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Abstract

The aim of this thesis is to create a functional application for the Android

environment that allows the user to do simple virtual drawings without the

use of the touch screen, but rather through hand motions caught by the

camera.

There is a variety of approaches to this end, which vary by complexity and

performance. This piece of work attempts to find a middle ground among

the existing algorithms, as well as to build on and improve them specifically

for this particular task. The idea is based in sci-fi books and movies, as

well as the current global trend and human desire to simplify their work

with the help of virtual reality. This type of technology, in conjunction with

augmented reality, could be used in a variety of fields, such as architecture,

for easier real life model sketching, internal design, for virtual showcasing of

furniture inside a room, etc. A similar technology could be used in the future

for hologram manipulation.

The application was entirely created in the Eclipse IDE with the An-

droid SDK and the OpenCV library. It can be run on smartphones running

Android version 4.2.2 or newer.

Keywords: virtual, drawing, paint, augmented reality, hand detection, An-

droid, OpenCV.





Povzetek

Cilj diplomske naloge je narediti funkcionalno aplikacijo za okolje Android,

ki omogoča uporabniku enostavno virtualno risanje na zaslon brez dotikov,

temveč s premikanjem roke pred kamero.

Obstaja vrsta pristopov kako ta problem rešiti, ki se razlikujejo po zah-

tevnosti in zmogljivosti. To delo poskuša najti kompromisno rešitev med ob-

stoječimi metodami ter jih nadgraditi in izbolǰsati, da se približamo našemu

cilju. Ideja temelji na številnih znanstvenofantastičnih knjigah in filmih ter

trenutni težnji in želji človeka za poenostavitev svojega dela s pomočjo vir-

tualne resničnosti. Takšna tehnologija, skupaj z obogateno resničnostjo, bi

se lahko uporabljala na številnih področjih, kot so na primer: arhitektura, za

lažje skiciranje modelov v realnem svetu; notranje oblikovanje, za virtualno

prikazovanje pohǐstva znotraj prostora ipd. Z uporabo takšne tehnologije se

bo lahko v prihodnosti tudi manipuriralo s hologrami.

Aplikacija je v celoti izdelana v programskem okolju Eclipse, z uporabo

paketa programske opreme Android in knjižnice OpenCV. Izvaja se lahko na

pametnih telefonih s sistemom Android različice 4.2.2 ali noveǰse.

Ključne besede: navidezni, slikar, risanje, obogatena resničnost, zaznava-

nje roke, Android, OpenCV.





Razširjeni povzetek

V tem delu smo uspešno zgradili delujočo aplikacijo za virtualno risanje z

roko v obogateni resničnosti. Sistem prepozna roko, ali pa pripomočke za

risanje, in izvaja ukrepe, ki popolnoma temeljijo na ročnih gestah, brez no-

bene potrebe po dotikih na zaslonu. Veliko omejitev preprečuje nemoteno

risanje v poljubnem okolju, vendar je ogrodje aplikacije dobro definirano in

ponuja jasno predstavitev tehnologije in možnosti uporabe.

Pregledali smo možnosti, kaj že obstaja, kakšne tehnologije so že na vo-

ljo ter uporabnost rešitve. V končnem izdelku predstavimo večino opisanih

metod. Implementirani sta dve glavni metodi za zaznavanje roke in demon-

stracija dveh dodatnih metod, ki smo ju tudi podrobno pregledali. Možne

so razne prilagoditve parametrov, ki vplivajo na zaznavanje. Možno je tudi

omogočanje in onemogočanje drugih možnosti, ki bi lahko spremenile upo-

rabnost aplikacije v različnih okoljih, ali pa način uporabe v odvisnosti od

uporabnikovih želja. Eden od namenov aplikacije je demonstracija možnosti

in dostopnih tehnologij, zato je možen tudi izris zaznanih delov roke in prikaz

vmesnih korakov zaznavanja.

Čeprav je uporabljena tehnologija že dobro znana in odprte narave, nismo

našli projektov, ki temeljijo na podobnih principih. V času izdelave tega dela,

Google Play Store ni ponujal nobene aplikacije, ki omogoča zaznavanje roke

in virtualno interakcijo z grafičnim vmesnikom. Obstajajo podobne aplikacije

za druge platforme, ki uporabljajo dodatno, bolj napredno in dražjo strojno

opremo, vendar je cilj tega dela bil zgraditi aplikacijo za povprečni pametni

telefon s sistemom Android brez uporabe dodatne strojne opreme.



Razvoj je v celoti potekal v razvojnem okolju Eclipse z uporabo paketa

programske opreme Android (angl. Android SDK) in odprte knjižnice za

računalnǐski vid OpenCV. Glavne grafične operacije se izvajajo s pomočjo

funkcij iz OpenCV. Napisali smo tudi funkcije, ki temeljijo na znanih algo-

ritmih za iskanje značilnosti roke, stabiliziranje kazalca ipd. in popolnoma

nove algoritme za potrebe virtualnega uporabnǐskega vmesnika in bolǰsega

prepoznavanja ročnih gest.

Aplikacija deluje na pametnih telefonih z operacijskim sistemom Android

4.2.2 ali noveǰsim. Testirana je bila na več napravah od nižjega do srednjega

cenovnega razreda, stare od leta 2012 do leta 2015. V splošnem je bila hitrost

prikaza dokaj nizka, med 8 in 18 sličic na sekundo (angl. frames per seconds,

fps), kar v večini primerov ni zadostno za prijetno risanje, vseeno pa je dovolj

za demonstracijo uspešnega risanja.

Aplikacija temelji na glavni nalogi, to je zaznavanje roke uporabnika. Vse

ostalo je odvisno od uspešnosti te zaznave. Proces zaznavanja je sestavljen

iz dveh glavnih delov: grafično zaznavanje roke in izračun značilnosti roke.

Prvi del se začne z zajemom slike s pomočjo sprednje kamere telefona.

Preden se ta proces začne, uporabnik z dotikom na zaslonu izbere barvo,

ki ji sistem sledi. Na podlagi izbrane barve se izračuna območje dopustnih

barvnih vrednosti. Vhodni sliki se najprej dvakrat zmanǰsa velikost in se za-

megli, kar poenostavi proces zaznavanja posamezne barve. Barvni prostor se

pretvori iz RGB v HSV, ker ta predstavlja barve bolj intuitivno. HSV slika

se nato binarno segmentira na podlagi izbrane barve: vse točke, ki zadoščajo

barvnemu pogoju, postanejo bele, ostale pa črne. Na binarni sliki se tipično

izvede neka vrsta morfologije. V večini primerov smo dobili najbolǰse re-

zultate z dilatacijo. S tem se končajo grafične operacije na vhodni sliki.

Na podlagi dilatirane binarne slike sistem najde konture, ki naj bi ustrezale

obliki roke. Te konture so podlaga za vse nadaljnje izračune.

Drugi del zajema izračun značilnosti roke, oziroma njenih delov, iz doblje-

nih kontur. Poskusili smo s štirimi metodami, vsaka s svojimi prednostmi in

slabostmi: metoda z napakami konveksnosti (angl. convexity defects), me-



toda k-curvature, metoda z ujemanjem kontur (angl. contour matching) in

metoda z barvnimi trakovi (angl. colored bands method).

Zadnja metoda ne potrebuje nobenih izračunov, temveč uporabo vizual-

nih pripomočkov. Namesto, da bi iskali značilnosti iz kontur, uporabljamo

dva ali tri trakove različne barve, ki jih namestimo na konice prstov in

enostavno sledimo tem barvam. Potrebno je samo izbrati vse barve pred

začetkom zaznavanja. Ta način deluje veliko bolje od ostalih in se je iz-

kazal lažji za uporabo v večini primerov, vendar zahteva uporabo posebnih

pripomočkov, ki niso vedno na voljo.

Ostale tri metode omogočajo zaznavanje roke brez dodatkov, vendar so

zelo odvisne od okolice, osvetlitve in postavitve roke.

Metoda z napakami konveksnosti izkorǐsča dejstvo, da prsti tvorijo spe-

cifične kote, ko so iztegnjeni. Napaka konveksnosti (angl. convexity defect) je

vdolbina v konveksni ovojnici. Vsaka vdolbina v konveksni ovojnici konture

roke je potencialno prostor med dvema prstoma. Metoda ǐsče takšne napake,

ki izpolnjujejo nastavljene kriterije, in jih doda v seznam zanimivih napak.

Lastnosti teh napak se nato uporabljajo za določanje števila iztegnjenih pr-

stov. Metoda deluje dobro v primerih z dobro osvetlitvijo in enostavnim

enobarvnim ozadjem, vendar zahteva upoštevanje vseh omejitev (npr. roka

mora vedno biti pokonci, prsti morajo biti jasno iztegnjeni in narazen ipd.),

ki jih uporabnik ponavadi ne pozna.

Ostali dve metodi, ki smo ju tudi implementirali, služita samo kot pre-

gled možnih alternativ. Metoda k-curvature ǐsče točke v konturi, ki tvorijo

določene kote s svojimi sosednimi točkami, pod predpostavko, da so te točke

deli neke krivine. Če krivina izpolnjuje kriterije za smer, velikost in oddalje-

nost od dlani roke, lahko predpostavimo tudi, da ustreza konici nekega prsta.

Metoda z ujemanjem kontur preprosto primerja trenutno konturo z vnaprej

definiranimi konturami. Najprej je treba definirati N kontur, ki ustrezajo N

gestam. Če se kontura dovolj ujema s katerokoli od gest domnevamo, da z

roko kažemo to gesto.

Nobena od teh metod ne deluje v poljubnem okolju, saj so vse odvisne



od kontrasta med izbrano barvo in barvami v ozadju. Dodali smo še nekaj

ukrepov v poskusu, da čim bolj zmanǰsamo napake in olaǰsamo uporabo apli-

kacije. Na primer, v primeru metode z napakami konveksnosti se izračuna

tudi centroid, ki se uporablja za preprečevanje, oziroma zmanǰsevanje lažnih

pozitivov. Implementirali smo tudi nizkoprepustni filter z neskončnim im-

pulznim odzivom, ki odpravlja odvečno tresenje kazalca.

Ker je način uporabe aplikacije netipičen, smo morali razviti tudi poseb-

nen grafični uporabnǐski vmesnik. Vsi ukazi, ki vplivajo na risanje, se izvedejo

izključno virtualno, brez dotikov po zaslonu. Zato je namesto fizičnih gum-

bov vmesnik sestavljen iz virtualnih gumbov, ki se aktivirajo s premikanjem

roke pred kamero. Na voljo je brisanje in razveljavljanje potez, spreminja-

nje barve in debeline črt, risanje pravokotnikov in krogov ter predogled in

shranjevanje risbe v pomnilnik kot datoteko tipa PNG s prozornim ozadjem.

Aplikacija vsebuje tudi fizične gumbe, ki služijo za spreminjanje načina upo-

rabe in izbiranje barve roke ter omogočajo spreminjanje drugih parametrov,

ki vplivajo na zaznavanje roke in obnašanje aplikacije.

Na koncu razvoja je končno aplikacijo testiralo tudi nekaj uporabnikov.

Kot pričakovano, se je uporaba izkazala za preveč težavno. Čeprav so med

razvojem testi pokazali, da je sistem zmožen natančnega risanja in interakcije

z uporabnǐskim vmesnikom s strani naučenega uporabnika in v nadzorovanih

okolǐsčinah, je krivulja učenja za nove uporabnike izjemno strma. Poleg

tega so dodatni problemi, ki nastanejo zaradi omejitev razvitega sistema,

pogosto odvračali testerje od nadaljnih poskusov. Način z barvnimi trakovi,

v primerjavi z ostalimi metodami z zaznavanjem roke, se je izkazal za nekoliko

lažjega, vendar tudi ta ne bi bil dovolj enostaven za uporabo brez jasnega

belega ozadja in podrobnih navodil od pomočnika.

Kljub temu menimo, da ima razvit vmesnik veliko možnosti za nadaljnjo

uporabo in razširitev. Med najbolǰsimi kandidati za razširjanje razvitega

sistema so Haarove značilke, ki odpravljajo odvisnost od barve ter filtri delcev

(angl. particle filters), ki omogočajo sledenje objektom, tudi takrat, ko niso

popolnoma vidni. Če se bi odstranili omejitev iskanja določene barve bi



aplikacija lahko delovala v poljubnem okolju, kar bi omogočilo uporabo v

praktične namene, kot so umetnost, arhitektura, notranje oblikovanje ipd.

Poleg tega bi bil vmesnik uporaben tudi v drugih aplikacijah za pametne

telefone, ki uporabljajo obogateno resničnost, kot so razne igre, poučne in

izobraževalne aplikacije, komunikacijske aplikacije itn.





Chapter 1

Introduction

In recent times, the use of virtual and augmented reality is becoming increas-

ingly more commonplace in all areas of life and science. More importantly,

the possibilities are virtually boundless, and the potential uses are becoming

clearer. Even though the general population is reluctant to these changes,

especially when it requires getting used to entirely new technologies and ways

of using them, it seems inevitable that the user interfaces will change for the

better. Just as man used to draw on cave rocks and later moved on to using

parchments for writing, as the typewriter became obsolete in favor of the

keyboard, and as keyboards and mice finally transformed into touchscreens,

so there must be a next step in the evolution of input and user interfaces.

The main inspiration for this work are the classic computer graphics pro-

grams, such as MS Paint, which often represent the first contact a child has

with a digital form of drawing. In today’s world, there is a vast number of

similar drawing applications available for portable devices, but they are all

based on the same principle and use the same technology. Augmented reality

has had some commercial success on handheld devices, for example, with the

2016 iOS and Android game Pokémon Go. Hand tracking apps, however, are

very hard to be found.

A very important distinction that needs to be made between theorizing

and revolutionizing is the practicality of novel inventions. In order for society

1



2 CHAPTER 1. INTRODUCTION

to adopt a new technology for everyday use, it must be perfected to the point

where the use of such technology is no longer tedious, awkward, and outright

difficult. Unfortunately, virtual reality and augmented reality today are far

from commonplace. One of the main drawbacks is that the hardware present

in the average smartphone, that is readily accessible to the average consumer

in 2016, which can be several years old, often lacks the computing power

required for the smooth execution of the current algorithms used for making

sense of what the camera sees, resulting in a tedious experience.

Specifically, the function of this application is to track the user’s hand in

front of the camera, and, depending on the gesture that the hand is making,

either draw on the screen by moving one of the fingers, or erase or undo

drawings, change drawing color, line width, etc. The first thing it utilizes

is the phone’s camera to give an image of what is in front of the user. A

hand detection algorithm is then run on that image to find the user’s hand

in front of the camera, and a specialized algorithm that discerns the five

different fingers. The position of each finger or visibility thereof is mapped

to predefined hand gestures, so that the appropriate action can be carried

out when a gesture is detected. The principal action is, of course, drawing

on the screen by moving the index finger in front of the camera.

One of the aims of this thesis is to examine possible approaches that

could simplify the use of virtual hand drawing and improve the accuracy of

hand detection and tracking so that it could be run on contemporary low-

end to middle-end mobile devices with an acceptably high frame rate. A few

approaches have been taken into account, and four of them have been tested.

Naturally, no single one is flawless, and there is a costly tradeoff for each one

of them.



Chapter 2

Available equipment

2.1 Software

Since the intended platform for the application was Android, the entire devel-

opment was done in the Eclipse IDE using the Java programming language.

The graphical user interface is typically defined in .xml files. The other

option was the newer and more specialized Android Studio, but the devel-

opment environment would not have much impact on this work, so the more

traditional option was just as useful.

Android was chosen because it is one of the two most used mobile oper-

ating systems [1], the other one being iOS. In our opinion, iOS would be less

suitable for this type of work because it is much more closed, and there are

not as many tools for iOS that are freely accessible and well documented.

Consequently, there are not as many student projects and theses done for

iOS, which may well serve as a starting point or reference. The two fore-

most reasons, however, are popularity and availability. Android holds the

highest market share among smartphones [1]. In this context, availability

means that Android is offered on a wider range of smartphones, including

some cheaper models, as opposed to iOS, which is only available on Apple’s

iPhone and iPad, which are both in the highest price categories. As far as

development goes, a very similar hand detection system could be built for

3



4 CHAPTER 2. AVAILABLE EQUIPMENT

iOS using Objective-C, since they are also supported by OpenCV. In sum-

mation, the choice of operating system was partly based on the availability

of devices running Android, and partly on its higher market share.

2.1.1 OpenCV

Most of the operations carried out on the captured images were graphics func-

tions from the open source library OpenCV (OpenCV for Android, version

2.4.4). OpenCV has its own useful implementations of data structures used

in image processing, like Mat, Point, MatOfPoint, Scalar, Rect, etc. Almost

all operations and calculations were done using these data structures, like

representing images as matrices of 3-channel pixels, RGB and HSV colors as

3x1 scalars, color segmentation, finding relevant points within shapes, etc.

The image processing functions of OpenCV are naturally merely imple-

mentations of well-known public domain algorithms. The official OpenCV

documentation website does not list the Java wrapper versions of its func-

tions as of 2016 (only C, C++, and Python) [2], but the same details in the

current documentation apply to the Java versions as well.

Among the most frequently-used functions are its methods for image fil-

tering (blurring, downsampling, dilation, erosion), image segmentation based

on color, finding contours of shapes, finding convex hull, convexity defects,

etc. Here is a non-exhaustive list of the most used functions and a short

explanation of what they do (the official documentation offers explanations

in more detail [2]):

• Imgproc.pyrDown – applies the Gaussian pyramid to an image: first con-

volves it with a Gaussian function (equivalent to Imgproc.GaussianBlur),

and then scales it down by rejecting even rows and columns;

• Imgproc.cvtColor – converts an image from one color space to another.

It is used here to convert the input RGB image into an HSV image,

because the HSV color space is more appropriate for color detection

based on the hue components of an image;
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• Core.inRange – checks each value in a matrix if it lies between two

boundaries and returns a binary mask of those values that meet the

criterion. It is used to check which pixels of an image lie within a color

range, that is, essentially, to locate color blobs;

• Imgproc.dilate and Imgproc.erode – perform dilation and erosion, re-

spectively, which are two of the basic operations in mathematical mor-

phology. Dilation is more relevant to color blob detection because it is

necessary to connect and fill gaps in blobs, which happen due to slight

differences in hue or lightness of a real-life object that is being moved

around;

• Imgproc.findContours, Imgproc.contourArea and Imgproc.drawContours –

find contours in a binary image and draw found contours onto an image.

The first two are used to get the contour of the largest color blob, and

the third one is used to draw the contour onto the original camera

frame, so that the detected blob can be visualized. The first one uses

Satoshi Suzuki’s and Keiichi Abe’s algorithm from 1985 [3];

• Imgproc.minAreaRect and Imgproc.boundingRect – the first one finds the

minimum area rectangle enclosing a contour, which is usually a rotated

rectangle facing roughly the same direction as the contour, and the

second one finds the upright bounding rectangle of the contour whose

minimum area rectangle is the largest. The result is a horizontally and

vertically aligned bounding rectangle enclosing all contours;

• Imgproc.approxPolyDP – approximates a polygonal curve (in this case the

contour) by rejecting some vertices. It is used to give a simpler form

of the original contours. It uses the Douglas-Peucker algorithm [4];

• Imgproc.convexHull – finds the convex hull of the contours. It uses

Sklansky’s algorithm [5];

• Imgproc.convexityDefects – finds the convexity defects of a contour. It

is explained in more detail in section 3.1;
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• Imgproc.pointPolygonTest – calculates the distance of each point that

lies inside the contour to the nearest contour edge. It is used to find

the maximum inscribed circle within the hand. A function calculates

each point’s shortest distance, and returns the one that is the farthest

away from each wall of the contour, i.e. the most ”inside” point, as

well as its distance;

• Imgproc.matchShapes – compares two contours and returns a decimal

number from 0 upwards: 0 meaning identical, and higher values mean-

ing higher dissimilarity.

The color blob detection code was written partly on top of an open-source

sample from OpenCV [2] demonstrating the technique. It was extended to

allow detection of multiple colors at once, without reiterating the entire pro-

cess for each color, and it was modified to support additional functionalities

for the need of this application, as well as to speed up the process by removing

irrelevant operations. The morphology done on the input image (blurring,

downsampling, dilation, erosion) was also altered and experimented with,

since there isn’t any single best way to modify an image in order to extract

the most relevant features possible.

2.2 Hardware

The targeted hardware was any of the middle-end Android devices specifi-

cally, since the whole point of this work is for the application to be runnable

on the average consumer smartphone without too much latency.

Several Android phones have been used for testing, but most of the work

was done on a 2013 Sony Xperia L C2105 running Android 4.2.2 with a

Dual-core 1.0 GHz Krait CPU and an Adreno 305 GPU, 1 GB of RAM, and

an 8 MP primary camera able to record at 30 fps at a 720p resolution [6].

This phone’s hardware specifications are well below those of contemporary

smartphones of 2016, when this work was done. The device used for video

capture was, of course, the phone’s primary camera.
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Mode Options on Visible parts Average fps*

1 Whole hand none/drawing features hand 15

2 Whole hand none hand 15

3 Whole hand all hand 15

4 Whole hand none nothing 25

5 Whole hand none hand 19

6 Two colors / 1, 2 bands 20

7 Three colors / 1, 2, 3 bands 18

*measured over 1 minute

Table 2.1: Measured frame rates on Sony Xperia L [6].

The application has also been tested on the following models: Sony Xpe-

ria E (2013, Android 4.1), Sony Xperia E4g E2003 (2015, Android 4.4.4),

Samsung Galaxy A3 A300FU (2014, Android 6.0.1), Samsung Galaxy S5

G900F (2014, Android 6.0.1), Huawei Ascend G7-L01 (2014, Android 6.0),

and Huawei Ascend G620s (2014, Android 4.4.4).

However, the Xperia L, along with the newer Sony Xperia E4g, performed

noticeably better in terms of frame rate in comparison with the other phones.

The two Xperia phones’ frame rates would vary between 10 and 18 fps,

whereas none of the other phones could get an average of above 10 fps. For

reference, anything below approximately 12 fps is arguably too low for a

pleasant, or at least somewhat practical, user experience. Table 2.1 shows

frame rate measurements for the Xperia L in all modes with different options

enabled. The general trend of these observations is as expected: the larger

the area of detected shapes, the slower the execution.

It should be noted that the oldest phone in the list, the Sony Xperia

E, which also sports the least advanced hardware, was able to run the ap-

plication at approximately 8 fps on average. Even though it would not be

regarded as a satisfactory frame rate, being able to successfully draw some

shapes and save a drawing essentially demonstrates that the application can
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Figure 2.1: Tilt Brush snapshots.

be run successfully on older devices, too.

2.2.1 Advanced hardware used in hand recognition

Hand tracking is increasingly being implemented through advanced tech-

nologies, and used by many of the games running on their complementary

platforms. It is already standard in contemporary VR games, and there are

too many to be listed here. There are a number of excellent solutions – at

least in terms of precision and speed – but each one of them is fundamentally

different from our concept in that it uses hardware that is not standard for

smartphones and tablets, and, in the majority of cases, is significantly more

expensive.

Tilt Brush is currently one of the most popular and critically acclaimed

games for the HTC Vive. It uses the VR set’s sensors to create a virtual

environment in which the user can paint 3D shapes around them by using

the two hand-held controllers [7] (Figure 2.1).

Another example, more similar in the end result, is Virtual Notepad [8].

This project uses a spatially tracked tablet and pen for taking notes in the

virtual environment, tracked by the sensors on a head-mounted display of a

VR set (Figure 2.2).

However, neither of them do any visual hand recognition and similar com-
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Figure 2.2: Virtual Notepad. Snapshot taken from [8].

putations, as they both use more advanced and exotic hardware that sends

tracking data to the system. The hardware that can be used to facilitate,

or eliminate, the need for visual hand recognition, can be divided into a few

non-exclusive categories: infrared projectors and cameras, haptic devices,

high-tech gloves and hand-held devices, and powerful processing units.

Infrared projectors and cameras

Infrared projectors and infrared cameras are capable easily and accurately

measuring the distances to various objects in front of them, i.e. their depths.

Infrared cameras are already being made use of in various modern devices

that are becoming steadily more and more accessible to the general public.

Some more popular examples include VR sets like Oculus Rift, PlayStation

VR, HTC Vive, etc., and home gaming systems such as Microsoft’s Xbox

One that uses Kinect, or general purpose PCs connected with the Asus’s

Xtion PRO LIVE camera. Oculus Rift has its own IR LEDs integrated

into the head-mounted display that emit light that is being picked up by a

USB stationary infrared sensor [9]. In addition to it, the Oculus, as well as

other VR sets, can be coupled with a third party peripheral device, like Leap

Motion, to get a better sense of depth. Leap Motion uses two monochromatic

infrared cameras and three infrared LEDs [10] to generate almost 200 frames
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per second of reflected data [11] about the space in front of it and feed

it back to the PC, which analyzes the data and efficiently determines the

exact position, direction, shape, and separate parts of the hands. Kinect and

Xtion PRO LIVE work in a similar way, utilizing an infrared projector and

an infrared sensor that captures the light and feeds the light data back to

the Xbox One or PC [12].

An infrared thermal camera could also be used to provide temperature

data about visible objects, so that the system could rule out any objects that

are outside the human temperature range.

Haptic devices

Haptic devices use a tangible physical medium, like bursts of air (Aireal) [13],

vibrations, and even soundless ultrasonic waves (UltraHaptics) [14]. Haptic

technology differs from the other items on this list in that it provides feedback

in the opposite direction: from the system to the user. It is mainly used to

complement the user experience in the virtual world. As such, it has little

value in hand recognition itself, but it is worth mentioning as a possible

means of improving the accuracy of hand movements in future applications

of similar nature, through giving the user a sense of where their hand is going,

especially in terms of depth. For example, Aireal would send directed bursts

of air in the direction of a virtual moving ball, so that the user would feel

when they have made tactile contact with the ball. UltraHaptics would send

small vibrations through the air (in the form of ultrasound) which would

simulate, for example, a touch of a button on a user’s hand. Without it, the

user would only be able to see their hand visually touching the button in the

virtual environment, but they would not have any other form of confirmation

that they have indeed pressed the button.

Haptic feedback could also be used in an application like this one to let

the user know when they are drawing by simulating a touch on the tip of the

index finger.
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High-tech gloves and hand-held devices

High-tech gloves and similar hand-held devices incorporate various sensors

sending data about position, orientation, and bearing back to the system at

all times. Visual cues, like markers, do not belong in this category, since

they are not technically hardware and do not contain any digital technology

whatsoever, but we are trying to limit the use of anything that is not an

integral part of the smartphone.

The Nintendo Power Glove from 1989 is an early example of hardware

used to replace the traditional controller, but its success was limited due to

a number of factors, including not being technologically advanced enough

to be practical in gaming. The Nintendo Wii Remote released in 2006 was

much more successful, as the technology was much more advanced at that

time. As of 2016, there are a number of VR controllers available (Oculus

Touch, HTC Vive controllers) that allow the user to interact with the virtual

environment very accurately and with great freedom of motion.

The Computer Vision Laboratory at the Faculty of Computer and Infor-

mation Science at the University of Ljubljana has developed Digital Airbrush,

a device that acts much like a real airbrush, but uses infrared light caught

by an infrared camera for position tracking [15].

The Manus VR glove [16], however, is much closer to the subject matter

of this work, as it facilitates intuitive use of hands in a virtual environment,

allowing the user to grab, drag, pull, and push objects around. It is essentially

a regular glove fitted with high-tech sensors that track hand position and

movements, as well as precise finger movements, and a vibration motor that

gives haptic feedback to the user. Devices like these gloves give all the data

necessary for hand interaction, which is exactly what this work is trying

to achieve only through computer vision, without any sensors other than a

simple 2D camera.
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Powerful processors

High-end CPU’s and GPU’s are able to run an exponentially larger number

of operations than the average smartphone. Since we are limited to less

powerful and non-specialized hardware, there must be a compromise between

the practicality of what can be achieved and the complexity of the necessary

operations. For example, Oculus Rift and similar devices actually use the

PC’s computing power for all graphical and other processing, and only use

their infrared cameras, gyroscopes, etc. as additional input and, finally,

to display the images that are produces by the PC. More specifically, the

recommended PC specs listed on the Oculus website as of 2016 far exceed

the capabilities of the hardware present in the average smartphone. GPU:

Intel i5-4590 equivalent or greater; CPU: Intel i5-4590 equivalent or greater;

Memory: 8GB+ RAM; etc [17].



Chapter 3

Approaches

There are three main aspects that need to be factored: performance, com-

puting complexity, and simplicity of use.

• Performance: successfulness of the hand detection algorithm and the

accuracy of its tracking are paramount to the usability of this app. If it

cannot always find the hand, if it often mistakes another object for the

hand, and if the detected contour wobbles as if the hand were unsteady,

then it doesn’t matter how simple, effective and resource-friendly the

algorithm is.

• Computing complexity: conversely, no matter how accurately the hand

is detected, the application becomes unusable if the number of opera-

tions carried out is just too large for the device to be able to seamlessly

render the augmented reality graphics.

• Simplicity of use: for lack of a better term, simplicity of use in this

context implies the necessary environmental conditions, physical req-

uisites, background, and other visual aids for the algorithm to work

properly or to simplify its job. A trivial example would be the con-

trast between the hand and the background: a pitch-black hand on an

all-white background would always make it tremendously easier to de-

tect the hand without any interference. In addition, depending on the

13



14 CHAPTER 3. APPROACHES

inherent algorithms, by decreasing the number of background objects

which could be mistaken for a hand, it could also decrease the amount

of operations being executed, thus improving the frame rate and con-

serving working memory. However, this implies that the user must

confine themself to using the application only in certain, very limited

conditions. Such an application is useless to an interior designer trying

to sketch a colorful living room.

In order for the application to work accurately, smoothly, and without the

need for physical limitations, there needs to be an acceptable balance between

the three aforementioned factors, and that is exactly what this work is trying

to narrow down.

The final application offers a demonstration of four different approaches

that have been taken into account, each with its own advantages and disad-

vantages:

1. Convexity defects: The first method looks for convexity defects within

the convex hull of the detected hand, and assumes each defect repre-

sents one finger. This method has been implemented in the application

as Mode 1 (Whole hand).

2. K-curvature: The second one is a slight variation of the first one, but

instead of defects, it looks for curvatures of a certain angle in the hand

contour, presumably representing fingers. A demonstration of how this

method works is available in the application by enabling ’Display k-

curvature’ under ’Preferences’, while Mode 1 (Whole hand) is active.

3. Contour matching: The third one simply compares the current hand

contour to previously defined hand contours, and determines the cur-

rent gesture based on the result of the comparisons. This method can

be turned on in the application by choosing Mode 1 (Whole hand), and

enabling ’Use contour matching’ under ’Preferences’.
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4. Colored bands: Finally, the last one is different from the first three in

that it does not look for any hand features, but instead just focuses on

predefined colors, each representing a separate finger. This method is

available in the application by choosing Mode 2 (Two fingers or Three

fingers).

Following is a more detailed description of each approach.

3.1 Convexity defects

The first method that was taken into consideration looks for convexity defects

in the convex hull of the detected hand contour. A region of the hand is first

sampled so that we can get an approximate average color of the hand. That

color is then used to set thresholds for segmenting the image into a binary

one, setting the hand apart from the background, allowing us to extract its

contour. This initial process is the basis for this work and is used in all

subsequent approaches. It is explained in more detail in Section 4.1.

It is fairly easy to track the hand using blob detection once we have

the color, but the number of fingers held up is calculated by computing the

number of convexity defects on the hand outline. The most obvious and

sharpest convexity defects in a hand polygon are the points that correspond

to the crevices between the fingers (Figure 3.1). However, depending on

the threshold set for what should be considered a defect (this is a different

threshold), there can be too many, or too few defects found, meaning an

incorrect number of fingers detected. Additional problems arise when only

one finger, especially the index finger, is extended. Namely, if the rest of the

fist is smooth and the finger is tilted in a way that flattens the angle between

it and each side of the fist, then there are no obvious convexity defects in

the hull. This presents a crippling problem, since that is the most important

gesture, meaning ”drawing,” but the system does not detect any fingers. This

is demonstrated in Figure 4.5b, where the index finger is extended, but it
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doesn’t form a significant convexity defect in the convex hull; Compare to

Figure 3.1, where four defects have been detected.

The process of determining the number of fingers is as follows:

The contour representing the hand that is segmented from the background

is simplified by approximating a simpler polygon by reducing the number of

points in the original polygon using the Ramer-Douglas-Peucker algorithm

[4], which can be thought of as the opposite of smoothing a shape. The al-

gorithm works by recursively removing certain points of the original polygon

that it deems the least necessary. How many points are kept depends on the

precision that is user-defined as a parameter when calling the function, but

the worst-case complexity of the algorithm is O(n2).

The convex hull of the simplified contours (red polygon in Figure 3.1) is

calculated using Sklansky’s algorithm [5], of O(n log n) complexity, which is

then used for finding the convexity defects of the polygon.

Once there is a simplified contour and its convex hull, the set of points not

contained in the hull constitute all convexity defects in the polygon. Each

defect is comprised of four components that describe it: a start point, an

end point, a far point (the point within the defect that is the farthest from

the convex hull), and the distance between the far point and the hull. The

greater the distance, the likelier it is that that point is located between two

fingers (or at the root of one, in the case when only one finger is extended).

Figure 3.1 shows four such defects and their components.

If the contour was, indeed, a hand, and N fingers were discernibly ex-

tended, among the numerous defects found, exactly N depth points should

have distances clearly greater than the rest and technically greater than the

chosen threshold (mentioned above). The number of points above the thresh-

old is assumed to be the number of fingers, which makes choosing the right

threshold essential to the whole task. However, if one threshold works fine

with five fingers, it may be too high when only the index finger is visible.

And vice versa, if the threshold is low enough to recognize the crevice be-

tween the sole index finger and the knuckle next to it, things quickly get out
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Figure 3.1: Convexity defects: each defect is composed of four parts: a start

point (yellow circle), a far point (purple circle), an end point (cyan circle),

and a depth (distance between the far point and the convex hull); the lines

help visualize the whole defect.

of hand as various other insignificant defects are erroneously recognized as

valid spaces between fingers.

In summation, both parts of this method are severely limited when it

comes to tracking a hand and its separate fingers, rendering it useless in real

world situations, and at best unreliable in a high contrast environment:

1. The background must not contain any color similar to the color of the

hand, or another object can be mistaken for a hand;

2. The crevices between the fingers must form the perfect angles required

by the set threshold in order to be recognized as convexity defects and

add towards the finger count.

Obviously, using color blob detection is not the best way to track a hand

on a screen, and finding convexity defects is far from reliable when we need

the exact number of fingers (or a gesture can be mistaken for a completely
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Figure 3.3: K-curvature: the contour’s distortion prevents the algorithm from

finding curves properly. Red circles are points of interest, and green circles

are their k-th neighbors.

forms with its two 2nd neighbors is 57o, and the angle β that p2 forms with

its two 2nd neighbors is 160o. Since α is less than θ, and β is greater than

θ, p1 is considered a potential fingertip point, and p2 is disregarded.

We have implemented a crude form of the algorithm in the application

as function kCurvature(MatOfPoint contour, int k, int theta) as an optional

alternative to the Convexity defects method, but the observed results, as far

as counting fingers goes, were not satisfactory. This method relies on the

smoothness of the contour, which in turn relies on the successfulness of the

color blob detection and the subsequent morphology, as well as chance. If the

part of the contour that goes along a certain finger is distorted and it does

not form an angle of less than 60 degrees, it will not be detected as a finger.

This irregularity of the hand contour, especially around the fingertips due to

the different color of the nails, causes curves to be detected in unexpected

places, and overlooked at the very tip of the finger (Figure 3.3). The problem

is not in the algorithm, but in the distorted contour itself.

A demonstration of how this method works is available in the applica-

tion in Mode 1 (Whole hand) by enabling the option ’K-curvature’ in the
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’Preferences’ menu.

3.3 Contour matching

Contour matching is a much simpler method that relies solely on

comparing contours. The current largest detected contour is com-

pared to three contours captured beforehand by the user, each cor-

responding to a certain hand gesture. The comparison is done by

the OpenCV function Imgproc.matchShapes(Mat contourA, Mat contourB, int

method, double parameter) [2], which compares the two shapes and returns

a decimal number from 0 upwards: 0 meaning identical, and higher values

meaning higher dissimilarity. The function uses one of three possible meth-

ods (specified by the method variable), all of which use the Hu invariants [19]

to calculate the result. The Hu invariants are in turn calculated by the func-

tion Imgproc.HuMoments(Moments m, Mat huInvariants), which returns a matrix

of seven Hu invariants. The method used in the application is described in

Equation 3.1, where A denotes contourA, B denotes contourB, and mX
i is

the i-th Hu moment of contourX.

I(A,B) = max
i=1...7

|mA
i −mB

i |
|mA

i |
(3.1)

This method is only available in Mode 1 (Whole hand), and requires

that the user first capture three sample contours: closed fist, index finger

extended, and open hand. This is done by enabling the option ’Contour

matching’ in ’Preferences’, and making the three gestures one by one, tapping

the screen once after each gesture. The contours are automatically saved on

each tap. Once the three samples are captured, the program constantly

makes comparisons between the current contour and the other three, and

then compares the returned numbers; the one with the lowest number is

taken as the current gesture. If the number is above a certain threshold

(no contour was similar enough to the current one), the program skips to

the Convexity defects method as a failsafe. While it is a simple method that
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provides a fast and easy way to guess the hand gesture in a white background

setting, it fails when there is moderate background noise because the other

detected contours prevent the matching to be done properly.

3.4 Colored bands method

There are a few more possibilities that could be explored in a later implemen-

tation, but they are all techniques that are not widely used when it comes

to hand detection on mobile devices. Prominent examples include ”Haar-

like features” and ”particle filtering.” It should be noted here that the field

of hand detection solely by the use of a 2D camera, especially without the

use of infrared cameras or other hardware, is far from widely explored, and

thus scarcely used. The current publicly available methods do not provide

a definitive robust way of hand detection in an arbitrary environment that

might contain a lot of noise, variable lightness, and occlusion of the hand, or

in an arbitrary hand pose, such as horizontal or facing the camera with the

fingertips, much less identifying the separate fingers or other anatomic parts

of the hand.

To that effect, we have facilitated the work of the previously described

method, by using paper bands taped to each finger, each in a different color.

Instead of tracking a hand, things could be simplified greatly by just tracking

different color blobs. That way there would be no need for finger or hand

recognition at all. We could simply tape a band in a unique color to each

fingertip and track those bands using color blob detection. Hiding a finger

behind the fist effectively moves that band out of sight, which the program

would see as not holding that finger up. That way it can count the number

of fingers that are up. With that, we have a program that can track a hand,

count fingers, and recognize gestures (since it can tell each finger apart), with-

out the need for complex graphical processing, which would greatly improve

performance.

Those approaches are always much less computationally demanding, but
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require additional objects to be used as visual aids in the physical world.

Several different objects were tried during the course of this work, the

simplest one being a piece of colored paper wrapped around a fingertip. In

the end it really makes no difference what is used, as long as it is brightly

colored and distinctly to the background (usually colors that are rarely seen

in most natural environments), clearly visible at the end of each finger, and

the algorithm is set to look for those specific colors. However, in the spirit of

this work’s ultimate goals, whatever is used needs to be as simple and easy

to acquire as possible, so that it does not present a problem to the end-user.

To that end, if such an object must be used, we propose a simple black or

white glove with colored fingertips. Such a glove differs essentially from the

above-mentioned high-tech gloves and hand-held devices in that it contains

no electronic hardware whatsoever and is therefore very inexpensive. Here

we face the same trade-off between convenience and performance again.



Chapter 4

Detection process and

implementation

The very first thing that needs to be done once the application is started is

selecting the mode of operation: Mode 1 (Whole hand) or Mode 2 (Colored

bands). Next, the application asks for one or more colors to be selected (one

for Mode 1, and two or three for Mode 2). The modes of operation and

ways of selecting and changing colors are described in more detail in Section

6.1. Once that is done, the system begins tracking the selected colors and

attempts to understand what it sees. Below is an overview of the general

process.

A CustomCameraView object is initialized, which extends JavaCameraView, a

bridge view that connects OpenCV and Android’s Java Camera so that each

camera frame can be processed and converted to an RGB OpenCV matrix

[2]. Once the camera is started, a ColorBlobDetector object is also initialized,

and awaits between one and three colors to be assigned to it. The colors can

be defined (picked) in a few ways, but once the specified number of colors

is selected, the ColorBlobDetector starts continuously looking for those colors

on the input matrix. The detector receives the HSV colors, calculates certain

lower and upper bounds (within the HSV color space) based on these colors,

and stores them for later use.

23
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Regardless of the mode, at least one color must be selected before any

detection can be done. In the case of Mode 1 (Whole hand), the user selects

the skin color on the back of their hand, and that is the only color being

tracked. In the case of Mode 2 (Colored bands), the user selects the color of

each band separately, so that they may be tracked separately.

Provided that the colors have been selected and assigned to the detector,

it calls its main processing function on each camera frame. It looks for any

blobs in the current camera frame that satisfy certain color criteria defined

by the aforementioned bounds (by range checking and producing a mask of

the pixels that have passed the criterion), and returns any found blobs in the

form of a list of contours (OpenCV object MatOfPoint) mapped to the input

image.

From this point on, everything is done exactly once for each camera frame,

while the program is running and the camera is still active. If the list of con-

tours for the current frame is not empty, more calculations follow. However,

depending on the active mode, different actions are taken:

1. Mode 1 (Whole hand) (Figures 4.1a and 4.1b):

The position of the cursor is defined by default as the top-left corner of

the bounding box of the entire contour. This is done because it is the

closest point to the index finger’s tip of the right hand that is easily

calculable.

However, if the thumb’s tip is too far left from the index finger’s tip,

the bounding box’s top-left corner floats somewhere between the two

fingers. In order to address this problem, there is an option available

in the application that attempts to approximate the index fingertip’s

position more accurately (’Use fingertip as cursor’ in ’Preferences’).

The method behind it tries to guess which convexity defect corresponds

to the space between the thumb and the index finger, and takes its

start point, which is roughly near the index finger’s tip, as the cursor’s

position. There is, however, a downside when using this method: the
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(a) Whole hand — drawing (b) Whole hand — interface interaction

(c) Colored bands — drawing (d) Colored bands — interface interaction

Figure 4.1: Modes of operation: Whole hand and Colored bands
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detected contours shift constantly, up to 30 times per second, which

means the convexity defects move with them. That causes the cursor

to wobble, resulting in jagged lines (akin to the first line in Figure

4.6, and sometimes worse). For that reason, this functionality is only

optional. It is also worth noting that we have implemented a cursor

stabilization algorithm (Section 4.2.5).

When interacting with the user interface, due to physical limitations,

the cursor does not always correspond to the top-left corner, but moves

down when the hand is in the bottom half of the image, and right when

it is in the right half of the image. In other words, the cursor does not

follow the index finger’s tip; instead, it follows the relative position of

the hand in relation to the entire screen. This is done because, when

the index finger is near the bottom of the screen, it cannot be tracked

if the rest of the hand is not visible to the camera.

Next, in order to differentiate between fingers, the convex hull of the

hand is calculated, and its convexity defects are extracted, which should

serve as an approximation of the number of fingers that are being held

up. This is explained in more detail in section 3.1. For ease of use,

one or two fingers up is translated to ”one finger up,” i.e. drawing

mode, and three or more fingers means ”two fingers up,” i.e. interface

interaction mode.

2. Mode 2 (Colored bands) (Figures 4.1c and 4.1d):

In this case, the exact blob corresponding to the index finger is known,

so its bounding rectangle’s top-left corner is taken as the cursor, which

is far more precise than the entire hand’s bounding rectangle.

No further calculation is needed here because the exact number of fin-

gers is known, since each color corresponds to a separate finger. The

number of detected colors is the number of fingers held up.

From this point on, the process is the same regardless of the current

mode. Depending on the current hand gesture, three different interaction
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modes apply. However, due to differences in detection techniques in the two

modes, we have settled on assigning different gestures for interaction in the

two modes.

1. No action — If the number of visible fingers was determined to be

zero in Mode 1, or zero or more than two in Mode 2, the entire cycle

is skipped and no action is taken, thus allowing the user to move their

hand freely across the screen.

2. Drawing — If the number of visible fingers was determined to be

one in Mode 2 (Figure 4.1c), or one or two in Mode 1 (Figure 4.1a),

that is the default mode of ”drawing”, where each new frame adds

an additional point and an additional line to the drawing. The point

is added to the current position of the cursor, and the line is drawn

from the previous position of the cursor to the current one, thereby

approximating the effect of continuous drawing. These points and lines

are stored in ArrayList’s whose entire contents are drawn on top of

the input RGB image on each frame before displaying that frame on

the screen.

3. Interface interaction — Finally, if the number of visible fingers was

determined to be two in Mode 2 (Figure 4.1d), or 3 or more in Mode

1 (Figure 4.1b), this enters the ”user interface mode,” in which the

position of the cursor is constantly being checked whether or not it

lies within a virtual button’s coordinates. If it does, that button is

”pressed” and its corresponding action is taken.

Following is a more technical and detailed description of the entire process

(which is only applicable to Mode 1), divided into two parts: hand detection

and feature extraction. Hand detection concerns with producing a binary

image of the hand as clearly as possible, with the minimal possible amount

of noise. Feature extraction is the more intelligent part of the process that

performs contour analysis, i.e. tries to make sense of the detected contours.

This entire process is also summed up in the diagram in Figure 4.2.
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Figure 4.2: Diagram of the entire process.

Note that feature extraction is not needed in Mode 2 (Colored bands),

since the system knows the exact position of each colored band, and what

finger it corresponds to.

4.1 Hand detection

On each camera frame, which means up to 30 times per second, the input

frame is converted to an OpenCV.Mat object (1st image of Figure 4.3), and

it is passed to the color blob detector. It is then twice blurred and scaled

down by applying the Gaussian pyramid, which consists of convoluting it was

a Gaussian function (blurring), and rejecting even rows and columns, thus

halving the width and height of the 2-dimensional matrix. Since this process

is done twice for the rows and the columns, the resulting matrix is four times

smaller than the original matrix. The OpenCV function used to achieve this

effect is Imgproc.pyrDown(Mat srcMat, Mat dstMat).
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This matrix is then converted to HSV color space (2nd image of Figure

4.3), using the OpenCV function Imgproc.cvtColor(Mat srcMat, Mat dstMat,

int code), code being the type of conversion, or in this case, RGB2HSV

(RGB to HSV). The HSV color space is more appropriate for range checking

because it represents colors in terms of hue, saturation, and value, as opposed

to a cryptic mixture of various hues.

The color blob detector has two attributes that determine the range check-

ing: lowerBounds and upperBounds. They represent the range (anything be-

tween lowerBounds and upperBounds) for the range checking, and contain three

variables for each channel. The range checking is done on each channel sepa-

rately, so a certain pixel has to be within the set range on each channel in or-

der to be positive. The OpenCV function Core.inRange(Mat srcHSVMat, Scalar

lowerBounds, Scalar upperbounds, Mat dstMask) performs the range checking

and produces a binary mask of the same size as the source matrix, where

all source points that were inside the color range are now set to 1 (shown

as white), and all the remaining ones are set to 0 (shown as black) (3rd

image of Figure 4.3). This is similar to thresholding, where all pixels of a

grayscale image above or below a certain value are admissible, but range

checking works on multiple channels and allows multiple values within a cer-

tain range. While the most important channel in this case is H (the actual

hue of the color), we still need to limit the range of the other two channels,

because a very wide spectrum of colors can have the same H value. However,

the user is given the option to change the range of each channel. Setting the

ranges of S and V to their maximum values, for example, is essentially the

same as using only the H channel, because the algorithm admits all values

on those two channels.

Once there is a binary mask, the results could be further filtered in order

to reduce any potential noise. The most useful thing to do here is mor-

phological transformation: dilation and erosion, or any combination thereof

(opening and closing). As there is no single universal and most successful

sequence of morphological operations, the results will always vary depending
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on the surroundings, lighting, as well as other factors. We have found that,

in most cases, the most accurate results are achieved by only one iteration of

dilation of the binary image, so that is the sequence used in the application

(4th image of Figure 4.3). OpenCV has a built-in function that performs

dilation with a specified structuring element, Imgproc.dilate(Mat srcMask,

Mat dstMask, Mat kernel). The application uses a rectangular kernel of size

3× 3, but the results were very similar with an elliptical one, too.

That concludes all the graphical processing that is done on the

input image, i.e. the manipulation of its pixels. The next steps

are purely mathematical calculations based on the dilated binary im-

age. The first operation here is finding all the contours in that image.

OpenCV’s function Imgproc.findContours(Mat sourceMask, List<MatOfPoint>

contours, Mat hierarchy, int mode, int method) uses an algorithm for topo-

logical structural analysis [3] to extract the contours, and offers choice in

the mode (what type of contours will be retrieved) and method of contour

approximation. The mode used here is the simplest one that retrieves only

the extreme outer contours, without the need for any hierarchy. The method

of approximation does simple compression of horizontal, vertical, and diag-

onal segments, leaves only their end points, instead of storing all points of

the contour. The results are stored as a list of vectors of points represent-

ing the polygons of the contours. Naturally, not all of the contours found

are always parts of the hand, so further filtering could be required. One of

the more effective ways of doing that is rejecting contours that are smaller

than a predefined value, or a predefined percentage of the area of the largest

contour. Note 5th image of Figure 4.3: The note in the top-left quadrant of

the image has a similar color and its contour was extracted, but the contour

was filtered out due to its small size. In our implementation, the application

offers a setting for adjusting that percentage in real-time. Another option is

taking only the largest contour, but that could result in failure to recognize

a hand when there is a larger object in the background with a similar color.

By taking both contours into consideration, the system can later easily de-
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Figure 4.3: Various stages of the process: 1. Getting the input image; 2.

Converting to HSV color space; 3. Color segmentation; 4. Dilation; 5.

Contours; 6. Feature extraction.

termine which one is the hand, by examining its other features, and not only

its size.

4.2 Feature extraction

The contour itself holds vital information about the hand, its posture, and its

separate parts, or whether it is a hand at all, but it needs to be unlocked by

conducting more thorough contour analyses. Among the more useful features

of a contour are its rotated (purple rectangle in 6th image of Figure 4.3) and

upright bounding boxes, its convex hull (red polygon in 6th image of Figure

4.3), its maximum inscribed circle (red circle in 6th image of Figure 4.3), and

its center of gravity.

There are many possible approaches as to how the hand features can be

extracted from the contour. While we achieved the best functionality by

using the Convexity defects method (Section 3.1), we have also implemented

two others: K-curvature (Section 3.2) and Contour matching (Section 3.3).
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4.2.1 Convex hull

The default method is calculating convexity defects in the convex hull. The

convex hull is essential in hand recognition, since it can be used together with

the contour to find any convexity defects, which may or may not represent the

spaces between extended fingers. The hull is calculated by using OpenCV’s

function Imgproc.convexHull(MatOfPoint contour, MatOfInt hull). The output

MatOfInt is just a list of indices of contour, corresponding to the points that

are also vertices of the convex hull. In order to get the hull’s actual vertices,

we need to copy the values from contour that are mapped in hull, and store

them in a separate list of points.

4.2.2 Convexity defects

Using the two variables holding the contour and the hull, we use

OpenCV’s function Imgproc.convexityDefects(MatOfPoint contour, MatOfInt

hull, MatOfInt4 defects) to get all the convexity defects between the contour

and its convex hull. A convexity defect is composed of three points and one

descriptive value: start point, end point, far point, and depth. MatOfInt4

holds four integers, which means the points are not stored as OpenCV.Point

objects, but as numbers representing indices mapped to the variable contour.

These three points are obtained by getting the Point objects at the specified

indices in the contour.

Extended fingers form prominent convexity defects in the contour. How-

ever, many other defects need to be filtered out first, and even then, there is

still plenty of room for error. The most common filtering steps are rejecting

defects that are facing downwards (since the space between fingers is usually

facing upwards), defects forming angles wider than approximately 100o (as

the fingers don’t usually bend that far), defects that are too small, defects

that are too close to the convex hull (i.e. too shallow), etc.
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4.2.3 Maximum inscribed circle

The convexity defects can be further filtered once the maximum inscribed

circle has been found, since it ideally represents the palm of the hand, and

the defects are the spaces between fingers. For example, if a defect cannot be

a finger if it is too far away from the maximum inscribed circle (fingers are

attached to the palm), if it is twice the size of the circle’s diameter (fingers

are usually about as long as the palm), etc. Finding the maximum inscribed

circle in a contour is relatively simple, but very time consuming, because the

algorithm has a high time complexity. It is typically found by performing

a point-in-polygon test on each point inside or near the contour, which also

calculates its distance to the nearest contour edge. The point that has the

maximum distance, and is inside the contour, is the center of the maximum

inscribed circle, and the distance to the nearest edge is its radius. This is

done by calling the OpenCV function Imgproc.pointPolygonTest(MatOfPoint2f

contour, Point point, boolean measureDistance) once for each point of the en-

tire matrix. The complexity of one run of a typical point-in-polygon test for

one point is O(n) [20]. Running it on the entire matrix takes width×height
times that. Doing so once per each frame, several frames per second, can

slow down the entire application and render it useless. The complexity can

be reduced for special polygons, such as convex polygons, but that is not

the case with these contours. There are several ways to accelerate the basic

algorithm, mainly by limiting the search area, but the algorithm is always

of O(n) complexity for arbitrary polygons, hence ”acceleration” refers to re-

ducing a constant time factor [20]. The most obvious way to limit the search

area is to create a Region of Interest (ROI) and ignore the rest of the image.

The ROI is first defined as the bounding box of the contour. If there are more

than two convexity defects found, the top edge of the ROI can be limited

to the highest far point (we need more than two defects to make sure the

highest one is not the thumb), because the palm is located below the fingers,

excluding the thumb. The bottom edge of the ROI can be defined as twice

the length of any of the defects (fingers) from its far point (root) downwards,
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because the palm’s height is a little more than the middle finger’s length

(Figure 4.4).

In addition to the ROI, the point-in-polygon test is only performed on

every N -th point within the ROI (where N is greater than 3, but less than

15). That way, the maximum inscribed circle is found roughly 6 times faster,

and the accuracy suffers very little, as it is not very important to find the

exact center of the palm, but merely an approximation. Native C code

using JNI was also used for the same purpose in an attempt to decrease the

computation time, but the Java method that skips a few pixels in the search

was found to be a little faster.

Constricting the centroid

Additionally, if the ’Constrict centroid’ option is enabled, the ROI is defined

simply as the maximum inscribed circle’s area from the previous frame, if it

exists. This prevents the tracking system from jumping to a different region

outside of the hand in cases when there are other large objects of a similar

color. The constriction is usually loose enough to allow relatively quick, but

natural hand moves across the screen. If the centroid is lost, the original

method for finding it takes over, and then the constriction takes effect again

[21].

Ignoring false positives

Having found the maximum inscribed circle and filtered the obvious false

positive convexity defects is usually enough to get a sense of where the hand is

and how many fingers are held up. There is an optional function implemented

in the application that attempts to further filter out obvious false positives by

doing various other tests (based on the shapes in Figure 4.4), but its success

rate is not always high, and in some cases, it can even impede drawing in

clear situations. Nevertheless, it is worth noting the additional tests that are

performed. The contour is disregarded as not a valid hand if:
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Figure 4.4: ROI of the hand: purple circles: far points; green line: length of

a defect; blue line: twice the length of the defect; yellow rectangle: ROI for

the point-in-polygon tests; red circle: maximum inscribed circle.

• the farthest fingertip (convexity defect start or end point) is too far

away from the palm (center of maximum inscribed circle)

• the farthest far point (root point between two fingers) is too far away

from the palm (center of maximum inscribed circle)

• the minimum enclosing circle of the convexity defects (circle

formed by the roots of the fingers) does not intersect the max-

imum inscribed circle; minimum enclosing circle is found by us-

ing the OpenCV function Imgproc.minEnclosingCircle(MatOfPoint2f

points, Point center, float radius)

• the center of gravity of the entire contour is too far away from the

maximum inscribed circle; the center of gravity is found by using

the contour’s moments, which are calculated by the OpenCV function

Imgproc.moments(Mat contour, boolean binaryImage)



36 CHAPTER 4. DETECTION PROCESS AND IMPLEMENTATION

(a) no protrusion or discernible features (b) the index finger ”protrudes” the hull

Figure 4.5: Hull protrusion. Even though no convexity defects have been

detected in image (b), we try to find a point in the top-left part of the hull

that is far enough from the maximum inscribed circle.

4.2.4 Hull protrusion

There is, however, one problem with this entire approach when the user is

attempting to draw by using only the index finger. Namely, when the index

finger is the only one extended and the rest of the fist is closed, the convexity

defect formed by the index finger and the hull is too close to the hull, too small

to be detected, or too wide to pass the angle criterion (Figure 4.5). Due to

the nature of a closed human fist, the lack of discernible features (such as the

ones on a human face) presents a significant difficulty in recognizing it from

its backside (Figure 4.5a). For this reason, there is a limitation on drawing:

drawing must be done with both the index finger and the thumb extended.

We have found one possible solution that works in a limited number of cases,

but it can also be a source of many false positives. We try to find a protrusion

from the hull in the top-left part of the contour in relation to the palm (i.e.

the minimum inscribed circle), by looking for a point that is far enough from

the palm.
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Figure4.6:Fourlinesdrawnwithdifferentstabilizationvalues:0(none),4,

6,and10(max).

4.2.5 Cursorstabilization

Inordertosmoothoutthecursormovements,itspositionisconstantlybeing

stabilizedbypassingthroughalow-passIIR(infiniteimpulseresponse)filter.

Ittakesthecursorpositionsfromthecurrentandthepreviousframeand

shrinksthedifferencebetweenthem(byasetamountthatisalsoadjustable).

SinceitisanIIRfilter,thepreviousfilteredvaluesaffectnewvalues.That

meansthatoverthecourseafewframes,theeffectofthefilterisacursor

thatdoesnotmakeanyunwantedsuddenmoves(Figure4.6).Asideeffect

ofsettingahighvalueissignificantlagofthecursoratlowerframerates.

Forthatreason,thefilter’salgorithmtakesintoaccounttwootherfactors:

thecurrentframerate,andthedistancethecursorhastraveledsincethelast

frame(Equation4.1).Thestrengthofthefilterisloweratlowerframerates

andhigherathigherframerates.Itisalsodecreasedproportionatelytothe

speedofthecursor.

newPos=prevPos+
curPos−prevPos

smoothing×frameRate−speed
(4.1)
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4.3 Pseudocode

This entire process is summed up in the following pseudocode (Listing 4.1),

divided into two parts in the same way as in the text.

Listing 4.1: Pseudocode of the detection process.

// HAND DETECTION -----

Mat mRgba = inputFrame.rgba() // get input image

((ColorBlobDetector) mDetector).processEach(mRgba) {

Mat mPyrDownMat = Imgproc.pyrDown(mRgba) x2 // pyrDown twice

Mat mHsvMat = Imgproc.cvtColor(mPyrDownMat, RGB2HSV) // convert
pyrDown rgba image to hsv image

for (each color in hsvColors) {

Mat mMask = Core.inRange(mHsvMat, mLowerBounds<color>,
mUpperBounds<color>) // do a range-check for each pixel of hsv
image

// mMask is a bit mask of pixels that are either inside the color
range (1, white) and pixels that are not (0, black)

Mat mDilatedMask = Imgproc.dilate(mMask, 3x3 kernel) // dilate the
1-regions of the binary image

List<MatOfPoint> contours = Imgproc.findContours(mDilatedMask) //
find contours of the 1-regions and store them as a matrix of
points

maxArea = find area of largest contour

disregard all contours that are smaller than a certain percentage
of maxArea

scale up all contours by 4 // because the input images was halved
twice

}
}

// FEATURE EXTRACTION -----

for (each color in hsvColors) : Imgproc.drawContours(mRgba, contours) //
draw the contours onto the input image

RotatedRect minAreaRect = Imgproc.minAreaRect(contours) // find the
minimum area (rotated) rectangle enclosing the contour

Rect boundRect = Imgproc.boundingRect(contours) // find the upright
bounding rectangle enclosing all contours

if (whole hand mode) {

contour = Imgproc.approxPolyDP(contour) // simplify the contour by
approximating it

Imgproc.convexHull(contour, hull) // find the convex hull of the
contour

MatOfInt4 convexityDefects = Imgproc.convexityDefects(contour, hull)
// find the convexity defects in the contour in relation to the
hull

// filter the convexity defects
List validDefects

for (each defect in convexityDefects) {



4.3. PSEUDOCODE 39

if (defect.angle < 100 && defect.depth > depthThreshold &&
defect.farPoint < yThreshold)

validDefects.add(defect) // add this defect to the list of
valid defects

}

// find the maximum inscribed circle
Mat ROI = mRgba.submat(limitingCriteria) // limit the search to a

region of interest

for (each point in ROI) { // additionally skips a some pixels to save
time

dist = Imgproc.pointPolygonTest(contour, point) // calculate the
distance from point to closest edge of contour

// if dist is max, this point and dist define the max inscribed
circle

}

List fingertips = validDefects.endPoints // take the end points of
the defect as fingertips

optionally: ignoreFalsePositives() // if the farthest fingertip or
far point is too far away from the palm, don’t draw

// if no defects found, try to find a protrusion near the palm, in
the upper-left corner; it may be the index finger

optionally: findHullProtrusion()

} // else if (colored bands mode) proceed
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Chapter 5

User interface

The user interface was created specially to fit the purposes of this applica-

tion. A traditional graphical user interface with pressable buttons would be

useless here since the whole idea is to approximate modern virtual reality ap-

plications. Admittedly, peripheral devices like mice and keyboards are often

used for walking around and choosing menu options in virtual reality, but in

some cases there is also the possibility to press buttons and make decisions by

doing actions in the virtual world. Ideally, this application would be used in

conjunction with a VR set, like Google Cardboard, meaning the user would

not hold the device and also wouldn’t be able to press any buttons, hence

the need for a virtual user interface.

The final interface is mostly composed of virtual ”buttons,” that are not

actual buttons, but mere text views (Android element TextView) having a

certain position and text. These text views cannot be pressed or tapped

physically; they are activated when the cursor (otherwise used for drawing)

is positioned over them. That enables button pressing in the virtual world

of the application, without the need to ever touch the phone’s screen. The

current gesture decides whether a ”button” will be pressed or not: there

have to be three fingers detected in Mode 1 (see Section 6.1.1) or two fingers

detected in Mode 2 for a virtual button to be activated. The reason for this

difference in gestures is the difference in the detection techniques used for

41
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Mode 1 and Mode 2. For example, the problem of not being table to detect

a sole extended finger in Mode 1 by using the Convexity defects method (see

Figure 4.5b) prevented us from assigning the ”one finger gesture” to the same

action in all cases. A potential solution has been proposed in Section 4.2.4,

but since it isn’t a complete solution, we have decided to assign different

gestures for the different modes.

The actual drawing is done by using one core OpenCV function on every

camera frame: Core.line(Mat image, Point start, Point end, Scalar color,

int thickness). Every new bit of drawing is saved in the ArrayList object

listOfLines. When the cursor moves between the duration of two consec-

utive frames, a new line is added to listOfLines, defined by the point that

corresponds to the current cursor position, and that cursor position from

the previous frame. Since the ArrayList holds an array of Point objects,

it actually stores the line’s two ending points. On each frame, the contents

of that ArrayList are drawn on the screen. The precision of the drawing

again depends on the successfulness of the hand detection, as well as the

frame rate. Lower frame rates result in much more discrete and choppier

lines, instead of seamless curves akin to those made by a paintbrush. That

roughness could also be masked by simply increasing the width of the lines

that are being drawn.

5.1 Virtual interface

The virtual interface is divided into three main groups: Erasing buttons,

Controls, and Preview.

1. Erasing buttons — contains buttons for undoing and clearing the

entire drawing (Figure 5.1a):

• Clear: instantly clears any drawings by emptying the ArrayList

holding the points that constitute the drawing;

• Undo: continuously erases the previous line while the button is
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pressed until there are no more lines by removing the last element

of the ArrayList holding the points that constitute the drawing.

2. Controls — contains buttons that then show drawing controls and the

Preview button (Figure 5.1b):

• Preview: displays the Preview layout, which shows the drawing

in its current state.

• Shapes: displays three additional buttons for drawing shapes by

dragging: Rectangle, Circle, and Line;

– Rectangle: since a rectangle can be represented by two op-

posite corner points (top-left and bottom-right), those two

points can be stored in the same ArrayList used for lines. An

additional empty point is appended after the second point to

let the drawing method know that it should draw a rectangle;

– Circle: a circle is represented by one point corresponding to

its center, and one integer value as its radius. The center is

stored in the same ArrayList as the first point, and the radius

is stored as the x value of the second point. The y value of

the second point is set to −1 to let the drawing method know

that it should draw a circle;

– Line: a straight line is drawn in the same way as a rectangle

(start point and end point), but it is stored in the ArrayList

just like the regular lines drawn with one finger.

• Thickness: displays a seek bar (Android element SeekBar), which

allows the user to change the line thickness of any subsequent

drawing (as in Figures 4.1b and 4.1d). Changing the value of that

seek bar simply changes the variable holding the line thickness of

any subsequent lines (and points), so that when a line is added to

the ArrayList holding the lines, a number representing its thick-

ness is also added to an ArrayList holding the thickness of each

line inside the first ArrayList;
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• Color: displays a palette of four drawing colors to choose from

(a small number of colors was chosen for simplicity); the user

can then move the cursor (their hand) to the desired color, which

changes the line color of any subsequent drawing. In a similar way

to changing the line thickness, selecting a new color adds a new

value to the ArrayList holding the color of each line inside the

ArrayList holding the lines;

3. Preview — shows two pictures of the drawing one above the other

(Figure 5.1c). The first one shows only the drawing on a white back-

ground, by creating a new all-white matrix and adding the drawings

on top of it. Since all elements of a drawing are stored in the two

ArrayList’s mentioned above, it is easy enough to make a copy of a

drawing without showing the camera input or the user interface (im-

plemented in copyRawDrawings()). All points and lines are simply drawn

onto a new blank matrix with their original colors and line thicknesses,

which is then converted from an OpenCV Mat to a Java Bitmap ob-

ject and shown in an ImageView in the Preview layout (implemented

in showPreviewLayout()). The user is then left with the possibility to

either discard or save the drawing to the phone’s external memory.

The second image shows the drawing on top of the last input camera

frame when the ’Preview’ button was pressed. There are two buttons

to choose from here:

• Save: saves the picture to phone storage by compressing the bitmap

of the drawing on a transparent background into a small PNG im-

age file, and saves it to the phone’s external memory, in a subfolder

of the phone’s Android Gallery titled ’Drawings’ (implemented in

saveToExternalStorage());

• Dismiss: dismisses the Preview layout.
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(a) Erasing buttons (b) Control buttons, with Color controls

(c) Preview layout (d) Physical controls, with Menu open

Figure 5.1: User interface
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5.2 Physical interface

The other part of the user interface is completely physical and intended to

be used by actual screen touches. These are options that are not necessary

for the actual drawing; they set and adjust the way in which the system

recognizes the hand and facilitates virtual interaction. The physical menu is

activated by pressing the built-in Menu button on an Android device (which

can be a separate physical button on older devices, or substituted by long

pressing the App Switch button). Here, there are four options to choose

from, visible in Figure 5.1d.

1. Mode — switches between the two modes (see below):

• Whole hand;

• Two/Three colors.

2. Pick colors — allows the user to select the color(s) that will be tracked:

• All at once: shows a grid of 2 or 3 points where the fingers should

be placed;

• One by one: the user needs to tap each finger separately;

• Only one: allows the user to change only one color, after all colors

have been set.

3. Camera filter — changes the white balance (each phone has its own

list of supported white balance settings, like Normal, Incandescent,

Fluorescent, Cloudy, Daytime, etc.), which can be advantageous in

certain conditions because it can emphasize some colors and minimize

the accent of others;

4. Show/Hide physical controls — displays three buttons which in

turn display their own seek bars, which can directly affect how the

hand is detected, and adjust the brightness and range of the colors

that are being tracked:



5.2. PHYSICAL INTERFACE 47

• Stabilization: seek bar that adjusts the strength of the low-pass

filter for cursor stabilization (Section 4.2.5). At the lowest value,

the filter will not have any effect on frame rates lower than 60

(virtually never). At the highest value, the filter first takes effect

at 4 fps, and it halves the distance between the cursor positions in

each two consecutive frames at 6 fps. For example, if the average

frame rate is around 15 fps, then this seek bar should be set to

the middle value for best results;

• Lightness: a seek bar that changes the lightness of the already set

colors. Since the colors are defined in the HSV color space, it is

easy enough to change the last value of HSV (V = V alue ∼
Lightness). This could be useful in situations where the back-

ground light has changed since the colors have been selected, thus

not changing the actual color (hue), but only how light or dark it

is;

• Color radius (Figure 5.2): three seek bars for adjusting the range

of each color channel for range-checking. The radius is the al-

lowed difference from the selected color values on each channel

separately. For example, increasing the radius of the S channel

will cause the detector to detect colors that have much different

saturation levels from the original color, from grayish to very vivid

(Figure 5.2c);

• Min. area: seek bar that adjusts the minimum area for detected

contours as a percentage of the largest contour found. All contours

smaller than that will be ignored;

• Threshold: seek bar that changes the threshold which determines

what is considered a convexity defect, available only in Mode 1

(Whole hand). A lower threshold value means higher sensitivity,

which results in more false positives (edges between fingers that

are not there), and a higher value tends to overlook edges if they

are not too sharp.
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(a) Initial setting — only dark blue is de-

tected.

(b) Increased hue range — green, cyan, and

purple are also detected.

(c) Increased saturation range — less satu-

rated blueish colors are also detected.

(d) Decreased value range - lighter colors are

not detected.

Figure 5.2: Color radius. The original color that is being tracked is a dark

blue, as in image (a). The blue contour in each subsequent image covers all

the colors that are being detected with the modified radius values.

5. Preferences — displays a scrollable list of preferences and options:

• Option to use only one finger for drawing (Mode 1): due to the

problem of detecting a convexity defect when only one finger is

extended (see Figure 4.5b), there is an option to use another al-

gorithm, mentioned in subsection 4.2.4, for detecting a finger that

protrudes from the convex hull in the top-left part in relation to
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the maximum inscribed circle (corresponding to the palm). This

method does not always work perfectly and sometimes causes more

problems and is therefore optional;

• Option to use the index fingertip as the cursor (Mode 1): the

default way for determining the position of the cursor is taking

the top-left corner of the bounding box of the entire hand. In

some cases, it is possible to determine the exact position of the

index fingertip, but it is not always reliable and it is therefore

optional;

• Option to use the Contour matching method for detecting hand

gestures (in Mode 1) described in Section 3.3;

• Option to display the result of using the K-curvature algorithm

(Section 3.2), along with options to set the k-number and the

maximum angle theta (Mode 1). It shows points of interest as red

circles, and their k-neighbors as smaller green circles (Figure 3.3);

• Options to draw contours, rotated bounding rectangle, convex

hull, convexity defects, finger projections, maximum inscribed cir-

cle, center of gravity, and minimum enclosing circle;

• Option ’Constrain centroid’ (Mode 1): constrains the search area

for the maximum inscribed circle’s center to its area from the

previous few frames, which prevents the centroid from jumping

to a different region outside of the hand contour (described in

”Constricting the centroid” in Section 4.2.3);

• Option to enable additional methods that attempt to detect and

ignore false positives (in Mode 1), as described in ”Ignoring false

positives” in Section 4.2.3. The false positives are marked with

red lines and text to provide a sense of how effective the methods

are;

• Options for displaying one of the meta-images of the underlying

process: the HSV image, the binary image after range checking,
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or the dilated binary image. The image appears in a separate

smaller window inside the input camera frame;

• Option for displaying the current frame rate.

Action feedback

The feel and responsiveness of the interface is, naturally, only as good as

the precision of the cursor, which is directly proportional to how well the

colors are being traced. However, for additional feedback, every ”press” of

each button is accompanied by a short vibration, a clicking sound, and a

temporary change of the text’s color as confirmation that the button has

been clicked.

Additionally, each button has an invalidation time of roughly one second

after it has been clicked, so that the same action will not be carried out again

immediately after the first ”click.” The user then has one second to move the

cursor out of that button’s position.
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Application usage

6.1 Instructions

Firstly, the mode (Whole hand or Colored bands) needs to be selected by

choosing Menu>Mode, and picking one of the modes. The available modes

are ’Whole hand’, ’Two fingers’, and ’Three fingers’. The latter two are very

similar and are here referred to as ’Colored bands’ mode. Once the mode

has been selected, the hand’s color or the colored bands’ colors need to be

sampled. That is done by choosing Menu>Pick colors, and choosing one of

the ways to pick colors. The touch screen must be tapped where the hand

or the colored bands are positioned on the display. Each colored band must

be tapped separately.

Since the user interface is almost completely virtual, drawing and inter-

acting with the interface rely on hand gestures. The two main modes (Whole

hand and Colored bands) differ significantly, so the way interaction works is

somewhat different too.

6.1.1 Whole hand mode

There are three possible gestures that can be made with the hand: closed

fist, one finger extended, and open hand. Due to the way detection works,

the number of visible fingers does not always correspond to the number of
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detected fingers. For example, the ’one finger’ gesture can be made with

one or two fingers, depending on the enabled options, and the ’open hand’

gesture can be made with three, four, or five fingers.

1. One finger: this gesture means drawing. The user can move their

hand freely and draw just as they would do with a paintbrush.

However, in order for a convexity defect to be detected, there must be

another visible finger next to it, so the gesture is actually ”two fingers

extended”. The program can detect a sole extended index finger only

when the option ’1-finger drawing’ is enabled, but that entails other

limitations as a consequence.

2. Open hand: this gesture allows interaction with the user interface,

i.e. clicking buttons. It can be made with three, four, or all five fingers

visible. The best results are achieved when the entire hand is open. In

this mode, the cursor is not positioned in the top-left corner; it moves

around the hand depending on which part of the screen the hand is in.

3. Closed fist: when no fingers are detected, the hand can move freely

without having any impact, just as if the hand were not visible.

However, there is an exception to these rules. Drawing shapes (rectan-

gles, circles, and straight lines) requires different gesture meanings. Once the

button has been clicked (with an open hand), the cursor needs to be posi-

tioned where the top-left corner of the rectangle, or the center of the circle,

or the start point of the line, should be. Switching to the one finger gesture

starts dragging (just like in any other drawing program). Once the cursor

is where the bottom-right corner of the rectangle, or the rim of the circle,

or the end point of the line, should be, switching to the closed fist gesture

completes the drawing. If the user switches to the open hand gesture before

completing the drawing, the starting position of the shape is reset and they

can start over. Removing the hand from view cancels the drawing of the

shape.
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6.1.2 Colored bands mode

The gestures are very similar, with the exception that the hand does not

matter, since only the bands are being tracked. The number of bands is the

number of fingers, with the first band being marked as the ’index finger’.

1. One finger: drawing, but only the ’index finger’ band needs to be

visible. If only one of the other bands is visible, no drawing is done.

2. Two fingers: user interface interaction, the same as in the first mode.

3. Three fingers: when all three bands are visible, the hand can move

freely without having any impact, the same as in the first mode.

Drawing shapes is done differently from the first mode. Once the button

has been clicked (with two fingers), the cursor needs to be positioned at the

start of the drawing, then the shape is dragged with one finger, and once two

fingers are visible again, the drawing is complete. Hiding all fingers before

the drawing has been completed cancels the drawing of the shape.

All other actions are carried out intuitively, just as in any other drawing

program. For example, to change the drawing color, the user selects ’Color’,

and then moves the cursor to the desired color. To adjust a seek bar, the

user positions the cursor over the seek bar and moves the cursor left or right.

6.2 User test observations

During development, the application was shown to work well even in a messy

room with colored clothes lying around, provided that all its limitations are

observed. However, user testing was strictly carried out in a well-lit room,

against a clear white wall. Another environment was not attempted because

it seemed clear it would prove unproductive.

Several people have been asked to attempt to perform basic operations

using the application. A few recurring observations have been noted.
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A total of eight people participated in the user tests. Two of them were

above the age of 55 and had significantly more problems in all areas than the

rest, who were all below 30. One of the younger testers had some experience

in computer vision and grasped the concepts expectedly more easily, probably

due to being acquainted with the technology’s limitations.

In either case, it is clear that there is a tremendously steep learning curve

to using the application. At the very beginning, most of the testers found

the way of setting the color unintuitive, mostly because some actions require

screen touches, and others are performed using the virtual interface.

Due to the limitations of the technology, and in turn the application,

there are many quirks that need to be observed in order to successfully use

the application. However, an end user would have no way of knowing them,

which leads to a much more difficult and less successful drawing experience.

For example, testers generally forget to spread out their fingers, to form the

expected angles with their fingers (which obscures some fingers), to refrain

from slanting their hand (which occludes some of its fingers, and often times

changes the tone of the color due to shadows), to keep it at a sufficient

distance from the camera, etc.

In addition, it takes a long time to learn and to get used to the different

gestures, especially since there are three different modes of use (Mode 1 uses

the whole hand, and Mode 2 has two submodes: Two colors and Three

colors).

The single biggest problem was testers forgetting to keep the entire hand

in the camera’s view. Instead, they would sometimes pull it back towards the

camera, or move parts of the hand outside of the screen, resulting in partial

detection, which practically translates to no hand recognition. It can also be

concluded that it is generally easier to operate the user interface, as it was

reported multiple times to feel more natural than actual drawing.

All of these observations were made while ignoring problems arising from

bad lighting, unfocused camera, and other visual interference. When such

problems did occur, everything needed to be stopped and reset, because the
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Figure 6.1: Demonstration of a drawing entirely made and saved with the

application, using two colored bands (Mode 2).

testers would quickly become frustrated and give up trying.

A demonstration of a drawing made during development can be seen in

Figure 6.1, but none of the testers could get anywhere near that level of

precision.
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Chapter 7

Conclusion

We have successfully built a working smartphone application that enables

users to draw simple shapes in the spirit of augmented reality. We have also

integrated a completely virtual graphical user interface, eliminating the need

for a touchscreen, except for setting the system up. The user interface allows

control of drawing options, undoing, clearing, and saving the drawing, much

like in the classic paint programs, such as MS Paint, which was one of the

primary inspirations for this work.

Its biggest flaw is that it relies on color segmentation and requires a

good contrast between the foreground and the background to minimize the

amount of noise. It is perfectly practical when the background is a solid

plain color different from the skin’s color, but it is not very useful in real-

world situations where there could be objects of a very similar color as the

hand, or the colored blobs. However, this program’s usefulness could be

greatly improved by substituting detection solely based on color with a more

advanced and robust object detector, or using it alongside color detection.

That way any noise in the background could be safely ruled out, and the

application would allow practical drawing in any environment that provides

at least enough light for the hand to be seen. The two most prominent

candidates for that substitution are Haar-like features and particle filtering.

It would be feasible to build a Haar cascade for detecting hands and
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integrate it into this same program. In face detection, the color of background

objects does not matter, as long as the face to be detected sports the regular

features that the Haar cascade is trained to detect. The same is true for hand

detection, even though the hand does not have such prominent features such

as eyes, a nose, and a mouth.

Particle filtering could be even more useful, because it allows tracking of

objects whose position is not always clear, and it can predict the position of

the object in subsequent frames after partial or even complete occlusion [22].

There are also a few other tweaks that can be done to the currently used

algorithms, and they could be complemented by other methods, like the

Meanshift and Camshift algorithms [23] (that track trained shapes and col-

ors regardless of size or rotation), adaptive hand segmentation (that adapts

skin color models to illumination change using accumulated histograms for

consecutive frames), fitting an ellipse to the contour around a fingertip using

least-squares fitting (to get a better approximation of the position and pose

of a finger), and many others [21].

However, the skeleton of the application, even without the addition of

more advanced hand detection algorithms, could also be used for creating

other augmented reality smartphone applications that rely on virtual hand

interaction. Examples include various games (tile games, maze games, ball

games, etc.), instruction apps (3D model viewers of the Earth, anatomical

parts), training apps in medical or handicraft fields (such as suturing or

sewing), non-verbal communication apps (such as sign language), design apps

(CADs), and others.
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