen I Ryu, Krishna V Shenoy, and Maneesh Sahani. Dynamical



BIBLIOGRAPHY 35

segmentation of single trials from population neural data. In Advances

in neural information processing systems, pages 756–764, 2011.

[35] Evan W Archer, Urs Koster, Jonathan W Pillow, and Jakob H Macke.

Low-dimensional models of neural population activity in sensory cortical

circuits. In Advances in Neural Information Processing Systems, pages

343–351, 2014.

[36] Joao Semedo, Amin Zandvakili, Adam Kohn, Christian K Machens,

and Byron M Yu. Extracting latent structure from multiple interacting

neural populations. In Z. Ghahramani, M. Welling, C. Cortes, N. D.

Lawrence, and K. Q. Weinberger, editors, Advances in Neural Informa-

tion Processing Systems 27, pages 2942–2950. Curran Associates, Inc.,

2014.

[37] Mijung Park, Gergo Bohner, and Jakob H Macke. Unlocking neural

population non-stationarities using hierarchical dynamics models. In Ad-

vances in Neural Information Processing Systems, pages 145–153, 2015.

[38] David R Cox. Some statistical methods connected with series of events.

Journal of the Royal Statistical Society. Series B (Methodological), pages

129–164, 1955.

[39] Ryan Prescott Adams, Iain Murray, and David JC MacKay. Tractable

nonparametric bayesian inference in poisson processes with gaussian pro-

cess intensities. In Proceedings of the 26th Annual International Con-

ference on Machine Learning, pages 9–16. ACM, 2009.

[40] Tom Gunter, Chris Lloyd, Michael A. Osborne, and Stephen J. Roberts.

Efficient bayesian nonparametric modelling of structured point pro-

cesses. In Proceedings of the Thirtieth Conference on Uncertainty in Ar-

tificial Intelligence, UAI’14, pages 310–319, Arlington, Virginia, United

States, 2914. AUAI Press.



36 BIBLIOGRAPHY

[41] Chris M Lloyd, Tom Gunter, Michael A Osborne, and Stephen J

Roberts. Variational inference for gaussian process modulated poisson

processes. In ICML, pages 1814–1822, 2015.

[42] Andrew Miller, Luke Bornn, Ryan P Adams, and Kirk Goldsberry. Fac-

torized point process intensities: A spatial analysis of professional bas-

ketball. In ICML, pages 235–243, 2014.

[43] Chris Lloyd, Tom Gunter, Tom Nickson, Michael A Osborne, and

Stephen J Roberts. Latent poisson process allocation.

[44] Christian Aßmann, Jens Boysen-Hogrefe, and Markus Pape. The di-

rectional identification problem in bayesian factor analysis: An ex-

post approach. Technical report, Economics Working Paper, Christian-

Albrechts-Universität Kiel, Department of Economics, 2012.
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Appendix A

Stan Model Code

A.1 Poisson Factor Analysis Using Latent

Gaussian Processes

data {
int N; // number o f o b s e r va t i on s

int M; // number o f f e a t u r e s

int D; // number o f l a t e n t f a c t o r s

int S ; // dimensions (S=1 time s e r i e s , S=2 images )

int Y[N, M] ; // ob s e r va t i on s

vector [ S ] t [N ] ; // s t r u c t u r e

}

parameters {
vector<lower=0>[D] l e n s c a l e ; // GP parameter

vector [M] base ; // mean vec t o r

matrix [N, D] X; // l a t e n t space

matrix [D, M] L ; // f a c t o r l o ad ing s

}

model {
matrix [N, M] r a t e s ;

matrix [N, N] Cov [D ] ;

real sigma ;

39
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sigma = 1 ;

l e n s c a l e ˜ normal (0 , 1 ) ;

for (d in 1 :D) {
Cov [ d ] = cov exp quad ( t , sigma , l e n s c a l e [ d ] ) +

diag matrix ( rep vector ( 0 . 0 01 , N) ) ;

X[ , d ] ˜ mult i normal ( rep vector (0 , N) , Cov [ d ] ) ;

L [ d , ] ˜ normal (0 , 1 ) ;

}

r a t e s = exp(X ∗ L + rep vector (1 , N) ∗ base ’ ) ;

for (m in 1 :M) {
Y[ , m] ˜ po i s son ( r a t e s [ , m] ) ;

}
}

For the more complicated basketball case where we have dozens of teams

and many teams played a different number of games, the following model

was used:

data {
int Nmax; // maximum number o f games p layed

int Nteams ; // number o f teams

int Nhome [ Nteams ] ; // number o f home games o f each team

int Naway [ Nteams ] ; // number o f away games o f each team

int M; // number o f f e a t u r e s

int D; // number o f l a t e n t f a c t o r s

int Y[ Nteams , Nmax, M] ; // ob s e r va t i on s

real time [ Nteams , Nmax ] ; // da te s o f each p layed game

}

transformed data {
int Ngames [ Nteams ] ;

for ( nt in 1 : Nteams ) Ngames [ nt ] = Nhome [ nt ] + Naway [ nt ] ;

}
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parameters {
vector<lower=0>[M] base ra t e ; // mean vec t o r

vector [M] home adv ; // advantage o f home team

positive ordered [D] l e n s c a l e ; // f o r i d e n t i f i a b i l i t y

matrix [Nmax, D] X[ Nteams ] ;

matrix [D, M] L ; // f a c t o r l o ad ing s

}

model {
matrix [Nmax, Nmax] Cov [D, Nteams ] ;

real sigma ;

int N;

matrix [Nmax, M] lmbd ;

sigma = 1 ;

base ra t e ˜ normal (0 , 5 ) ;

home adv ˜ normal (0 , 5 ) ;

l e n s c a l e ˜ normal (0 , 5 ) ;

Lnnz ˜ cauchy (0 , 5 ) ;

Ld ˜ cauchy (0 , 5 ) ;

for ( nt in 1 : Nteams ) {
N = Ngames [ nt ] ;

for (d in 1 :D) {
Cov [ d , nt , 1 :N, 1 :N] =

cov exp quad ( time [ nt , 1 :N] , sigma ,

l e n s c a l e [ d ] ) +

diag matrix ( rep vector ( 0 . 001 , N) ) ;

X[ nt , 1 :N, d ] ˜ mult i normal ( rep vector (0 , N) ,

Cov [ d , nt , 1 :N, 1 :N ] ) ;
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X[ nt , (Ngames [ nt ]+1) :Nmax, d ] ˜ normal (0 , 0 . 0 0 1 ) ;

}

lmbd [ 1 :N, ] = exp(X[ nt , 1 :N, ] ∗ L +

rep vector (1 , N) ∗ baserate ’ +

append row( rep vector (1 , Nhome [ nt ] ) ,

rep vector (0 , Naway [ nt ] ) ) ∗ home adv ’ ) ;

for (m in 1 :M) Y[ nt , 1 :N, m] ˜ po i s son ( lmbd [ 1 :N, m] ) ;

}
}

A.2 Comparison Models

We compared our method with GPFA and FA, also coded in Stan, for repro-

ducibility purposes and ease of comparison.

A.2.1 Gaussian Process Factor Analysis

data {
int N; // number o f o b s e r va t i on s

int Q; // number o f f e a t u r e s

int P; // number o f l a t e n t dimensions

int S ; // dimensions (S=1 time s e r i e s , S=2 images )

real Y[N, Q] ; // ( square rooted ) o b s e r va t i on s

vector [ S ] t [N ] ; // s t r u c t u r e

}

parameters {
matrix [N, P] X; // GP l a t e n t space

matrix [P, Q] C; // f a c t o r l o ad ing s

vector [Q] d ; // mean vec t o r

vector<lower=0>[P ] tau ; // l en g t h s c a l e

vector<lower=0>[Q] R diag ; // d iagona l var iance



A.2. COMPARISON MODELS 43

}

model {
matrix [N, N] Cov [P ] ;

matrix [N, Q] r a t e s ;

real sigma ;

sigma = 1 ;

d ˜ normal (0 , 5 ) ;

tau ˜ normal (0 , 5 ) ;

R diag ˜ normal (0 , 5 ) ;

for (p in 1 :P) {
Cov [ p ] = cov exp quad ( t , sigma , tau [ p ] ) +

diag matrix ( rep vector ( 0 . 001 , N) ) ;

X[ , p ] ˜ mult i normal ( rep vector (0 , N) , Cov [ p ] ) ;

C[ p , ] ˜ normal (0 , 5 ) ;

}

r a t e s = X ∗ C + rep vector (1 , N) ∗ d ’ ;

for (n in 1 :N)

Y[ n , ] ˜ normal ( r a t e s [ n , ] , R diag ) ;

}

A.2.2 Factor Analysis

data {
int N; // number o f o b s e r va t i on s

int M; // number o f f e a t u r e s

int D; // number o f l a t e n t f a c t o r s

real Y[N, M] ; // ob s e r va t i on s

}

parameters {
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matrix [N, D] X; // l a t e n t space

matrix [D, M] Lambda ; // f a c t o r l o ad ing s

row vector [M] mu; // mean vec t o r

row vector<lower=0>[M] phi ; // d iagona l var iances

}

model {
for (n in 1 :N) {

X[ n , ] ˜ normal (0 , 1 ) ;

Y[ n , ] ˜ normal (mu + X[ n , ] ∗ Lambda , phi ) ;

}
}
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