
University of Ljubljana

Faculty of Computer and Information Science

Jan Varljen

Scalability and High Availability in

Real-time Cloud Services

MASTER’S THESIS

THE 2nd CYCLE MASTER’S STUDY PROGRAMME

COMPUTER AND INFORMATION SCIENCE

Supervisor: Assoc. Prof. PhD Mojca Ciglarič

Ljubljana, 2017

Copyright. The results of this master’s thesis are the intellectual property of the author

and the Faculty of Computer and Information Science, University of Ljubljana. For the

publication or exploitation of the master’s thesis results, a written consent of the author,

the Faculty of Computer and Information Science, and the supervisor is necessary.

c⃝2017 Jan Varljen

Acknowledgments

I would first like to thank my thesis mentor Assoc. Prof. Ph.D. Mo-

jca Ciglarič for steering me in the right direction and helping me finish my

thesis. Her guidance helped me to better understand the problems we were

researching but also the importance and methods of scientific work.

I would also like to thank my wife, family and all my friends who continued

to motivate me during this time. Without their support, I would never have

been able to finish my thesis.

Jan Varljen, 2017

Contents

Povzetek

Abstract

1 Introduction 1

2 Methodology 3

3 Web applications technology overview 7

3.1 Origins of modern web applications 7

3.2 Real-time web . 10

3.3 HTTP . 12

3.4 Plugins . 16

3.5 Comet . 17

3.5.1 Polling . 17

3.5.2 Long polling . 20

3.5.3 Streaming . 22

3.5.4 Reverse HTTP . 24

3.5.5 BOSH . 27

3.5.6 Bayeux . 27

3.5.7 Server-sent events . 28

3.5.8 HTTP/2 . 30

3.5.9 Summary . 34

3.6 WebSocket . 35

CONTENTS

4 Scalability and high availability 41

4.1 Scalability . 41

4.2 High Availability . 43

4.3 Impact on real-time web applications 47

4.4 Erlang . 47

5 Client-side prototypes 51

5.1 Architecture . 51

5.2 Polling prototype . 52

5.3 Long polling prototype . 54

5.4 Streaming prototype . 56

5.5 WebSocket prototype . 58

6 Server-side prototypes 61

6.1 Architecture . 61

6.2 Ruby on Rails prototype . 62

6.3 Phoenix prototype . 65

7 Testing client prototypes 71

7.1 Methodology . 71

7.2 Results . 72

8 Testing server prototypes 75

8.1 Methodology . 75

8.2 Distributed load testing . 76

8.3 Cloud deployment . 78

8.4 Ruby on Rails prototype tests 80

8.5 Phoenix prototype tests . 82

8.6 Results . 84

8.7 Conclusions . 92

9 Conclusions 95

List of used acronmys

acronym meaning

WWW World Wide Web

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

URL Uniform Resource Locator

UA User agent

RTCE Real-time collaborative editing

UX User experience

IETF Internet Engineering Task Force

W3C World Wide Web Consortium

RFC Requests for Comments

TCP Transmission Control Protocol

UDP User Datagram Protocol

IP Internet Protocol

URI Uniform Resource Identifier

SSL Secure Socket Layer

HTTPS Hypertext Transfer Protocol Secure

RIA Rich Internet Applications

RTMP Real-Time Messaging Protocol

AJAX Asynchronous Javascript and XML

XML Extensible Markup Language

JSON JavaScript Object Notation

XHR XMLHttpRequest

CONTENTS

DOM Document Object Model

BOSH Bidirectional-streams Over Synchronous HTTP

XMPP Extensible Messaging and Presence Protocol

SSE Server-sent events

GUID Globally Unique Identifier

MTBF Mean Time Between Failures

MTTR Maximum Time To Repair

SLA Service-Level Agreement

WSLA Web Service-Level Agreement

VM Virtual Machine

OTP Open Telecom Platform

COC Convention Over Configuration

DRY Don’t Repeat Yourself

RPM Requests Per Minute

AWS Amazon Web Services

DNS Domain Name System

CDN Content Delivery Network

EC2 Elastic Compute Cloud

Povzetek

Naslov: Skalabilnost in visoka razpoložljivost oblačnih storitev v realnem

času

Namen magistrske naloge je raziskava tehnologij, ki podpirajo komuni-

kacijo v realnem času, v spletnih aplikacijah in njihov vpliv na skalabilnost

in razpoložljivost. Predlagali bomo alternativni pristop izbolǰsave le-tega z

uporabo programskega jezika Erlang. V prvem delu razǐsčemo obstoječe teh-

nologije za razvoj spletnih aplikacij v realnem času in pojasnimo zahtevke za

skalabilnost in visoko razpoložljivost. V drugem delu naloge smo zgradili štiri

prototipe strežnik-odjemalec (eng. client-server) in dva strežnǐska (eng. ser-

ver) prototipa ter jih testirali skozi več testnih scenarijev. Vse to, z uporabo

avtomatskih skript in na distrubuiranih testnih arhitekturah, postavljenih v

oblaku. Na podlagi rezultatov lahko zaključimo, da strežnǐski nabor tehno-

logij (predvsem programski jezik) znatno vpliva na alokacijo virov in s tem

izbolǰsuje skalabilnost in visoko razpoložljivost končnega produkta.

Ključne besede

spletne storitve v realnem času, WebSocket, Erlang, skalabilnost, visoka raz-

položljivost

Abstract

Title: Scalability and High Availability in Real-time Cloud Services

The goal of this thesis was to research technologies that support real-time

communication in web applications and, in particular, implications on scal-

ability and high availability. The thesis proposes an alternative approach to

improving scalability and high availability by using Erlang, a highly concur-

rent programming language. The first part of the thesis researches existing

technologies used for developing real-time web applications and explains the

scalability and high availability requirements. In the second part of the

thesis, four client-side prototypes and two server-side prototypes are built

and several test scenarios are performed using automated scripts and cloud-

based distributed load testing architecture. From the collected results it

can be concluded that the server’s underlying technology stack, most of all

the programming language, can significantly impact the resource allocation

and therefore consecutively improve scalability and high availability of the

solution.

Keywords

real-time web services, WebSocket, Erlang, scalability, high availability

Chapter 1

Introduction

Real-time components are becoming ubiquitous parts of modern web applica-

tions. Chat services like Facebook Messenger or real-time collaborative tools

like Google Docs are great examples of such real-time services. The main

concept behind these services is the real-time bidirectional communication

where data is simultaneously broadcasted to all the participants.

As real-time components are embedded into existing web applications,

they share the same technology stack. However, the World Wide Web and

its existing supporting protocols were not designed to work in this real-time

environment. In a typical web application flow, the user makes a request

and gets the response from the service i.e. the service only has to respond

when the user requested something. In the real-time scenario, the service

has to respond not only when the user requests the data but also when

some specific events are triggered. For that purpose existing protocols were

modified and new protocols were designed that are more suitable for real-time

communication.

Because web applications consist of both client and server parts, the tech-

nologies used on the server solutions also have to be suitable for real-time

communication. Server solutions have to be able to accept, process and re-

spond to all the incoming requests while remaining fault tolerant. In a chat

service example, when a user types a new message, the content of the mes-

1

2 CHAPTER 1. INTRODUCTION

sage has to be simultaneously sent to all the participants in the conversation.

Similarly, a real-time document processor has to make a request to the server

for every user keydown event and broadcast that change to all other partic-

ipants. In general, servers behind real-time services have to cope with an

increased load compared to web solutions without real-time components and

these new requirements need some different solutions in terms of scalability

and high availability.

Contemporary scaling solutions are mainly vertical and horizontal scaling

where server power or quantity is increased to meet the needs. But if the

software solution on the server, that actually handles the request, is slow,

memory inefficient and wastes the server resources then scaling possibilities

are limited and ineffective. Different programming languages can be used for

developing software solutions but some provide better scalability and high

availability features. Choosing the right technology for the client solution

and building a server solution that is fast and memory optimized increases

the scalability possibilities of the web application.

The expected contribution of this thesis is to design and prototype im-

plementations of client and server solutions that are optimized for handling

real-time communication. The solution will prove that given the exact same

requirements and hardware capabilities, solutions that are faster and have

lower CPU and memory consumption are de facto more scalable and thus

better suited for real-time web applications. The solutions will be tested,

compared and evaluated by measuring speed, latency, memory consumption,

throughput, error rate and mean time before failure.

Chapter 2

Methodology

To better understand the requirements of real-time web applications, the

historical development of web applications will be presented. From its be-

ginning in 1989 and the invention of World Wide Web, the emergence of

Web2.0 in the early 2000s up to today’s modern real-time web applications,

the requirements have been changing and driving the development of tech-

nologies and protocols needed to support them. A complete overview of

existing client-side technologies and protocols for web applications will be

given with emphasis on facilitating real-time communication. Each protocol

will be described and its design analyzed in the context of real-time capabil-

ities, starting from HTTP, plugins, Comet-like techniques like polling, long

polling, and streaming, HTTP/2, Server-sent events up to WebSocket.

Furthermore, the impact of real-time web applications on server solutions

will be described where server solutions have to be able to handle more load

as the number of requests increase. The importance of scalability and high

availability of server solutions for handling real-time web application will be

analyzed and examples of vertical and horizontal scaling will be given to-

gether with the impact of MTBF and MTTR on availability. The thesis will

present the idea of using different server-side technologies to optimize mem-

ory consumption and therefore increase the scaling possibilities and fault

tolerance. A programming language called Erlang is known especially for

3

4 CHAPTER 2. METHODOLOGY

its high availability, fault tolerance, and distributed scalability. Erlang is a

functional programming language developed by Ericsson designed to support

massively scalable real-time systems with requirements on high availability

like telecoms, banking, instant messaging, etc. The thesis researches Erlang

as a viable solution for developing server solutions for real-time web applica-

tions.

Four simple web application solutions will be prototyped that are using

polling, long polling, streaming, and WebSocket for handling real-time web

behaviors. All the solutions will have the same structure and will exhibit

the same feature - a simple chat application that enables multiple users to

exchange messages in real time. These applications will be used to compare

the advantages and disadvantages of mentioned client-side approaches while

handling real-time communication. Applications will be tested using the

same test scenario where an automated script will be used to simulate real

user interaction. By using network traffic analysis tools, measurements like

latency and throughput will be recorded. The thesis will conclude which of

the tested client-side approaches gives the best results for handling real-time

web applications.

Next, two server-side solutions will be prototyped that handle the requests

from the chat application. Both solutions will have the same architecture

where they receive messages from the client application, process them, and

broadcast the same message to all users connected to the chat. One solution

will be developed using the Ruby programming language and it presents an

average contemporary server solution. The other solution will be developed

using the Erlang programming language and it proposes an improved solution

that is better scalable and more resilient to errors. Solutions will be tested

using distributed load testing where the load on the server will be simulated

by generating a large number of requests with specialized tools like Tsung.

Each test will gradually increase the number of requests to the server and

the number of successful connections will be recorded. Key performance

indicators like CPU load, memory load, average response rate, throughput,

5

error rate, MTBF, etc., will be measured for later analysis.

Given the results of the tests, the solutions will be compared and ana-

lyzed and conclusions about the impact of speed and memory consumption

on scalability and high availability will be made. The solution that is able to

handle more request using the same hardware capabilities while remaining

fault tolerant will be considered to be more scalable. Furthermore, the solu-

tion that shows an improved MTBF will be considered to have a better high

availability factor. The final outcome of the thesis is to support the idea that,

besides vertical and horizontal scalability, an alternative approach to scaling

real-time web application is by optimizing the solution’s resource allocation

and therefore effectively improving scalability and high availability.

6 CHAPTER 2. METHODOLOGY

Chapter 3

Web applications technology

overview

3.1 Origins of modern web applications

The most basic definition of a web application is a software architecture con-

sisted of two essential parts: a client and a server that communicate over the

World Wide Web. The client is a user agent (UA) responsible for requesting,

receiving and displaying data and the server is a computer responsible for

serving the data when requested. The user agent is usually a web browser but

can also be a web-based robot, command-line tool, mobile app or similar [1].

World Wide Web is often mistakenly taken for the Internet but in fact, the

two terms are not synonymous and should not be used interchangeably. The

Internet is the world’s biggest network infrastructure that connects millions

of computers together and gives them the ability to communicate together

via a variety of languages known as protocols. Whereas the World Wide Web

(abbreviated as WWW or simply the Web) is an information sharing model

abstraction built on top of the Internet that uses the Hypertext Transfer Pro-

tocol (abbreviated as HTTP) to transmit the data between computers [2].

So the Web is only a portion of the Internet but a very large and important

one because most of the traffic on the Internet are actually web applications

7

8 CHAPTER 3. WEB APPLICATIONS TECHNOLOGY OVERVIEW

Figure 3.1: The client-server model over the Internet.

communicating over the World Wide Web [3]. The figure 3.1 shows a typical

client-server model over the Internet.

The World Wide Web was invented in 1989 by an English scientist Tim

Bernes-Lee while employed at CERN in Switzerland. His vision was to build

an application layer protocol on top of the Internet for sharing content be-

tween computers over the network. When the Web was publicly released in

August 1991, this content was just simple static documents formatted with

Hypertext Markup Language (abbreviated as HTML) represented by a Uni-

form Resource Locator (abbreviated as URL) commonly informally termed

as web address [4].

In a typical WWW request-response cycle, the client requests a document

by requesting the URL through the web browser. The URL pinpoints a server

on the network where the resource is located. When this server is found, it

responds by sending the requested document back to the client. By receiving

the document, the user agent (UA) interprets the data (usually displays the

data in the web browser) and the request-response cycle is completed. This

typical request-response cycle is shown in the figure 3.2.

Later, additional multimedia content support was added so images, video,

audio and similar content could be included in these HTML documents but

all in all these documents were simple and primarily designed for information

sharing. At that point, the two key actors in the WWW domain were fun-

3.1. ORIGINS OF MODERN WEB APPLICATIONS 9

Figure 3.2: A diagram of request-response cycle over the Internet.

damentally separated where content creators were few in numbers and the

vast majority of users were simply acting as consumers of content. The most

common web pages back then were personal websites hosted on private or

free web hosting services such as GeoCities [5]. Today we refer to this first

stage of the WWW’s evolution with the retronym Web 1.0.

The retronym was introduced after the term Web 2.0 started to appear in

the early 2000s when Darcy DiNucci first introduced it in her article ”Frag-

mented Future” in 1999 [6]. Simple static documents were being replaced

by dynamic elements that allow users to interact with the page. With the

emergence of Web 2.0, the creator-consumer ratio shifted in favor of cre-

ators making them the key actor in this domain. Instead of merely reading

a website, a user is invited to contribute to its content by commenting on

published articles or creating his own articles. Web pages started to become

web applications that provide more than just content and information. They

allow users to create content or modify content to their own needs or to share

with others. Blogging self-publishing platforms (e.g. WordPress) or social

networking websites (e.g. Facebook) attracted millions of users and allowed

them to participate in the content creation that drives the modern Web [7]

[8] [9].

However, the same request-response cycle was still being used where the

10 CHAPTER 3. WEB APPLICATIONS TECHNOLOGY OVERVIEW

client requests and the server respond with the content. While that was a

viable solution for the Web 1.0 where the content changes very rarely, in the

Web 2.0 every significant change to the web page required a round trip back

to the server to refresh the entire page. In modern web applications, the data

changes so fast that at the moment the content has been received from the

server it can be considered stale because it could have already been changed

on the server. The standard unidirectional communication flow where server

responds with content only when a client makes a request was not a good

enough solution so new tools and technologies were developed to mitigate

the emerging problems. These tools and technologies influenced something

that is today referred to as the real-time web.

3.2 Real-time web

Real-time web describes modern web applications that enable users to receive

information as soon as it is created in the system. To accomplish that,

web applications use many different technologies and practices that simulate

real-time behavior as closely as possible. The purpose of simulating real-time

behavior in web applications is to give users an impression that data exchange

is happening instantly - in real time. In reality, this data exchange is never

instant and, depending on network lags and server latencies, varies from few

milliseconds to few seconds, but if it is fast enough, users have a feeling that it

was instant. Responses that are below 0.1 seconds can be considered instant

because users perceive it as the system reacted instantaneously [10].

Real-time web applications should not be confused with real-time systems

like air traffic control, a car engine or heart pacemakers where specific time

constraints have to be guaranteed to prevent total system failures [11]. These

systems have its own requirements on real-time computing and this thesis is

not interested in researching those systems. In this thesis, the term real-time

will be used only in reference to simulating near real-time behavior in web

applications.

3.2. REAL-TIME WEB 11

The key part of the real-time web is to migrate from the unidirectional

client-server communication to the bidirectional communication where the

server can initiate the communication with the client at any time. This way

the client can be notified when the data changes on the server and the server

can voluntarily send the data to the client.

Real-time web applications can be separated into two categories:

• Full-fledged real-time applications

• Web applications with real-time components

Real-time collaborative editing (RTCE) applications are a typical exam-

ple of full-fledged real-time applications. RTCE applications allow multiple

users to collaborate on the same document simultaneously. All the changes

users are making to the document have to be broadcast in real-time to all the

participants in order to allow them to collaborate without conflicts. Com-

pared to traditional nonreal-time collaborative tools where every user has his

own version of the document which is later merged into the same document

by a version control system, in RTCE everybody is making changes to the

same document on the server.

Even though RTCE application existed before the Web 2.0 phenomenon,

it was Web 2.0 that caused an explosion of browser-based document edit-

ing tools and most RTCE applications today are web-based. Probably the

most popular RTCE application today is the Google Docs suite where users

collaborate on Docs, Sheets or Slides in real time [12] [13] [14].

Second real-time web category includes all web applications that are not

full-fledged real-time applications but have at least one real-time component.

This real-time component can be a customer support chat integrated inside

the web application where users can exchange real-time messages with the

support team or a notification center that informs users about some events

happening in the application also in real time.

12 CHAPTER 3. WEB APPLICATIONS TECHNOLOGY OVERVIEW

Real-time techniques found its application in various fields like collabora-

tive groupware tools [15] [16], real-time group communications tools [17] [18]

[19], monitoring applications [20], video streaming [21], remote robot teleop-

eration [22], multi-player online gaming [23], e-learning platforms [24] etc. A

lot of different tools and techniques have been used in the past and present

to simulate real-time behavior in web applications but the thing they all have

in common is the foundations in the HTTP protocol that also powers the

World Wide Web.

3.3 HTTP

The Hypertext Transfer Protocol (HTTP) was developed together with the

World Wide Web by Tim Bernes-Lee at CERN. It was designed as a state-

less application layer protocol that supports the data communication for the

WWW. The first version of the HTTP protocol (HTTP v0.9) was published

in 1991 defining basic principles of a client requesting a page from a server

[25]. The client sends a request containing a special word ”GET” together

with the document address and the server responds with a message in Hy-

pertext Markup Language (HTML). This basic HTTP GET request and

response cycle is shown in the figure 3.3.

After this initial version, further development of HTTP was coordinated

by the Internet Engineering Task Force (IETF) and the World Wide Web

Consortium (W3C). They continued to improve the protocol with a series of

publications called Requests for Comments (RFCs). Through these publica-

tions, computer scientists and engineers are discussing methods, behaviors,

research, and innovations that could be integrated into a standard. This

way the HTTP protocol was expanded and operations, extended negotiation,

richer meta-information, security concerns and header fields were added in

the RFC 1945 which officially recognized HTTP V1.0 in 1996 [26]. The fol-

lowing version of the protocol (called HTTP/1.1) was officially released in

January 1997 in the RFC 2068 [27] but reissued again in June 1999 with

3.3. HTTP 13

Figure 3.3: Basic HTTP GET request and response cycle.

improvements and updates in the RFC 2616 [28]. The final version of the

HTTP/1.1 protocol was released in 2014 in the RFC 7230 that revised and

clarified some parts of the protocol like caching, authentication, range re-

quests, conditional requests, message syntax and routing [29].

HTTP was designed as an application layer protocol that works on top of

existing transfer layer protocols in the Internet protocol suite. The Internet

protocol defines four abstract layers which provide end-to-end data commu-

nication between computers on the Internet. The first layer is the link layer

which defines communication methods for inside a single network segment.

The second one is the internet layer which connects independent networks,

and therefore, provides internetworking. On top of that, there is the trans-

port layer handling host-to-host communication and the application layer

which provides data exchange for applications. The transfer layer protocol

underlying HTTP can be either a reliable delivery protocol such as Trans-

mission Control Protocol (TCP) [30] or an unreliable delivery protocol such

as User Datagram Protocol (UDP) [31]. Most major Internet applications

such as the WWW, email, file transfers require reliable delivery and relies on

TCP so the entire suite is commonly referred to as TCP/IP meaning TCP

over the Internet protocol (IP) [32].

The HTTP protocol defines the requirements for the request/response

communication and sets rules for client and server behaviors. A client sends

an HTTP request to a server in form of a request message containing three

14 CHAPTER 3. WEB APPLICATIONS TECHNOLOGY OVERVIEW

parts: request-line, header fields, and a message body. The request-line

includes a method, Uniform Resource Identifier (URI) [33], and protocol

version. The header fields can contain various metadata such as request

modifiers, client information, or application specific data. The message body

can include any arbitrary data and represents the payload of the request but

can also be empty, or even nonexistent in some specific request methods.

A server responds by sending one or more HTTP response messages, each

containing a status-line, header fields, and a message body. The status-line

includes a protocol version, success or error code, and textual reason phrase.

The format of header fields is the same as in the request and can include

various metadata about the server response. The message body contains the

payload of the response but can, the same as for the request, be empty or

nonexistent.

The easiest way to test the request/response format is by using the curl

command in the terminal [34]. The following example shows format and con-

tent of data exchange for a GET request generated by running the command

curl -v http://www.example.com/index.html in the terminal.

The client request:

GET /index.html HTTP/1.1

Host: www.example.com

User-Agent: curl/7.51.0

Accept: */*

In the request, we can identify the request-line with the method (GET),

the resource identifier (/index.html) and the protocol version (HTTP/1.1),

followed by the set of key-value header fields. There is no message body

because the GET method does not have it by the specifications.

The server response:

HTTP/1.1 200 OK

3.3. HTTP 15

Cache-Control: max-age=604800

Content-Type: text/html

Date: Sat, 11 Mar 2017 15:18:28 GMT

Etag: "359670651+ident"

Expires: Sat, 18 Mar 2017 15:18:28 GMT

Last-Modified: Fri, 09 Aug 2013 23:54:35 GMT

Server: ECS (iad/18F0)

Vary: Accept-Encoding

X-Cache: HIT

Content-Length: 1270

<!doctype html>

<html>

<head>

<title>Example Domain</title>

...

</html>

In the response we can identify the status-line with the protocol version

(HTTP/1.1), success code (200) and textual reason phrase (OK), followed by

the set of key-value header fields. The payload includes the message body and

starts after the new line break that indicates the end of the header section.

The payload in this example is truncated for brevity but it represents the

content of the index.html resource.

The HTTP protocol is the foundation of the World Wide Web and web

applications. But it was not designed to support real-time web applications

so different tools and techniques built around HTTP have to be used to

simulate real-time web behavior in web applications.

16 CHAPTER 3. WEB APPLICATIONS TECHNOLOGY OVERVIEW

3.4 Plugins

The first real-time web applications have been the build using Adobe Flash

and Silverlight technologies. Adobe Flash is a multimedia software platform

used in desktop, mobile and web application developed by Adobe Systems

(previously by Macromedia) and Silverlight is a platform for writing and

running Rich Internet Applications (RIA) developed by Microsoft. These

technologies are used for developing animations, mobile games, desktop ap-

plication and variety of RIA which also include real-time applications. To

support real-time communications, both technologies designed its own pro-

prietary communication protocols that are used instead of the existing HTTP

protocol. For example, Adobe Flash designed the Real-Time Messaging Pro-

tocol (RTMP) for high-performance transmission of audio, video and data

[35].

Both these technologies require to be installed as an external dependency

in the browser (as a browser plugin) to run web applications with Flash

or Silverlight content and not every browser supports these plugins. This

means that users that have incompatible browsers are not able to use web

applications and have to install a different web browser. Those who have a

compatible browser still have to install external plugins before they can use

Flash or Silverlight web application. This makes them more cumbersome to

use than native browser functionalities that are available by default in most

web browsers. Furthermore, both technologies require a specialized server

software solution to handle communication over these proprietary protocols

which means standard web servers are not compatible with these technologies

and custom solutions like Flash Media Server have to be used [36].

Development of Microsoft Silverlight was discontinued in 2013 mostly

because the technology had low adoption rate and was forced out of the

market by Adobe Flash. With the emergence of the newest HTML5 standard

around 2014 which enables audio and video support as a native browser

functionality, even Adobe Flash started to lose its market share rapidly [37].

Recently, mobile platforms dropped the support for Adobe Flash plugins in

3.5. COMET 17

favor of HTML5 so it is likely that it will also be discontinued at one point.

3.5 Comet

The opposite approach to plugins is to use already existing technologies and

native browser functionalities to achieve the same goal - simulate real-time

behavior. Comet is an umbrella term encompassing multiple technologies for

achieving this interaction. All these methods rely on features included by

default in browsers, such as JavaScript, rather than on non-default plugins.

Also, they differ from the original model of the web in which a browser re-

quests a complete web page at a time and introduce polling, long polling,

streaming, server push and similar approaches for simulating real-time be-

havior.

3.5.1 Polling

The most basic technique used to simulate real-time behavior is called polling.

The idea of this technique is to send a request to the server at given time

intervals to check if any changes happened to the resource. This way, when

a change happens on the resource, the client receives the update on the next

poll request which, in some way, simulates a real-time behavior. The more

frequent the poll request, the better real-time behavior is simulated.

Figure 3.4 shows how polling technique generates requests to the server

in polling intervals. The requests that have no changes to report back return

empty and the one that happened after the event was triggered is returning

the actual data.

Polling can be implemented in various ways but the most common one

is probably using JavaScript programming language which is included by

default in all the web browsers. This technique of retrieving data asyn-

chronously from the server is called Asynchronous Javascript and XML (ab-

breviated as AJAX). XML stands for Extensible Markup Language and de-

fines a set of rules for encoding document in a format that is both human-

18 CHAPTER 3. WEB APPLICATIONS TECHNOLOGY OVERVIEW

Figure 3.4: Diagram of the polling technique.

readable and machine-readable [38]. XML was used as the standard re-

sponse format in AJAX request but was later replaced with new standards

like JSON. JavaScript Object Notation (abbreviated as JSON) is an open-

standard format that uses human-readable text to transmit data object

consisted of attribute-value pairs [39]. Some of the advantages of JSON

over XML are JSON being native to JavaScript which makes it easier to

manipulate with and more human-readable with simpler syntax and less

markup overhead. AJAX uses XMLHttpRequest (XHR) object provided by

JavaScript for exchanging data asynchronously between browser and server

[40].

1 // Initialize the HTTP request.

2 var xhr = new XMLHttpRequest ();

3 xhr.open(’get’, ’http ://www.example.com/posts /11’);

4

5 // Track the state changes of the request.

6 xhr.onreadystatechange = function () {

7 var DONE = 4; // readyState 4 means the request is done.

8 var OK = 200; // status 200 is a successful return.

9 if (xhr.readyState === DONE) {

10 if (xhr.status === OK) {

3.5. COMET 19

11 console.log(xhr.responseText); // This is the

returned text.

12 } else {

13 console.log(’Error: ’ + xhr.status); // An error

occurred during the request.

14 }

15 }

16 };

17

18 // No data needs to be sent along with the request.

19 xhr.send(null);

In the previous code example an asynchronous HTTP GET request is

made to the www.example.com host and posts/11 resource. When the re-

quest is done, it checks the status and logs the response text or error code to

the browser console. Purpose of this code snippet is to show how easily an

asynchronous request to the server using AJAX can be created. Similarly,

timer functions can be created that poll a resource every few seconds and

return changes, therefore, implement the polling technique.

The biggest advantage of the polling technique is that it only uses already

existing technologies like AJAX and XMLHttpRequest that are supported in

all the modern web browsers [41]. It uses the existing HTTP protocol and the

server solution only has to differentiate the asynchronous AJAX request from

the standard GET request and return the JSON representation of resources

instead of the full HTML page.

Although this solution seems to be a viable candidate for designing real-

time web applications, it has many drawbacks. One of the issues is the asyn-

chronous nature of AJAX and callback driven programming where because

of external conditions like network latency, the sequence of the responses can

be out of sync with the sequence of the request so additional code behaviors

have to taken into account. This can lead to more complex code that is often

harder to maintain, debug and to test. But the biggest disadvantage of the

polling technique is the increased traffic and load on the servers it generates.

Depending on the polling interval every user generates an increased num-

20 CHAPTER 3. WEB APPLICATIONS TECHNOLOGY OVERVIEW

ber of requests to the server and all these requests have to go through the

network and be handled by the server. Also, only a small amount of these

requests actually return something whereas all the rest are just returning

empty payloads.

3.5.2 Long polling

To overcome this biggest drawback of polling, long polling technique was

introduced. In long polling, the client also sends a request to the server to

check for any changes but the server holds the response until the information

is available. Once available, the server responds and sends the new infor-

mation back to the client. When the client receives the new information, it

immediately sends another request and this way the operation is repeated.

Long polling can be considered as an extended version of polling where the

client still has to ask the information every time but the server will reply

only when the information is available. This effectively emulates a server

push feature and eliminates the huge amount of responses which are only

returning the info that no new data is available.

Figure 3.5 shows how long polling technique holds the responses until

changes are available. The responses are sent to the client only after an

event was triggered on the server.

On the client, long polling can be implemented in several ways and the

most straightforward are by using the same XHR technique mentioned before.

The browser makes an asynchronous request to the server, which waits for

the data to be available before responding. When the client receives and

processes the response it immediately sends another XHR, to await the next

event. Thus the browser always keeps a request outstanding with the server,

to be answered as each event occurs. Compared to the polling example before,

the client implementation is exactly the same, a simple AJAX request to

the server that waits for the response by checking the onreadystatechange

status. Only the server implementation has to be different, where it does not

respond immediately but waits for the data to be available.

3.5. COMET 21

Figure 3.5: Diagram of the long polling technique.

Another way to implement long polling is by using the HTML script

tag element. It is used when long polling has to be made to work across

different subdomains. Because of Same-Origin Policy enforced by all modern

browsers, XHR calls can only be made between web pages with the same

origin where the origin is defined as a combination of URI, hostname and port

number [42]. So a web page on http://www.example.com/page.html can send

an XHR request to the same domain (e.g. http://www.example.com/another-

page.html) but will be blocked to send a request between subdomains (e.g.

http://api.example.com/page.html). The same way any modifications of the

URI, hostname or port number will be blocked by the browser and XHR

requests will fail to be sent. The HTML script tag, on the other hand, can

be pointed at any URI without the browser blocking the request, and the

response will be executed in the current HTML document. So instead of

doing an XHR request, an HTML script tag is inserted into the HTML and

it makes a request to the server. The server waits for the data the same

way as before and responds when the data is available. When the client

receives and processes the response it immediately creates another HTML

script tag which then makes the request and this way the browser always

keeps a request outstanding with the server.

22 CHAPTER 3. WEB APPLICATIONS TECHNOLOGY OVERVIEW

Compared to polling, the biggest advantage of long polling technique is it

minimizes the number of requests the client sends to the server thus decreas-

ing the impact on traffic and throughput. The issue with the long polling

technique is that the server has to allocate its resources for every outstanding

connection held open and has to hold it allocated until it is fulfilled. This

makes the technique poorly scalable because server resource can easily get

depleted when a large number of clients are connected simultaneously.

3.5.3 Streaming

Both polling and long polling are using the most straightforward HTTP

request-response flow where the connection between the client and the server

is terminated after the response is received. This is the default and normal

behavior of the HTTP protocol because it was designed to work that way.

The client opens a connection to the server, requests a page, the server

responds with the page, the client receives the page and the connection is

terminated. In the polling and long polling scenarios, the client always keeps

a request outstanding with the server by initiating a new request immediately

after receiving the response. That means terminating existing and opening

new connections with the same server repeatedly all the time which negatively

impacts the traffic and increases the load on the server.

To overcome this problem, HTTP streaming can be used where a single

request is kept open indefinitely and data is streamed over that same request.

The request is never terminated and the connection is never closed so the

server can push the data back to the client using a single long-living open

request. The HTTP streaming mechanism is based on the capability of the

server to send several pieces of information in the same response without

terminating the request or the connection and both HTTP/1.1 and the older

HTTP/1.0 protocols support streaming. When events are triggered on the

server the data is streamed to the client in chunks using the same outstanding

connection. Only when the connection timeouts or terminates because of an

external cause, the new connection is established.

3.5. COMET 23

Figure 3.6: Diagram of the streaming technique.

Figure 3.6 shows how streaming technique streams data over a single open

connection.

HTTP streaming can be implemented in several ways and the most

straightforward are by using a hidden iframe HTML element. The iframe was

designed to allow embedding one HTML document inside another and break-

ing websites into chunked blocks but can also be used for HTTP streaming.

An invisible iframe is embedded into the website and it opens a long-living

connection with the server called a forever frame. The server sends responses

in the form of script tags containing JavaScript code that gets inserted into

the hidden iframe. Because the browser renders HTML pages incrementally,

each script tag is executed as it is received. This way the website can be

updated with the changes from the server e.g. the user can get notified when

a new comment is added. The biggest benefit of the iframe method is that

because it uses only standard HTML elements like script tag and iframe, it

works in every common browser. The downsides of this technique are the

lack of reliable error handling and the impossibility of tracking the state of

the request process happening inside the iframe.

The biggest advantage of using HTTP streaming is the reduced number

of generated requests compared to polling and long polling. Reduced number

24 CHAPTER 3. WEB APPLICATIONS TECHNOLOGY OVERVIEW

of requests means a decrease in network traffic and server load. Furthermore,

as server responses are just chunks of data inside the same connection and

not full HTTP responses, the response headers are omitted so the size of the

response is also smaller. In general, this mechanism significantly reduces the

network latency because the client and the server do not need to open and

close connection for every request. On the other hand, HTTP streaming in-

troduces a lot of new issues that have to be considered. HTTP streaming will

not work if any network intermediary between the client and the server, like

proxy or gateway, buffer the entire response before forwarding the data. It is

a common behavior for some network intermediaries like caching transparent

proxies and it is exactly the opposite of how streaming works. Furthermore,

one single long-living request can theoretically be used for an endless data

stream from the server to the client. In practice, browsers have to timeout

and terminate requests occasionally to avoid unlimited growth of memory

usage caused by JavaScript and DOM (Document Object Model) elements

created in the process of streaming. Similarly, the server also has to occasion-

ally terminate the request to free up allocated server resources like memory

and CPU. In both cases, the connection has to be reestablished so the client

sends a new request to the server to open streaming. The default timeout

value in most modern browsers is 300 second but as some network intermedi-

aries can potentially have shorter timeouts, a 30-second timeout is generally

considered to be a safe value [43].

3.5.4 Reverse HTTP

Reverse HTTP is an experimental protocol where bidirectional communica-

tion between the client and the server can be achieved by using two HTTP

connection. The first HTTP connection is a standard connection between the

client and the server and the second one is a reversed connection between

the server and the client. The basic concept is to reverse the roles of the

client and the server and allow clients to behave as a server in the reversed

connection. The client can request to upgrade to a reverse HTTP and then

3.5. COMET 25

the server can initiate a connection with the client. Now, as events occur on

the server, it can directly send them to the client.

Reverse HTTP takes advantage of the HTTP/1.1 Upgrade header to turn

one HTTP connection around. A client makes a request to a server with the

Upgrade: PTTH/1.0 header and if the server accepts the upgrade the server

starts using the connection as a client, and the client starts using the con-

nection as a server. If the server is not able to perform the upgrade, the

communication usually fallbacks to a Comet-like technique like long polling

[44] [45] [46].

The client request:

POST /queue HTTP/1.1

Host: www.example.com

Upgrade: PTTH/1.0

Connection: Upgrade

The client request is a POST method to the resource /queue on the

host server www.example.com requesting a protocol upgrade to PTTH/1.0

through the Update header.

The server response:

HTTP/1.1 101 Switching Protocols

Upgrade: PTTH/1.0

Connection: Upgrade

Date: Sat, 11 Mar 2017 15:18:28 GMT

Content-Type: text/plain

Content-Length: 0

The server accepted the upgrade and informs the client by responding

with the 101 Switching protocol status. Immediately after that, the server

makes an HTTP request pointing back to the client.

26 CHAPTER 3. WEB APPLICATIONS TECHNOLOGY OVERVIEW

The server request:

GET /status HTTP/1.1

Host: 127.0.0.1:65331

Accept: */*

The client response:

HTTP/1.1 200 OK

Content-Type: text/plain

Content-Length: 12

Hello world

The client responded with OK status and an arbitrary body content. The

server can now continue to send data to the client by making its own HTTP

requests.

The Reverse HTTP protocol allows client-server bidirectional communi-

cation and simulates real-time behavior by sending server pushes to the client

as reversed requests using the standard HTTP protocol. But the protocol is

only experimental and never really had any real-world applications and docu-

mented usages. There are a lot of problems and considerations regarding the

reverse HTTP protocol like security issues with man-in-the-middle attacks

and problems with firewalls and network intermediaries that block PTTH up-

grades because they do not recognize the experimental protocol. Probably

the biggest problem with Reverse HTTP is that both client and server imple-

mentations have to be developed specifically for the needs because modern

browsers and server solutions never adopted the Reverse HTTP protocol so

no server or client out-of-the-box solutions are available.

3.5. COMET 27

3.5.5 BOSH

BOSH was developed by the XMPP Standards Foundation in 2004 and stands

for Bidirectional-streams Over Synchronous HTTP [47]. BOSH employs a

combination of HTTP long polling mechanism and multiple synchronous

HTTP request-response pairs. With the long polling technique, the response

is deferred until it actually has any data to send to the client and as soon

as the client receives a response it sends another request ensuring that one

long-living connection is always open. In some situations, the client needs to

send data to the server while it is waiting for some data to be pushed from

an open long poll request. To prevent data from being pipelined behind the

long poll request that is on hold, the client can send its outbound data using

a second HTTP request. This way BOSH forces the server to respond to

the request it has been holding as soon as it receives a new request from

the client thus preventing slow pipelining. To ensure that the periods with

no requests pending are never too long, BOSH defines the negotiation of an

inactivity period value. If the server has no data to send to the client for an

agreed amount of time then the holding request will be closed, by responding

with no data, and a fresh new client request will be triggered immediately.

This way BOSH ensures that if a network connection is broken that both

parties will realize that fact within a reasonable amount of time. BOSH was

designed to transport any data efficiently and with minimal latency in both

directions. Compared to most other bidirectional HTTP-based transport

protocols and techniques (like AJAX based solutions), BOSH is significantly

more bandwidth-efficient and responsive mainly because it gracefully handles

special cases like inactivity, overactivity, pipelining or network disruptions

[48].

3.5.6 Bayeux

The Bayeux protocol was developed in 2007 by the Dojo Foundation with

the primary purpose to support responsive bidirectional interaction between

28 CHAPTER 3. WEB APPLICATIONS TECHNOLOGY OVERVIEW

web clients [49]. With Bayeux, asynchronous messages can be delivered from

server to client, client to server and even client-to-client communication is

possible where an intermediate server takes on the role to moderate the com-

munication. In order to achieve bidirectional communications, a Bayeux

client uses a combination of two HTTP connections (similar to Reversed

HTTP), HTTP streaming mechanisms and HTTP long polling. Because the

HTTP/1.1 specification recommends that a single client should not main-

tain more than two open connection with any server, the Bayeux protocol

implementation uses only two HTTP requests simultaneously and fallbacks

to HTTP streaming and long polling techniques [50]. Asynchronous mes-

sages are exchanged between web clients using channels where clients are

subscribed to receive published events formatted in JSON encoded messages.

During the connection negotiation between client and server, handshake mes-

sages are used to exchange connection type, authentication methods and to

mutually reveal acceptable bidirectional techniques where the client then se-

lect the preferred one from those provided by the server. The idea of the

Bayeux protocol is to reduce the complexity of developing Comet-like real-

time applications by providing simple mechanisms that solve complex prob-

lems like message routing and distribution in real-time bidirectional commu-

nication [51].

3.5.7 Server-sent events

Server-sent events (abbreviated as SSE) is a technology that allows browsers

to receive automatic updates from a server that pushes the content to the

client via an HTTP connection. This technology was first implemented as

an experimental feature in the Opera web browser back in 2006. The first

working draft specification of SSE was published by the W3C in April 2009

and it was finally standardized as part of the HTML5 specifications in 2015

[52]. The SSE standard defines an API that enables servers to push data to

the client over HTTP in the form of DOM events.

Because HTTP streaming is the foundation of data exchange in SSE,

3.5. COMET 29

Figure 3.7: Diagram of the SSE technique.

similar behaviors can be detected. Bidirectional communication is achieved

by using one long-living request where the server streams the data to the

client (shown in figure 3.7). The client connects to the server by opening a

stream source request and the server can then stream the data using that

open request. The EventSource interface is part of the JavaScript web API

and is used to create a long-living connection to a server and receive SSE in

text/event-stream format [53].

1 // Initialize the stream source.

2 var source = new EventSource("http ://www.example.com/stream")

;

3

4 source.onopen = function(event) {

5 console.log(’connection is established ’);

6 };

7

8 source.onmessage = function(event) {

9 console.log(event.data); // This is the returned data.

10 };

11

12 source.onerror = function(event) {

13 console.log(’an error occurred ’);

14 };

30 CHAPTER 3. WEB APPLICATIONS TECHNOLOGY OVERVIEW

In the previous code snippet, a new stream source is opened on the

URL http://www.example.com/stream. On that URL the server accepts

requests and starts streaming events. Next, three event handlers onopen,

onmessage, and onerror are defined that are triggered when specific events

happen. When actual server events are received, the onmessage handler is

triggered and the event data can be accessed through the event.data object.

The benefits of using SSE compared to polling and long polling are simi-

lar to HTTP streaming. The number of generated requests is much smaller

and therefore the network traffic and server load are decreased. Also, be-

cause response headers are omitted in the events being sent from the server,

the size of the response is smaller compared to a normal HTTP response.

Furthermore, SSE does not have problems with network intermediaries that

buffer the response because the text/event-stream content type ensures

that the response is not buffered or cached by proxy or gateway servers. The

EventSource provides a clean API for writing simple solutions that do not

have issues with memory leaks caused by DOM object manipulations like

previous custom iframe HTTP streaming solutions. Most modern browsers

have a native support for the EventSource interface but some browsers, like

the Microsoft Internet Explorer, have never added the support for SSE [54].

This complicates the development of real-time web applications using SSE

because various fallbacks have to be implemented to allow users using these

browsers to experience the real-time features all the same.

3.5.8 HTTP/2

The HTTP protocol is a wildly successful protocol which forms the founda-

tion of the World Wide Web but can also be found in almost every part of

the Internet domain. However, the way HTTP/1.1 uses the underlying trans-

port protocols has several characteristics that have a negative overall effect

on application performance today. In particular, HTTP/1.1 is limited to ele-

mentary request pipelining and therefore needs to open multiple connections

to a server in order to achieve concurrency of the requests. Furthermore,

3.5. COMET 31

Figure 3.8: Timeline of the HTTP protocol development.

HTTP header fields are often repetitive and verbose, causing unnecessary

network traffic as well as causing the transport layer congestion window to

quickly fill. These characteristics ultimately result in excessive latency when

multiple requests are made on a single TCP connection [55]. Given the fact

that the first version of the HTTP protocol was released in 1991, the pro-

tocol needed a major update that would improve the shortcomings of the

original protocol. The successor HTTP/2 (originally named HTTP/2.0) was

standardized in May 2015 in the RFC 7540 and RFC 7541 [56] [57]. Many

ideas and concepts found in the HTTP/2 have been influenced by an earlier

experimental protocol called SPDY originally developed by Google in 2012.

Figure 3.8 shows the timeline of the HTTP protocol development where the

relation to the SPDY protocol can be seen.

The primary goal of research and development of the HTTP/2 centers

around three concepts - simplicity, high performance, and robustness. It

was also really important to maintain high-level compatibility and interop-

erability with the HTTP/1.1 in terms of methods, status codes, URI and

header fields, to facilitate a graceful migration to the new version. Many

new concepts were introduced which are essential for decreasing the latency

and improving the page load speed in web browsers.

• Data compression of HTTP headers minimizes the protocol overhead

and therefore improves the performance with each browser request and

server response

• Multiplexing of multiple request streams over a single TCP connection

reduces latency and improves performance

32 CHAPTER 3. WEB APPLICATIONS TECHNOLOGY OVERVIEW

• Server Push allows a web server to send resources to a web browser even

before the browser gets to request them which significantly improves

the performance while loading assets like images or .js and .css files

• HTTP/2 uses a binary protocol instead of a textual one for processing

command in the request-response cycles which is less error-prone and

has a lighter network footprint making the protocol more robust

• HTTPS and TLS are required by default which makes the protocol

more secure

The HTTP/2 Server Push allows the server to send additional cacheable

information to the client that is not requested directly but is anticipated to

be requested in future requests. For example, a client requests an HTML

page and receives it. While the browser interprets the page content it finds

several JavaScript and CSS files to be linked inside. Now the browser has to

make additional requests to get the content of those files. With the HTTP/2

Server Push requirement of these files would be anticipated and they would

be sent along with the HTML page content inside the same request which

brings significant performance improvements. Figure 3.9 shows the benefits

of HTTP/2 Server Push compared to HTTP1.1 and HTTP/2 without the

push technique. With HTTP1.1 all the resources are downloaded sequentially

making the total time to receive the page content 5 seconds. In the second

example, the HTTP/2 multiplexing feature enables downloading the assets

in parallel making the total time to receive the page content 3 seconds. In

the final example, by using the Server Push feature the whole page content is

received in only 2 seconds because all the assets are pushed from the server

together with the page inside the first request.

The Server Push technology looks like an interesting technique for real-

time web applications but it cannot be used to push arbitrary data. It was

designed to push only asset files like .js, .css and images referenced in

the HTML document and can be only processed by browser not by appli-

cations. Nevertheless, HTTP/2 can be used to improve the performance of

3.5. COMET 33

Figure 3.9: Benefits of HTTP/2 Server Push

34 CHAPTER 3. WEB APPLICATIONS TECHNOLOGY OVERVIEW

real-time web applications especially in combinations with SSE. Because of

all the benefits already mentioned like header compression, binary protocol,

etc., real-time applications with SSE over HTTP/2 are faster compared to

HTTP/1.1 applications [58].

3.5.9 Summary

All the technologies and techniques mentioned so far are using the same

underlying HTTP protocol for data exchange between the client and the

server. Because the HTTP protocol was designed to support only unidirec-

tional client-server communication, these Comet-like technologies are trying

to simulate real-time behaviors by forcing bidirectional communication in

different ways.

Polling and long polling are using multiple HTTP requests to poll for

changes in certain intervals. HTTP streaming is using a single long-living

HTTP request to stream the changes back to the client. Reverse HTTP is

using two parallel opposite HTTP requests between the client and the server

to simulate full-duplex communication. BOSH and Bayeux technologies are

using a combination of long polling, HTTP streaming and Reverse HTTP

techniques to provide a sustainable solution with graceful fallbacks and im-

proved performance. Similar to HTTP streaming, Server-sent events are also

using a long-living HTTP request to push changes back to the client in form

of server events.

The next generation of the HTTP protocol, the HTTP/2 protocol, brought

many new features and enhancements which improved the overall perfor-

mance of the protocol but the bidirectional communication is not part of the

protocol and therefore Comet-like techniques still have to be used to simulate

real-time behaviors.

There was a desperate need for a revolutionary new protocol that would

change the way bidirectional communication is handled over the Internet so

the IETF group started working on the new protocol called WebSocket.

3.6. WEBSOCKET 35

3.6 WebSocket

WebSocket is a communications protocol that provides full-duplex commu-

nication channels over a single TCP connection. The origin for the protocol

was the TCP-based socket API called TCPConnection first referenced in

the HTML5 specification in 2008 [59]. After that, Ian Hickson and Michael

Carter collaborated on enhancing the protocol and ultimately coined the

name WebSocket protocol. In December 2009, Google Chrome 4 was the

first browser to include a full support for the WebSocket standard, enabling

it by default [60]. After the protocol was shipped and enabled by default

in multiple browsers, the RFC was finalized and the protocol was finally

standardized by the IEFT in 2011 as RFC 6455 [61].

The WebSocket protocol was designed to supersede existing Comet-like

bidirectional communication technologies that use HTTP as a transport layer

but to reuse the existing infrastructure at the same time. It uses the same

HTTP ports 80 and 433 and this way supports existing HTTP proxies and

intermediaries and avoids being blocked by the firewall which usually blocks

all non-web Internet connections. Besides that, its only relationship to HTTP

is that the protocol’s handshake is being interpreted by HTTP server as an

HTTP Upgrade request. The WebSocket handshake allows the browser to

start the connection as an HTTP connection and then to gracefully upgrade

to WebSocket if possible. In the case when the server does not support the

WebSocket communication, the connection cannot be upgraded and stan-

dard HTTP requests will be used. This way a full backward compatibility

with the pre-WebSocket world is guaranteed. The specifications defines ws

and wss as two new uniform resource identifiers (URI) schemes. The ws

(WebSocket) scheme opens an unencrypted connection on the port 80 and

the wss (WebSocket Secure) scheme opens an encrypted connection over the

port 433. Figure 3.10 shows how WebSocket protocol connects and receives

events from the server but also sends the data from the client to the server

which represents a full-duplex communication.

The protocol has three parts: an opening handshake, the data transfer,

36 CHAPTER 3. WEB APPLICATIONS TECHNOLOGY OVERVIEW

Figure 3.10: Diagram of the Websocket full-duplex communication.

and a closing handshake. The WebSocket handshake request is sent by the

client and the server responds with a WebSocket handshake response.

The client handshake request:

GET /chat HTTP/1.1

Host: example.com

Upgrade: websocket

Connection: Upgrade

Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ==

Sec-WebSocket-Protocol: chat, superchat

Sec-WebSocket-Version: 13

Origin: http://www.example.com

The client handshake request is a GET method to the resource /chat on

the host server example.com requesting a protocol upgrade to WebSocket

through the Update header. Header fields are used to select different options

in the WebSocket protocol.

The Server handshake response:

3.6. WEBSOCKET 37

HTTP/1.1 101 Switching Protocols

Upgrade: websocket

Connection: Upgrade

Sec-WebSocket-Accept: s3pPLMBiTxaQ9kYGzzhZRbK+xOo=

Sec-WebSocket-Protocol: chat

The server accepted the upgrade and informs the client by responding

with the 101 Switching protocol status. Header fields are used to confirm

negotiated WebSocket protocol options.

Once the client and the server have both sent their handshakes, and if the

handshake was successful, then the data transfer part starts. The established

connection between the client and the server is a two-way communication

channel where each side can, independently from the other, send data at

will. This data transfer is encapsulated in conceptual units referred to in

the specification as messages. On the wire, a message is composed of one

or more frames and a small header. The data is minimally framed with just

two bytes to keep the size of the payload as small as possible.

The closing handshake is far simpler than the opening handshake where

either peer can request a closing handshake by sending a control frame with

data containing a specific control sequence. Upon receiving such a frame,

the other peer sends a Close frame in response and discards any further data

received thus closing the connection.

The WebSocket API interface is part of the HTML5 specification and

is currently supported in most major browsers including Google Chrome,

Microsoft Edge, Internet Explorer, Firefox, Safari and Opera [62] [63]. The

client connects to a server by creating a new WebSocket interface to the end-

point represented with an URL. The ws and wss prefixed are used to indicate

a WebSocket or a secure WebSocket connection, respectively.

1 // Initialize the secure WebSocket channel.

2 var socket = new WebSocket("wss://www.example.com/chat");

3

4

38 CHAPTER 3. WEB APPLICATIONS TECHNOLOGY OVERVIEW

5 socket.onopen = function(event) {

6 console.log(’connection is established ’);

7 };

8

9 socket.onmessage = function(event) {

10 console.log(event.data); // This is the returned data.

11 };

12

13 socket.onerror = function(event) {

14 console.log(’an error occurred ’);

15 };

16

17 socket.onclose = function(event) {

18 console.log(’connection is closed ’);

19 };

In the previous code snippet, a new WebSocket channel with the URL

http://www.example.com/chat is being opened. Next, four event handlers

(onopen, onmessage, onerror, and onclose) are defined that get triggered

when specific events happen. The WebSocket API interface is surprisingly

similar to the SSE EventSource API interface introduced before. The biggest

difference is that the WebSocket interface can also send data from the client

to the server using the same channel as it is a full duplex channel.

1 socket.send(’this is a string being sent’); // Sending

arbitrary data to the server.

This code example shows how arbitrary string data can be sent to the

server by calling the send() method on the socket interface instance object.

When all the data transfers are complete, the connection can be terminated

by calling the close() method on the socket interface instance object. This

starts the sequence of closing the channel between the client and the server

by sending the closing handshake request.

1 socket.close();

The advantages of the WebSocket protocol compared to the usual network

traffic over HTTP - is that the WebSocket protocol does not follow the tradi-

3.6. WEBSOCKET 39

Figure 3.11: HTTP and WebSocket latency comparison diagram.

tional request-response convention. Once a client and a server have opened

a channel, both endpoints may asynchronously send data to each other. The

connection remains open and active as long as either the client or the server

closes the connection. Even if the connection gets closed because of external

reasons like network connectivity issues, it can easily be reconnected without

much overhead. Compared to previous Comet-like approaches where several

round-trips between the client and the server had to be completed before any

actual information is sent or received, WebSocket uses the same opened chan-

nel for communicating in both directions. Furthermore, the data exchange

inside the WebSocket channels is organized into frames which are minimally

framed with only a few bytes and do not contain headers. Compared to

HTTP message format, WebSocket frames are significantly smaller and that

also impact the latency and network traffic [64]. Figure 3.10 shows HTTP

and WebSocket protocol latency comparison where given the same amount

of time, the WebSocket protocol is able to transfer more data compared to

Comet-like approaches like polling.

For the web application to use WebSocket it has to be run in a web

40 CHAPTER 3. WEB APPLICATIONS TECHNOLOGY OVERVIEW

browser that supports the WebSocket API. Even though most major browsers

today support WebSocket, for those who do not support, fallbacks to tradi-

tional Comet-like techniques like pooling have to be implemented. Also, not

only the client part of the application has to have the support for WebSocket

but the server solution has to be adjusted too. The server solution has to be

programmed in an asynchronous programming language that supports han-

dling sockets and broadcasting events. The biggest challenge for the servers

is that they have to maintain a large number of open connection to all the

clients that are consuming the application. Every open WebSocket channel

from each client means a connection on the server that has to be kept alive

and processed all the time. Depending on the number of clients, eventually, a

server solution will run out of resources which means it has to be scaled to fit

the requirements. Scaling and maintaining high availability is an important

part of every real-time web application.

Chapter 4

Scalability and high availability

4.1 Scalability

In computer science, scalability is the capability of a system or network to

handle growing amount of work by adapting to accommodate that growth.

For web applications that means scaling the server solution to be able to

handle more load as the number of requests increase. One of the most com-

mon ways of scaling computer systems is by adding more resource power.

The web application is considered scalable if by adding more resources it can

linearly process more requests that before. There are two methods of adding

more resources to web applications: horizontal and vertical scaling [65].

Scaling horizontally means to add more processing nodes to existing sys-

tems. For example, scaling out from one web server to multiple web servers

that run in parallel and that can handle more requests. These web servers

are usually backed by a load balancer system that equally distributes the

load between them. Scaling vertically means to add more resources to a sin-

gle node in a system. For example, increasing the number of CPUs, adding

faster CPUs or adding more memory to a single web server. By increasing

the processing power of a single node it can process the requests faster and

handle more requests in parallel. Figure 4.1 shows the difference between

vertical and horizontal scaling techniques.

41

42 CHAPTER 4. SCALABILITY AND HIGH AVAILABILITY

Figure 4.1: Visualization of vertical and horizontal scaling approach.

Scaling horizontally is considered more important as commodity hard-

ware is cheaper compared to the cost of special configuration hardware that

powers supercomputers. So adding more nodes into a system is usually more

preferable in terms of cost-benefit analysis than vertically scaling and build-

ing supercomputers. But at the same time, horizontal scaling increases the

complexity of the entire system. To handle additional nodes, the network

layer has to be modified, additional load balancers have to be configured,

distributed databases have to be set up, etc.

Besides horizontal and vertical scaling, increasing the number of requests

that a single node can handle is also an important factor that can increase

the scalability without adding modes or buying faster CPUs. By tuning the

performance of the server solution in terms of CPU and memory allocation

a single node can run more processes in parallel and therefore process more

requests. Furthermore, by reducing the resources allocation of the solution,

more instances can be run on the same node which can greatly contribute

to the scalability factor of the web application and therefore can be also

considered a scaling technique. This thesis is researching the latter statement

and proposing a CPU and memory optimized server solution that shows

improved scalability results.

4.2. HIGH AVAILABILITY 43

4.2 High Availability

In computer science, availability represents the probability that a system is

operational at a given time, i.e. the amount of time a system is actually

operating in relation to the total time it should be operating. Availability

can be measured as the ratio between mean time between failures (MTBF)

and maximum time to repair or resolve a particular problem (MTTR). The

equation (4.1) is used to calculate the availability factor.

A =
MTBF

MTBF +MTTR
(4.1)

For example, a system that was unavailable for 1.83 days in a year would

then have an availability of 99.5 percent (4.2).

A =
365 ∗ 24

(365 ∗ 24) + (1, 83 ∗ 24)
(4.2)

A = 0, 995011313 (4.3)

These availability percentages are sometimes referred to by the number of

nines or class of nines in the digits. For example, 99,999% of the time would

have five nines reliability or class five reliability. More examples are shown in

the table 4.1. Availability is most often communicated in documents called

service-level agreements or SLA. SLA documents define official commitments

agreed between a service provider and a customer which usually include terms

about quality, responsibilities and minimal level of availability [66].

Uptime and availability terms are often used synonymously but should

not be because they are not the same. A system can be up, but its service

44 CHAPTER 4. SCALABILITY AND HIGH AVAILABILITY

Table 4.1: Examples of class of nines availability

Availability % Class of nines Downtime per year Downtime per month

90% One nine 36,5 days 72 hours

99% Two nines 3,65 days 7,2 hours

99,9% Three nines 8,76 hours 43,8 minutes

99,99% Four nines 52,56 minutes 4,38 minutes

99,999% Five nines 5,26 minutes 25,9 seconds

99,9999% Six nines 31,5 seconds 2,59 seconds

99,99999% Seven nines 3,15 seconds 262,97 milliseconds

99,999999% Eight nines 315,569 milliseconds 26,297 milliseconds

99,999999% Nine nines 31,5569 milliseconds 2,6297 milliseconds

can still be unavailable and unreachable by the user because of a network

outage for example. On the other hand, downtime and unavailability terms

can be used interchangeably because a system that is in downtime is non-

operational and therefore unavailable and unreachable by the user. A system

downtime can be either a scheduled downtime usually for the purpose of sys-

tem maintenance or unplanned downtime which is usually a result of system

failure.

High availability systems are those systems that have really high avail-

ability rates usually reported in terms of only minutes of downtime per year.

Availability features allow the system to stay operational even when errors

occur in the system. A highly available system would disable the malfunc-

tioning part and continue operation at a reduced capacity but still available

to the users. In contracts, a less capable system might crash and become to-

tally non-operational and unavailable to the users. One principle of reaching

high availability is eliminating single points of failure by adding redundancy

to the system. This way when a system component fails, the redundant

component can take over the work and prevent the failure of the entire sys-

4.2. HIGH AVAILABILITY 45

Figure 4.2: Load balancer forwards the requests to web servers.

tem. In computing, this switching to a redundant system upon the failure is

called failover. For web applications, this redundancy is usually achieved by

using a load balancer system. Multiple redundant servers are connected to a

load balancer which has a dual-purpose. First, it balances the traffic equally

between the servers and secondly it also takes care of failover in events of

a particular server failure. Using load balancers instead of single servers in-

creases reliability and availability of web applications [67]. Figure 4.2 shows

how a load balancer handles incoming traffic and forwards the requests to

available web servers.

Another important concept in highly available systems is fault tolerance

that describes the ability of a system to continue operating properly in the

event of one or multiple faults within the system. This ability to main-

tain functionality when parts of a system breakdown is also referred to as

graceful degradation. Fault tolerance can be achieved by anticipating excep-

tional conditions and building the system to cope with these conditions. This

means building software solutions that are robust and designed to continue

operating despite an error, exception, or invalid input happens. In events of

these exceptional conditions happening, the solution has to cope with them

and converge towards an error-free state which is also called self-stabilization

[68].

Based on the formula for high availability mentioned before, there are two

ways to improve availability. Either by extending the mean time before fail-

46 CHAPTER 4. SCALABILITY AND HIGH AVAILABILITY

Figure 4.3: The most common causes of unplanned downtime [69].

ure or by extending the mean time to recover. By improving either of these

measures the availability factor of the system improves. To improve MTBF

the system has to become more fault tolerant to prevent complete system

failure and to gracefully degrade to an error-free state. Building redundant

systems and composing load balancers implies improving the hardware ca-

pabilities of the whole system to be more tolerant to failure and therefore

improves MTBF. Figure 4.3 shows the most common downtime causes and

software failure accounts for 27% of the causes. This means that building

fault-tolerant software is as much important as having load balancers and

redundant servers [69].

This thesis is researching the latter statement and proposing a software

solution that improves MTBF by optimizing scalability and thus increasing

the time before the system fails.

4.3. IMPACT ON REAL-TIME WEB APPLICATIONS 47

4.3 Impact on real-time web applications

Both scalability and high availability are very important for real-time appli-

cations. As noted before, the bidirectional communication nature of real-time

web applications results with much higher loads to the server solutions com-

pared to regular nonreal-time web applications. These server solutions are

often pushed to their limits while expected to run without failures. There-

fore, these server solutions that are handling all the requests and responses

have to be scalable to be able to cope with high traffic and also fault toler-

ant to gracefully handle exceptional conditions and keep the service always

available and operational.

Scalability and high availability can be achieved using different techniques

like introducing redundancy and failover units with load balancers or clusters.

These redundancy units give the server more processing power to handle more

requests and bring failover mechanisms that improve fault tolerance. But

this thesis researches and alternative approach to achieving scalability and

high availability. This alternative approach proposes using software methods

instead of hardware solutions to improve scalability and high availability.

A variety of programming languages can be used for developing software

solutions but not all are equally suited for real-time applications. Most of

these languages provide some basic scalability and high availability features

but some are better than others. One programming language called Erlang

is known especially for its high availability, fault tolerance, and distributed

scalability.

4.4 Erlang

Erlang is a functional programming language developed in Ericsson company

by Joe Armstrong, Robert Virding and Mike Williams in 1986. It was orig-

inally a proprietary language owned by Ericsson but was later released as

open source in 1998. Erlang was designed to support massively scalable soft

real-time systems with requirements on high availability. It is actively used in

48 CHAPTER 4. SCALABILITY AND HIGH AVAILABILITY

telecoms, banking, e-commerce, computer telephony and instant messaging

applications. Erlang’s runtime system has a built-in support for concurrency,

distribution and fault tolerance. In 1998 Ericsson announced the AXD301

switch written in Erlang and reported to achieve a high availability of nine

nines (99.9999999%) which equals only 31ms of downtime a year while han-

dling 30-40 million calls per week [70].

In his doctoral dissertation called ”Making reliable distributed systems

in the presence of software errors”, Joe Armstrong addresses the problem of

constructing a reliable system from programs which may themselves contain

errors. To make a reliable system from faulty components places certain re-

quirements on the system. The requirements can be satisfied, either in the

programming language which is used to solve the problem or in the standard

libraries which are called by the application programs to solve the problem.

He describes the Erlang programming language and other library modules

written in Erlang that satisfies the required characteristics and presents so-

lutions for fault-tolerant programs [71].

Erlang’s main strength is support for concurrency and the powerful set of

primitives for creating processes and managing communication among them.

Erlang belongs to the family of pure message passing languages which means

it is a concurrent process-based language having strong isolation between

concurrent processes. These Erlang processes are neither operating system

processes nor operating system threads, but lightweight processes that are

created and managed by the Erlang’s virtual machine (VM) called BEAM.

These processes are quite different from threads which have to share re-

sources between themselves and therefore it is extremely difficult to isolate

components from each other. Without isolation, errors in one component can

propagate to another component and damage the internal consistency of the

system. By using message passing communication between processes, Erlang

is better in isolating components and therefore less error-prone. Furthermore,

Erlang provides language-level features for creating and managing these pro-

cesses which simplify concurrent programming and remove the dependency

4.4. ERLANG 49

for an external library support like threads. Also, as threads communicate

using shared variables explicit locking schemes are required to prevent dead-

locks and unpredicted behavior when multiple threads are simultaneously

reading and writing into shared variables. Erlang removes this requirement

on locking by using inter-process communication via a shared-nothing asyn-

chronous message passing. Removing the locking requirement also means

improving the language capabilities for concurrency and scalability making

Erlang excel at that.

Considering all mentioned capabilities of the Erlang programming lan-

guage, it can be considered a valid choice for developing server solutions

that have to manage real-time web applications. Back when Erlang was cre-

ated in 1986, telephony was one of the biggest global systems that had to

be scalable, fault-tolerant and highly available to support millions of calls

happening simultaneously global wide. Erlang was designed to support ex-

actly that kind of systems. Today, real-time web applications share the

same problem domain. They have to be scalable, fault-tolerant and highly

available to handle enormous loads created by millions of users using the

application simultaneously. Some of the most interesting cases of Erlang us-

age in real-time applications are Facebook Messenger and WhatsApp which

are probably the biggest real-time chat applications in the world. Facebook

Messenger application with 800 million users and WhatsApp with 1 billion

users both reported that their Erlang powered stack processes more than 50

billion messages per day with a greater than 99.9% availability [72]. Erlang

and its ecosystem called Open Telecom Platform (OTP) provide a collec-

tion of useful middleware, libraries, and tools that make it easier to create

programs for the telecom domain but was never designed with web appli-

cation server solutions in mind. This makes developing web applications in

Erlang difficult because it is missing a lot of components that other modern

web-related languages provide like Rails, Django, Spring, etc. [73] [74] [75].

In 2011, Jose Valim created a new programming language called Elixir

which is a functional, concurrent, general-purpose language that runs on the

50 CHAPTER 4. SCALABILITY AND HIGH AVAILABILITY

Erlang VM BEAM. Elixir has a built-in compiler that compiles Elixir code

directly to Erlang bytecode that can be run on the Erlang VM. This makes

Elixir share the same abstraction for building distributed, fault-tolerant ap-

plications as in Erlang but using a more understandable, modern and fresh

syntax. By running everything inside lightweight processes that are isolated

in a similar way as Erlang, hundreds of thousands of processes can be run con-

currently on the same machine making the solutions easily vertically scalable.

Also, as all the communication is message based and no shared variables are

used, processes can even communicate when being run on different machines

on the same network providing the foundation for distribution and great

horizontal scaling possibilities. Furthermore, fault tolerance is also provided

by default where mechanisms inherited from Erlang-like supervisors allow

restarting parts of the system that go awry and revert the system state to a

stable condition that is guaranteed to work [76].

Elixir aims to modernize and improve the experience of developing Erlang-

powered systems. The language is a compilation of features from various

other languages such as Erlang, Clojure, and Ruby. Elixir ships with a

toolset that simplifies project management, testing, packaging, and docu-

ment building which altogether lower the entry barrier into the Erlang world

and improve developer productivity. At the same time having the Erlang

runtime as the target platform means Elixir-based systems are able to use

all the libraries from the Erlang ecosystem, including all the battle-tested

tools for concurrency and fault tolerance that ship with Erlang. To facili-

tate web application development special Elixir based frameworks have been

created where the most famous one is probably the Phoenix web framework

developed by Chris McCord in 2015. Phoenix framework provides tools and

best practices for building modern web applications in Elixir. It is influenced

by similar popular web frameworks, like Rails for the Ruby programming

language, and allows creating fast, concurrent and reliable web applications

that are actually running on the Erlang VM [77].

Chapter 5

Client-side prototypes

5.1 Architecture

Four simple web application solutions will be presented that are using polling,

long polling, streaming, and WebSocket for real-time web behaviors. These

applications will be used to compare the advantages and disadvantages of

mentioned client-side approaches while handling real-time communication.

All the solutions will have the same architecture - a simple chat application

that enables multiple users to exchange messages in real-time.

The chat application has a chat room which users can join, read existing

messages and create new messages. The interface of the chat application

is quite simplified and has a title, list of existing messages and a form for

submitting new messages as shown in the figure 5.1.

After the user submits the new message, by clicking the Speak button,

the message appears on the list as a new message. The same message should

instantly appear in any other user’s chat application being opened at that

moment. This real-time behavior is what the prototype application is de-

signed to present.

Because the purpose of these prototypes is only to observe data exchange

and client-server request cycles, some chat related features have been omitted.

No authorization and authentication mechanisms have been implemented

51

52 CHAPTER 5. CLIENT-SIDE PROTOTYPES

Figure 5.1: Interface of the chat application.

therefore all users can enter the chat room without any login step or credential

checks. Also, all users share the same chat room and create anonymous

messages. Furthermore, no additional visual styling has been applied to

the HTML elements in the chat room except the default browser element

styling. When building a real chat application, these features should not

be omitted and should be implemented in the final product but as this is

only a prototype application focused on showing performance implications

of different real-time techniques these features have been omitted.

5.2 Polling prototype

The polling prototype application presents the idea of having regular polling

interval that sends requests to the server to check for changes. The applica-

tion has three endpoints:

• /chat

• /chat/speak

5.2. POLLING PROTOTYPE 53

• /chat/poll

The /chat endpoint is where the chat room can be accessed showing the

list of existing messages and the form for creating new messages. The form

submits new messages to the /chat/speak endpoint which creates these mes-

sages in the database and the /chat/poll endpoint is used for interval-based

polling check for changes. All the interactions on the client are controlled

using the JavaScript programming language.

1 function poll() {

2 var after = $(’#messages li:last -child’).attr(’data -id’);

3

4 $.get(’/chat/poll’, { after: after }, function(data) {

5 $.each(data , function(_, value) {

6 $(’#messages ’).append("<li data -id=’" + value[’id’] + "

’>" + value[’message ’] + "");

7 });

8 })

9 setTimeout(poll , 1000);

10 }

The poll() function makes requests to the server every one second to

check for new messages. In order to ask for new messages, the client first has

to figure out what is the last message it already has. That way it can ask

the server to return all the messages that have been created after that exact

message. This is really important in the polling scenario because multiple

messages can be created between two consecutive polling requests and this

is the best way to communicate what messages the client already has. The

message ID is a unique identification of every message and a perfect candidate

to be used for this purpose. The function then makes a GET request to the

/chat/poll endpoint sending together the ID of the last message as the

query parameter. The server will return all the messages with the higher

ID which represents all the messages that have been created in between the

last poll request and the current one. The returned messages are inserted

into the chat room with their IDs so that the next poll request can send the

54 CHAPTER 5. CLIENT-SIDE PROTOTYPES

newest message ID available.

1 $(document).on(’submit ’, ’[data -behavior ~= chat_form]’,

function(event) {

2 $input = $(’[data -behavior ~= chat_message]’);

3

4 $.post(’/chat/speak ’, { message: $input.val() }, function(

data) {});

5

6 $input.val(’’);

7 event.preventDefault ();

8 });

When the speak button on the form is clicked, the form gets submitted

and the submit event gets called. The value from the input field in the form

gets collected and posted to the /chat/speak endpoint using the .post()

method. The input gets cleared and the form is reset and ready for the next

interaction. The server gets the POST request on the /chat/speak endpoint

and creates a new message in the database. On the next poll request, the

client will receive the message it previously created and it will be inserted

into the chat room.

5.3 Long polling prototype

The long polling prototype application presents the idea of using HTTP long

polling mechanism that holds the response until the changes are available.

The application has three endpoints:

• /chat

• /chat/speak

• /chat/poll

The /chat endpoint is where the chat room can be accessed showing the

list of existing messages and the form for creating new messages. The form

5.3. LONG POLLING PROTOTYPE 55

submits new messages to the /chat/speak endpoint which creates these mes-

sages in the database and the /chat/poll endpoint is used for long polling

check for changes. The routing structure of the application is identical to the

previous polling example. All the interactions on the client are controlled

using the JavaScript programming language.

1 function poll() {

2 $.get(’/chat/poll’, function(data) {

3 $(’#messages ’).append("" + data.message + " ");

4 setTimeout(poll , 1);

5 })

6 }

The poll() function makes a GET request to the /chat/poll endpoint

on the server and waits for the response. The server does not respond im-

mediately but keeps the request pending until it has any data to send, i.e.

until a new message is created. When the client ultimately receives the data,

the included message is inserted into the chat room and immediately a new

GET request to the /chat/poll is sent. This ensures that the client always

has an open outstanding request with the server waiting for new messages.

Because long polling is not using an interval for polling changes but opens a

new connection right away, it does not have to worry about messages being

created in between the polling requests. Therefore, it does not have to cal-

culate the last message ID and can skip sending the query parameter with

the requests.

1 $(document).on(’submit ’, ’[data -behavior ~= chat_form]’,

function(event) {

2 $input = $(’[data -behavior ~= chat_message]’);

3

4 $.post(’/chat/speak ’, { message: $input.val() }, function(

data) {});

5

6 $input.val(’’);

7 event.preventDefault ();

8 });

56 CHAPTER 5. CLIENT-SIDE PROTOTYPES

The form handling behavior is very similar to the polling example. The

speak button submits the form, the value of the input field is collected and

posted to the /chat/speak endpoint and the form gets cleared. As soon

as the server receives the POST request and creates the new message, the

outstanding request which was already on hold gets fulfilled and returned to

the client with the data about the new message. This is significantly different

compared to the previous polling example where the response is received only

after the next polling request. Immediately after receiving the response, the

client sent the next request to the server thus closing the long polling cycle.

5.4 Streaming prototype

The streaming prototype application presents the idea of using HTTP stream-

ing mechanism which uses a single request that is kept open indefinitely and

the data is streamed over that same request. The application has three end-

points:

• /chat

• /chat/speak

• /chat/stream

The /chat endpoint is where the chat room can be accessed showing

the list of existing messages and the form for creating new messages. The

form submits new messages to the /chat/speak endpoint which creates these

messages in the database and the /chat/stream endpoint is used for open-

ing the long-living request that streams the changes to the client. All the

interactions on the client are controlled using the JavaScript programming

language.

1 function stream () {

2 var eventSource = new EventSource("/chat/stream");

3

5.4. STREAMING PROTOTYPE 57

4 eventSource.addEventListener(’refresh ’, function(event) {

5 $(’#messages ’).append("" + event.data + " ");

6 });

7 }

The stream() function opens a new EventSource stream to the /chat/stream

endpoint on the server. As in the previous long polling example, there is no

need for calculating and sending last message ID parameter with the request

because a single request is open indefinitely and no polling interval is used.

When a comment is created on the server it is immediately sent to the client

using the opened stream. The client listens on the stream and waits for the

refresh event to happen and then inserts the received message data into the

chat room. Compared to the long polling example, after the data is received

the request is not closed and the stream is kept alive. This ensured that the

client always has an open stream with the server waiting for new messages.

1 $(document).on(’submit ’, ’[data -behavior ~= chat_form]’,

function(event) {

2 $input = $(’[data -behavior ~= chat_message]’);

3

4 $.post(’/chat/speak ’, { message: $input.val() }, function(

data) {});

5

6 $input.val(’’);

7 event.preventDefault ();

8 });

The form handling behavior is very similar as in both previous examples.

The speak button submits the form, the value of the input field is collected

and posted to the /chat/speak endpoint. When the server receives the

POST request it creates the new message in the database and immediately

sends data containing the new message back to the client, using the already

available stream. Similarly, as in the long polling example, the response is

immediate because it does not depend on the polling interval. One additional

advantage here is that the request is never closed so there is no need for

sending consecutive requests which removes the overhead of opening new

58 CHAPTER 5. CLIENT-SIDE PROTOTYPES

connections.

5.5 WebSocket prototype

The WebSocket prototype application presents the idea of using WebSocket

mechanism for exchanging the data between the server and the client over an

independent TCP socket connection. The application has three endpoints:

• /chat

• /chat/speak

• /chat/socket

Same as in the previous examples the chat is accessed on the /chat

endpoint and form is submitted to the /chat/speak endpoint which creates

these messages in the database. The /chat/socket endpoint is used to

establish the WebSocket connection and to facilitate data exchange between

the server and the client. All the interactions on the client are controlled

using the JavaScript programming language.

1 function socket () {

2 var webSocket = new WebSocket("ws:// localhost :3000/ chat/

socket");

3

4 webSocket.onmessage = function (event) {

5 $(’#messages ’).append("" + event.data + " ");

6 }

7 }

The socket() function open aWebSocket connection to the /chat/socket

endpoint on the server. The HTTP request is upgraded and switched to the

WebSocket protocol which is now opened between the server and the client.

When a comment is created on the server it is immediately sent to the client

using the opened socket. The client listens on the socket changes using the

onmessage event handler. When a message is received the event handler is

5.5. WEBSOCKET PROTOTYPE 59

triggered and messages are inserted into the chat room. As in the previous

streaming example, a single request is used for all data exchanges, but the

difference is that WebSocket example is not using HTTP for data transfer

but a more lightweight WebSocket protocol. As in the both previous exam-

ples, there is no need for calculating and sending last message ID parameter

with the request because no polling interval is used and all the changes are

received immediately as they happen.

1 $(document).on(’submit ’, ’[data -behavior ~= chat_form]’,

function(event) {

2 $input = $(’[data -behavior ~= chat_message]’);

3

4 $.post(’/chat/speak ’, { message: $input.val() }, function(

data) {});

5

6 $input.val(’’);

7 event.preventDefault ();

8 });

The form handling behavior is again quite similar to all the previous ex-

amples. The speak button submits the form, the values from the input is

collected and posted to the /chat/speak endpoint which creates new mes-

sages in the database. As soon as the messages are created they are also sent

back to the clients using the opened socket connection.

60 CHAPTER 5. CLIENT-SIDE PROTOTYPES

Chapter 6

Server-side prototypes

6.1 Architecture

Two simple server prototypes will be presented with the same architecture

- a simple chat application where users can exchange messages in real-time.

One prototype solution will be developed using the Rails web framework

for the Ruby programming language and the second prototype solution will

be developed using the Phoenix web framework for the Elixir programming

language.

The client part of the application will be using the WebSocket approach

with an interface quite similar to previous prototypes. The chat application

shows a list of existing messages and a form for submitting new messages.

The messages that user submits are immediately broadcasted to all the other

users connected to the chat application at that moment.

As in the previous prototypes, many chat related features like autho-

rization, authentication, visual styling, etc., have been omitted for brevity

reasons.

61

62 CHAPTER 6. SERVER-SIDE PROTOTYPES

6.2 Ruby on Rails prototype

Ruby on Rails, or simply Rails, is a server-side web application framework

written in Ruby that uses well-known software engineering patterns and

paradigms like convention over configuration (CoC), and don’t repeat your-

self (DRY) for building ambitious server solutions. The Rails framework

provides a handful of tools and libraries which are used as building blocks

for developing web applications. By using these building block, developing

web applications like this chat application becomes much faster, easier and

less error-prone.

This prototype application is intended to present the real-time capabilities

of applications written in Rails framework and most of the other functional-

ities of the framework will be omitted for brevity.

The prototype has two endpoints:

• /chat

• /cable

The /chat endpoint is where the chat room can be accessed showing

the list of existing messages and the form for creating new messages. The

/cable endpoint is used to establish the WebSocket connection that facili-

tates the data exchange between the server and all the connected clients. In

comparison to the WebSocket prototype application from chapter 5.5, the

/chat/speak endpoint is not required because the form submits new mes-

sages using the existing WebSocket connection to the /cable endpoint. As

WebSocket communication is full duplex it is not limited only to server-to-

client communication. The client can also send requests to the server using

the sameWebSocket connection. This way the application needs one less end-

point for handling HTTP requests and uses the faster WebSocket connection

to submit new messages. All the interactions on the client are controlled

using the JavaScript programming language.

1 $(document).on(’submit ’, ’[data -behavior ~= chat_form]’,

function(event) {

6.2. RUBY ON RAILS PROTOTYPE 63

2 $input = $(’[data -behavior ~= chat_message]’);

3

4 App.chat.speak($input.val());

5

6 $input.val(’’);

7 event.preventDefault ();

8 });

The speak button submits the form, the value of the input field is col-

lected, sent to the server, and the input gets cleared. The message is sent to

the sever using the existingWebSocket connection by calling the App.chat.speak()

abstraction which will later be explained in more detail.

When the user first opens the application it has to establish the Web-

Socket connection to the server. The WebSocket connection is opened auto-

matically by the Rails framework. The framework also automatically handles

reconnections if any interruptions with the connection happen. This way the

programmers do not need write additional code to cope with those situations

because the framework will handle that. Also, the Rails framework pro-

vides a lot of helpful abstractions for handling WebSocket communication in

both client side and server side code. The cable is an abstraction for a sin-

gle WebSocket connection. Each cable can have multiple channels which

represent a single logical topic where consumers can subscribe and send or

receive messages.

This prototype application has a single channel called ChatChannel where

all the users connect to send and receive chat messages.

1 class ChatChannel < ApplicationCable :: Channel

2 def subscribed

3 stream_from ’chat_channel ’

4 end

5

6 def speak(data)

7 @message = Message.create(text: data[’message ’])

8

9 ActionCable.server.broadcast ’chat_channel ’, message:

@message.text

64 CHAPTER 6. SERVER-SIDE PROTOTYPES

10 end

11 end

This ChatChannel definition has two actions: subscribed() and speak().

The subscribed() action is triggered when a consumer first connects to the

channel and it ensures that all the users get subscribed to this channel to

receive updates from the channel when an action is triggered. The speak()

action is triggered when the message is sent from a client to the server using

the WebSocket connection. It receives the message, persists that message to

the database and broadcasts the same message to all the existing consumers

connected to the channel. This triggers WebSocket requests for all the con-

nected users and they all receive the newly created message as payload.

1 App.chat = App.cable.subscriptions.create("ChatChannel", {

2 received: function(data) {

3 $(’#messages ’).append("" + data[’message ’] + " ")

;

4 },

5

6 speak: function(message) {

7 return this.perform(’speak’, { message: message });

8 }

9 });

When the message is received by the client, the received() method

is called and the content of the message gets inserted into the list of chat

messages. The speak() method, already mentioned before, is called when

the user submits the form and it is an abstraction that actually sends the

request to the server over the existing WebSocket connection. The request

has a structured format that indicates used channels, triggered actions, and

holds the data. When the user inputs ”this is a message” and submits the

form the following request is generated:

1 {

2 "command": "message",

3 "identifier": {

4 "channel": "ChatChannel"

6.3. PHOENIX PROTOTYPE 65

5 },

6 "data": {

7 "message": "this is a message",

8 "action": "speak"

9 }

10 }

The channel name and the action name that needs to be triggered are

indicated, and the message payload is included. When the server receives

this request it calls the ChatChannel class mentioned before, and triggers

the speak() action with the provided message as data. The same action

then broadcasts the newly created message to all the channel subscribers.

This broadcast is implemented as a WebSocket event sent to all the open

connections and it also has a structured format that indicates the channel

name and holds the data.

1 {

2 "identifier": {

3 "channel": "ChatChannel"

4 },

5 "message": {

6 "message": "this is a message"

7 }

8 }

When the client receives this event it can easily infer to what channel this

message belongs by using the identifier field. In the above case, it calls the

ChatChannel and triggers the received() method, already mentioned be-

fore, and passes the message body ”this is a message” that then gets inserted

into the list of chat messages.

6.3 Phoenix prototype

Phoenix is a server-side web application framework written in Elixir run-

ning on the Erlang VM. Similarly as Elixir was influenced by Ruby, Phoenix

was greatly influenced by Rails which means they share a lot of well-known

66 CHAPTER 6. SERVER-SIDE PROTOTYPES

software engineering patterns and paradigms that facilitate developing web

applications. Phoenix combines all the best practices for web development

with speed and robustness of Erlang making it one of the most ambitious

open source web application frameworks today. Same as in the previous

Rails application, only real-time capabilities of the application will be show-

cased and most of the other functionalities of the Phoenix framework will be

omitted for brevity.

The prototype application has two endpoints:

• /chat

• /socket

The /chat endpoint is the same as in the previous example, shows the

chat room, lists the existing messages and present the form for creating new

messages. The /socket endpoint is used for WebSocket connections and

full-duplex message exchange between the server and the clients. Same as in

the previous example, the /chat/speak endpoint is not required because the

form submits new messages using the existing WebSocket connection and

not normal HTTP requests. Both prototype applications are designed as

similarly as possible to make the tests and measurements valid and compa-

rable. All the interactions on the client are controller using the JavaScript

programming language.

1 var channel = Chat.init(socket);

2

3 $(document).on(’submit ’, ’[data -behavior ~= chat_form]’,

function(event) {

4 var $input = $(’[data -behavior ~= chat_message]’);

5

6 channel.push("speak", {body: $input.val()})

7

8 $input.val(’’)

9 event.preventDefault ();

10 });

6.3. PHOENIX PROTOTYPE 67

The speak button submits the form, the value of the input field is col-

lected, sent to the server, and the input gets cleared. The message is sent to

the server using the existingWebSocket connections by calling the channel.push()

function and sending the speak event and the message as the body of the

request.

When the application is first opened it has to establish the WebSocket

connection to the server. In the previous prototype, the Rails framework

handled this automatically and no additional code had to be implemented

by the programmer. The Phoenix framework is less invasive and does not

magically invoke WebSocket connections but provides libraries built on best

practices which a programmer can use to facilitate these actions. Similarly

as in the Rails framework, WebSocket connections can be organized into

multiple channels where each represents a single topic where consumers send

and receive messages.

This prototype application also has a single channel called ChatChannel

where all the users connect to send and receive chat messages.

1 defmodule PhoenixChat.ChatChannel do

2 use PhoenixChat.Web , :channel

3

4 def join("chat", _payload , socket) do

5 {:ok , socket}

6 end

7

8 def terminate(_reason , _socket) do

9 :ok

10 end

11

12 def handle_in("speak", payload , socket) do

13 {_status , message} = %PhoenixChat.Message{text: payload["

body"]} |> Repo.insert

14

15 broadcast! socket , "publish", %{body: message.text}

16 {:noreply , socket}

17 end

68 CHAPTER 6. SERVER-SIDE PROTOTYPES

18 end

This ChatChannel definition has three actions: join(), terminate()

and handle in(). The join() action is triggered when a consumer first

connection to the channel and terminate() is called when the consumer

disconnects from the channel. In this implementation, both actions just

return a success state and handle no other responsibilities. The handle in()

action is triggered when the WebSocket event of type speak is received. It

then persists the received message to the database and broadcasts the same

message to all the existing consumers on the channel as the publish event.

All the connected consumers receive a WebSocket request with the publish

event and the message body included in the payload.

The following JavaScript implementation handles joining the channel and

receiving messages:

1 class Chat {

2 static init(socket){

3 var channel = socket.channel("chat", {})

4

5 channel.join();

6

7 channel.on("publish", data => {

8 $("#messages").append("" + data[’body’] + " ");

9 })

10

11 return channel;

12 }

13 }

14 export default Chat

It opens and joins a channel called chat on the existing socket connection

and registers a handler for receiving messages. When the WebSocket message

having an event of type publish is received, the handler is triggered and the

message body gets appended to the list of messages in the chat. As in the

previous Rails prototype application, both the request and the response have

a structured format that indicates used channels, triggered actions, and hold

6.3. PHOENIX PROTOTYPE 69

the data. When the user inputs ”this is a message” and submits the form

the following request is generated:

1 {

2 "topic":"chat",

3 "event":"speak",

4 "payload":{

5 "body":"this is a message"

6 }

7 }

The structured format is even simpler than in the Rails prototype appli-

cation. It indicates the topic channel name (chat), the event to be triggered

(speak) and has the message body in the payload. When the server receives

this request it calls the ChatChannel class and triggers the handle in() ac-

tion providing the speak as the event type and the message body as the

payload. The same action then broadcasts the newly created message to all

the channel subscribers. This broadcast is again a WebSocket event with the

type of publish sent to all open connections and its format is structured as

follows:

1 {

2 "topic":"chat",

3 "event":"publish",

4 "payload":{

5 "body":"this is a message"

6 }

7 }

It indicates the topic to be the chat channel, the event to be publish

and carries the body of the message in the payload. When the client receives

this event it triggers the .on(’publish’) event handler that was described

before and the message ”this is a message” gets inserted into the list of chat

messages.

70 CHAPTER 6. SERVER-SIDE PROTOTYPES

Chapter 7

Testing client prototypes

7.1 Methodology

All the client prototypes will be tested using the same test scenario where

an automated script will be used to simulate real user interaction. The

chat application will be opened in two browsers and an automated script

will simulate interaction by entering predefined text into the input filed and

submitting the form.

1 function automate () {

2 $(’[data -behavior ~= chat_message]’).val(’this is a chat

message!’);

3 $(’[data -behavior ~= chat_form] :submit ’).click ();

4 setTimeout(automate , 2500);

5 }

The automate() function enters the text this is a chat message! into

the input field and then submits the form by clicking on the form’s submit

button. This simulates the interaction between the user and the chat appli-

cation similarly as a real user would behave in the browser. The function

is repeated in intervals of 2500 milliseconds to produce repeated behavior

and simulate traffic that can then be measured. A fixed interval and the

same predefined message are used in every interaction to ensure that the

measurements can be compared between all prototype applications.

71

72 CHAPTER 7. TESTING CLIENT PROTOTYPES

At the same time, network traffic will be sniffed and analyzed using a tool

called Wireshark [78] [79]. Parameters like the number of packets, average

packets per second, average package size, the total size of traffic in bytes,

and average bytes per second will be compared to determine the differences

between prototype applications and their impact on traffic and latency. All

tests will be running for 60 seconds which is a long enough interval to cap-

ture sufficient data that can then be analyzed. Given two parallel opened

applications each submitting the form every 2500 milliseconds gives a total

of 48 messages that get created during each test.

7.2 Results

The table 7.1 shows summarized data collected by running the test on all

four prototypes.

From the data, it can be assumed that every presented solution takes

precedence over the previous one in terms of performance gains.

Polling is the simplest solution that works on every browser but has the

worst performance. Since the foundation of polling applications is interval

based polling it is expected that this prototype will generate the highest

amount of traffic data.

Long polling shows improvements compared to polling where the total

number of packets is reduced from 918 to 555. This is primarily because the

long polling solution eliminated the overhead of interval based requests that

poll for changes and often result in empty results. The total number of bytes

transferred is reduced by around 20% which is also due to the removal of vain

polling requests. Furthermore, the density of data is increased from 329,2

bytes to 442,2 bytes per package because the smaller number of packages

basically transferred the same amount of messages created during the test. In

general, the long polling prototype solution shows better results and improved

performance compared to the polling prototype solution.

Streaming proved better than both polling and long polling in terms

7.2. RESULTS 73

Table 7.1: Collected results from testing client prototypes

Packets Bytes Bytes/s Bytes/package

Pooling 918 302211 5037 329,2

Long-pooling 555 245338 4088 442,2

Streaming 1396 186046 3100 133,3

WebSocket 568 138492 2300 243,8

of performance where the total number of bytes transferred is reduced by

around 25% over long polling prototype and around 40% over the polling

prototype. The data reduction is the consequence of removing the overhead

of opening new connection after every request and using a single long-living

request to stream the data. This results in a more lightweight transfer of the

same amount of messages in only 3100 bytes per second which contributes

to the improved latency of the solution. The total number of packets is in-

creased due to the way data is packed for streaming but it does not affect the

performance of the streaming solution. In general, the streaming prototype

solution shows better results and improved performance compared to both

previous polling solutions.

WebSocket shows the best performance improvements among all the pre-

sented solutions where the total number of bytes transferred is reduced by

around 25% over the streaming prototype, around 44% over the long polling

prototype and around 55% over the polling prototype. The same amount of

message data is transferred by only 2438 bytes per second which is a direct

consequence of not using HTTP for data transfer but a more lightweight

WebSocket protocol. The total number of packets is significantly decreased

compared to the streaming prototype because the data is more efficiently

packed. In general, the WebSocket prototype shows better results and im-

proved performance compared to all previous prototypes presented.

Taken into consideration all the mentioned drawbacks of polling, long

74 CHAPTER 7. TESTING CLIENT PROTOTYPES

polling and streaming approach it can be concluded that the WebSocket

approach is superior in every category and is currently the best methodology

which can be used for developing real-time web applications.

Chapter 8

Testing server prototypes

8.1 Methodology

In this chapter two server prototypes will be put to test by simulating the

real-time interaction. For an application to simulate real-time behavior it

has to generate a large number of interactions with the server. Whether the

requests come as pooling calls from the client, or the server independently

streams the data, the server should observe an increased load when serving

a real-time application. This total number of requests that a server has to

accept and respond to can be defined as a measure called requests per minute

(RPM).

For web applications in general, scalability can be examined as a measure

of the number of RPM that an application can effectively support without

getting overflown. For observed real-time prototype applications, this can

be translated to the number of successfully opened WebSocket connections

on the server at the same time. For every open WebSocket connection,

the server has to allocate some of its resources like CPU and memory to

keep the connection open and be ready to respond to requests. As every

server has a limited amount of resources, at one point it cannot accept any

new WebSocket connections due to resource exhaustion and starts to decline

connections. This total number of successful WebSocket connections to the

75

76 CHAPTER 8. TESTING SERVER PROTOTYPES

server is what these tests are going to measure. Also, the test will measure the

time before the system starts throwing errors because of resource exhaustion

which will later be used to calculate the Mean Time Before Failure (MTBF).

8.2 Distributed load testing

To measure the total number of connections on the server, these connection

have to be generated and sent to the server. The most accurate way to

simulate load is to actually use thousands of clients that open WebSocket

connections towards the server. This accurately represents how real-time

applications work where thousands of users open WebSocket connections

to the server from their browser or similar devices. But this approach is

too complex and unsustainable for methodical testing because the testing

environment has to control thousands of client at the same time.

A better approach is to use two testing machines where one behaves as a

client and the second behaves as the server. From the server’s perspective,

these two approaches are identical. The server has to accept these requests,

open WebSocket connections, keep them open and ready for receiving mes-

sages regardless of who actually made these requests.

When load testing real-time applications, thousands of requests is not a

large number of requests and sometimes hundreds of thousands of requests

have to be generated to actually stress out the server. In that case, a single

client machine is not capable enough to generate this amount of requests so

several client machines are used to generate load on a single server. This

method of load testing is called distributed load testing [80] and is shown in

the figure 8.1.

For performing distributed load testing, different tools can be used like

Goad [81], Artillery [82], Locust [83], JMeter [84] and Tsung [85]. Most of

these tools support only stress testing web protocols like HTTP but JMeter

and Tsung are the most versatile and support a handful of protocols like

SOAP, LDAP, FTP, SMTP... For testing the prototype applications, Web-

8.2. DISTRIBUTED LOAD TESTING 77

Figure 8.1: Distributed load testing architecture.

Socket connections have to be generated so both JMeter and Tsung can be

used. Although they are quite similar in terms of options they offer, Tsung is

much more performant and faster because it runs on Erlang whereas JMeter

runs on Java, so Tsung will be used.

Tsung is an open source distributed load testing tool that can be used

to stress load protocols like HTTP, WebDev, SOAP, PostgreSQL, MySQL,

LDAP, Jabber/XMP and few others. The purpose of Tsung is to simulate

requests in order to test the scalability and performance of IP based clien-

t/server applications. It can be distributed on several client machines and is

able to simulate hundreds of thousands of virtual users concurrently. With

enough hardware, even millions of concurrent connections can be simulated

[86].

The client instance will run a series of load tests by generating a fixed

number of requests per second for 300 seconds. Each test will increase the

number of requests per second until the server instance hits the resource limit

and stops accepting new requests. For the duration of each test, measure-

ment like network statistics, response times, throughput, and total successful

78 CHAPTER 8. TESTING SERVER PROTOTYPES

connection count will be taken to be analysed and compared. These tests

scenarios are configured using the Tsung XML configuration files which will

be explained alongside each test.

8.3 Cloud deployment

The testing environment for distributed load testing can be set up either

using local network and physical machines connected to that network or

using a cloud-based service where everything is set up inside a cloud. The

cloud option is much more flexible and scalable because different scenarios

can easily be simulated just by changing few variables and spawning new

server instances. Compared to using physical hardware for simulating load

testing, various combinations of hardware have to be bought to perform

different scenarios, which can be very expensive. One of the biggest cloud

service providers today is Amazon Web Services (AWS) which offers different

services and options like servers, storage, databases, load balancers, DNS,

CDN, etc.

For this distributed load testing environment, two instances of Elastic

Compute Cloud (EC2) will be used. One instance will be used as a client that

generates requests and the other instance will be used as a server that accepts

and handles the requests. An important thing here is to set up these instances

in the same AWS zone so that the latency factor for communication between

instances is minimal. Amazon EC2 provides a wide selection of instance

types optimized to fit different use cases. They have varying combinations of

CPU, memory, storage, and networking capacity, which gives the flexibility to

choose the appropriate mix of resources which best suits the application needs

(shown in table 8.1). This is also great for testing where different scenarios

can be easily set up, tested and compared. For this testing purposes, two

t2.micro instances will be created each having 1 CPU (2.5 GHz Intel Xeon

Family) and 1GB of memory.

After the instances are up and running on AWS, software packages have

8.3. CLOUD DEPLOYMENT 79

Table 8.1: AWS EC2 instance types

Instance CPU Memory (GB)

t2.nano 1 0.5

t2.micro 1 1

t2.small 1 2

t2.medium 2 4

t2.large 2 8

t2.xlarge 4 16

t2.2xlarge 8 32

to be installed in order to run the prototype applications and the Tsung

client on the testing machines. The installation details on both instances

will be only superficially explained without going into details for the sake

of brevity. On the client instance Erlang, Tsung and several other software

packages required for compiling and running Erlang have to be installed.

The server instance needs two independent setups. One for running the

Rails prototype application where Ruby environment needs to be installed,

and one for running the Phoenix prototype application where Erlang and

Elixir environments need to be installed.

After the setup is complete the server solutions have to be deployed to

the server. There exists a variety of tools that mitigate deploying Rails and

Phoenix applications to cloud services like Capistrano [87] [88], continuous

integration and deployment platforms like Semaphore [89] and Codeship [90]

or even cloud application platforms like Heroku [91] which make deploying

applications effortlessly.

For testing purposes in this thesis, no additional tools will be used and

the solutions will be simply git pulled to the server and run manually.

When the server instances are set up properly and the prototype appli-

cations are deployed to the server, they can be run and should be available

80 CHAPTER 8. TESTING SERVER PROTOTYPES

at the URL address:

• http://server-ip:3000/chat - Rails prototype

• http://server-ip:4000/chat - Phoenix prototype

8.4 Ruby on Rails prototype tests

The load testing scenario is based on the Tsung XML configuration file lo-

cated on the client instance. The following XML file is used for testing the

Rails prototype application:

1 <!DOCTYPE tsung SYSTEM "/usr/local/Cellar/tsung /1.6.0/ share/

tsung/tsung -1.0. dtd">

2 <tsung loglevel="debug" version="1.0">

3 <clients >

4 <client host="localhost" use_controller_vm="true"

maxusers="30000" />

5 </clients >

6

7 <servers >

8 <server host="35.162.132.55" port="3000" type="tcp" />

9 </servers >

10

11 <load>

12 <arrivalphase phase="1" duration="300" unit="second">

13 <users maxnumber="30000" arrivalrate="10" unit="second"

/>

14 </arrivalphase >

15 </load>

16

17 <options >

18 <option name="ports_range" min="1025" max="65535"/>

19 </options >

20

21 <sessions >

22 <session name="websocket" probability="100" type="

ts_websocket">

8.4. RUBY ON RAILS PROTOTYPE TESTS 81

23 <request >

24 <websocket type="connect" path="/cable"></websocket >

25 </request >

26

27 <request >

28 <websocket type="message" frame="text">

29 {"command": "subscribe", "identifier": "{\"channel\

":\"ChatChannel\"}"}

30 </websocket >

31 </request >

32

33 <for var="i" from="1" to="100" incr="1">

34 <thinktime value="25"/>

35 </for>

36 </session >

37 </sessions >

38 </tsung >

First, the client and server instance locations are configured. Tsung sup-

ports running simultaneous tests using multiple client instances which are

required when generating hundreds of thousands of requests but for this load

testing one client is sufficient so it is set to be the same instance - localhost.

The server is located on the IP address 35.162.132.55 and the port 3000 is

specified because on that port the Rails application is running. Next, the

actual load scenario is specified. Only one load phase is used where for the

duration of 300 seconds 10 new requests are generated each second. Which

should give a total number of 3000 requests when the load test is finished.

This way the server instance is stressed gradually adding 10 more requests

every second which is ideal for taking measurements and observing server

load.

In the sessions part, the behavior of each request is defined. Each request

will first try to connect to the WebSocket interface on the /cable path and

after is succeeds one message will be sent over the connection. The format

of the messages is structured in the way that it requests to join the channel

called ChatChannel on the server. After sending the message, the client

82 CHAPTER 8. TESTING SERVER PROTOTYPES

keeps the connection opened by using a small timer that iterates and creates

waiting time by calling the thinktime action. This makes sure that all the

connections stay open during the whole duration of the load test which is

important to keep the server loaded with open requests.

First few tests were unsuccessful because the client instance could not

generate more than 1000 requests in total. As the load phase from the Tsung

configuration file defines, the client instance should generate 10 requests per

second for 300 seconds but the tests would stop generation new requests

after around 100 seconds. The reason for this was that the system-wide

resource limit was being reached on the client instance. Each new open

connection is a new open file in the operating system and, by default, the

limit for simultaneous open files was 1024 on the client instance. By editing

the file /etc/security/limits.conf and increasing these limits, this issue

was resolved.

8.5 Phoenix prototype tests

The following Tsung XML file is used for load testing the Phoenix prototype

application:

1 <!DOCTYPE tsung SYSTEM "/usr/local/Cellar/tsung /1.6.0/ share/

tsung/tsung -1.0. dtd">

2 <tsung loglevel="debug" version="1.0">

3 <clients >

4 <client host="localhost" use_controller_vm="true"

maxusers="30000" />

5 </clients >

6

7 <servers >

8 <server host="35.162.132.55" port="4000" type="tcp" />

9 </servers >

10

11 <load>

12 <arrivalphase phase="1" duration="300" unit="second">

8.5. PHOENIX PROTOTYPE TESTS 83

13 <users maxnumber="30000" arrivalrate="10" unit="second"

/>

14 </arrivalphase >

15 </load>

16

17 <options >

18 <option name="ports_range" min="1025" max="65535"/>

19 </options >

20

21 <sessions >

22 <session name="websocket" probability="100" type="

ts_websocket">

23 <request >

24 <websocket type="connect" path="/socket/websocket"></

websocket >

25 </request >

26

27 <request >

28 <websocket type="message" frame="text">

29 {"topic":"chat","event":"phx_join","payload":{},"

ref":"1"}

30 </websocket >

31 </request >

32

33 <for var="i" from="1" to="100" incr="1">

34 <thinktime value="25"/>

35 <request >

36 <websocket ack="no_ack" type="message">{"topic":"

phoenix","event":"heartbeat","payload":{},"ref":

"2"}</websocket >

37 </request >

38 </for>

39 </session >

40 </sessions >

41 </tsung >

The client and server configurations are identical as in the Rails test

except that the Phoenix application is running on the port 4000 instead

84 CHAPTER 8. TESTING SERVER PROTOTYPES

of 3000. The load scenario is also the same, where one load phase is used

then generates 10 users per second for 300 seconds. The connection path

is modified because the Phoenix server accepts WebSocket connection on

the /socket/websocket URL instead the /cable URL. The format of the

message is structured in the way that it requests to join the topic chat on the

server. The same thinktime action timer is used to keep all the connections

open during the whole duration of the load test. One additional WebSocket

message is sent every 25 seconds to keep the connection opened. It is called

a heartbeat and unless it is sent from the client every 30 seconds, the server

will declare the client as inactive and will terminate the connection. This

last part was not needed in the previous load testing configuration because

Rails uses a different strategy to keep the connections alive. Rails is sending

these heartbeat messages from the server to determine if the client is still

alive. So in both solutions, the purpose of the messages are identical, only

the direction of the checks are reversed. For the purpose of this load testing,

it does not matter who is responsible for sending these messages just that

the behaviors are as similar as possible so that the results are comparable.

8.6 Results

Figure 8.2 shows the first successful test of the Rails prototype application

which resulted in server accepting only 1254 connections.

This could indicate that the server instance was overloaded and all the

resources exhausted with these 1254 requests and that it could not accept

new requests. But the analysis of the server instance logs revealed that the

server resources were not depleted and only 30% of the resources were being

used but the server did not accept new requests nevertheless.

The error rate for the error connect etimeout which was quite high

indicates that the server timeouts on requests (shown in figure 8.3). Even

though the server had resources like CPU and memory to handle these re-

quests, they were still waiting in a queue for the server to accept them. The

8.6. RESULTS 85

Figure 8.2: Connections rates - Rails prototype (10 req/s)

problem here was that Rails was running in only one instance on the server.

The instance can accept only that many requests before moving them to the

queue. The solution here was to horizontally scale the solution by running

the application in multiple instances. As each Rails instance takes around

200MB of memory, four instances can be run in parallel on the 1GB server

instance. The same test was repeated on four running instances and now all

generated requests were handled without any issues with queuing or timeout

errors.

After the server solution has been horizontally scaled the repeated test

provided better results (shown in figure 8.4.) Out of 2951 generated requests,

all 2951 were accepted while the server resources were at 70% CPU capacity.

The application was fully functional and responsive despite having 2951 open

connection. The responsiveness was tested by opening the app in the browser

and submitting a chat message which was then broadcasted to all 2952 con-

nected users. Total time for submitting and receiving the WebSocket update

with the message was 224 ms which can be considered a good responsive

behavior.

86 CHAPTER 8. TESTING SERVER PROTOTYPES

Figure 8.3: Error rates - Rails prototype (10 req/s)

Figure 8.4: Connections rates - Rails prototype (10 req/s)

8.6. RESULTS 87

Figure 8.5: Connections rates - Rails prototype (20 req/s)

Next test doubled the requests per second from 10 to 20 which give a total

number of 6000 requests in 300 seconds. The results in the figure 8.5 show

that out of 5944 generated requests only 4238 were successfully connected.

The server resources were overloaded as the CPU was at 100% usage after

around 200 seconds of the test. After that, the server stopped accepting new

requests because it needed the resources to keep the existing ones alive. The

application was still functional and accessible but not responsive that much.

The same test was made, sending the message from the browser. It took 1,533

seconds for the server to accept the request, broadcast to all 4239 connected

users and for the message to be received back by the browser which is not

considered responsive enough behavior for pleasant usage of the application.

Furthermore, the high server load caused an increased error rate in accepting

requests. A total of 99 errors happened with the highest rate of 2,2 errors

per second (shown in the figure 8.6).

The Phoenix prototype, on the other hand, did not have the issues with

accepting the limited amount of connection caused by the shortage in the

number of instances like Rails prototype had. Erlang is a fully concurrent

88 CHAPTER 8. TESTING SERVER PROTOTYPES

Figure 8.6: Error rates - Rails prototype (20 req/s)

language where only one instance of the application has to be run which is

then scaled internally by the distributed multi-process system.

The first load test generated 2963 requests and all 2963 were accepted

(shown in figure 8.7). The server resources were only at 20% CPU capacity

(compared to 70% for the Rails prototype). The application was also fully

functional and responsive and the test chat message was broadcasted to all

2963 connected users in 210 ms which can be considered a good responsive

behavior.

The next test doubled the requests per second from 10 to 20 which gives

a total number of 6000 requests. For the Rails prototype that was over

the capabilities of the solution as only 4238 connections were accepted. The

Phoenix had no issues with this test load and out of 5915 generated requests,

all 5915 were successfully connected (shown in figure 8.8). Despite having

5915 connected users, the application was fully functional and responsive.

The test chat message was broadcasted to all 5915 connected users in 834

ms which can still be considered a good responsive behavior.

Next test doubled the requests per second from 20 to 40 which gives

8.6. RESULTS 89

Figure 8.7: Connections rates - Phoenix prototype (10 req/s)

Figure 8.8: Connections rates - Phoenix prototype (20 req/s)

90 CHAPTER 8. TESTING SERVER PROTOTYPES

Figure 8.9: Connections rates - Phoenix prototype (40 req/s)

a total number of 12000 requests in 300 seconds. Out of 11314 generated

requests, 11313 were successfully connected and only 1 request was unsuc-

cessful (shown in figure 8.9). Despite handling 3 times more requests than

the Rails prototype application, the server resources were still not exhausted

and CPU load was at 60% which means that the server could accept even

more requests.

The last test doubled the number of requests again, from 40 to 80 per

second which give a total number of 24000 requests in 300 seconds. Out

of 23215 generated requests, 20686 were successfully accepted by the server

(shown in figure 8.10).

This load test managed to exhaust all the resources and overload the

server CPU after around 220 seconds into the test. The application was

still functional and accessible but not responsive that much. It took 5,692

seconds for the server to accept the request, broadcast the message to all

20686 connected users and for the browser to receive and show the message.

After the moment that the server got overloaded erroneous responses started

happening. A total of 536 errors happened with the highest rate of 12,4

8.6. RESULTS 91

Figure 8.10: Connections rates - Phoenix prototype (80 req/s)

Figure 8.11: Error rates - Phoenix prototype (80 req/s)

92 CHAPTER 8. TESTING SERVER PROTOTYPES

errors per second (shown in figure 8.11).

8.7 Conclusions

In the table 8.2 all measured statistical data from the prototype applica-

tion load tests are shown and compared. Rows with ”R” indicate the Rails

prototype application and rows with ”P” indicate the Phoenix prototype

application results.

The tests show that the Phoenix prototype managed to accept 20686

user connections and the Rails prototype managed to accept only 4238 user

connections. Running on identical infrastructure with the same amount of

CPU power and memory, the Phoenix prototype is capable of handling 4,88

times more requests which makes it a more scalable solution. Furthermore,

the total transferred data is about 2,5 times smaller for the Phoenix prototype

compared to the Rails prototype because of how frameworks structure the

formats of the messages. It is important to note here that the Phoenix

framework, by default, uses a binary protocol for WebSocket messages which

has better performance than a text protocol but the Phoenix prototype was

forced to use text protocol instead to make it more similar to the Rails

prototype. So the Phoenix prototype could perform even better and reduce

the data transfer even more when the binary protocol is used.

Together with the improved scalability, the tests show that the availability

of the Phoenix solution is also better. By increasing the Mean Time Before

Failure (MTBF) the solution is able to work for a longer period of time before

failing, thus improving availability. The MTBF was measured as the time

before the solution stopped accepting new connections because at that point

its real-time feature becomes unavailable for the users wanting to connect to

the service. The Rails prototype failed already on the 20 req/s test and the

MTBF was 200 seconds. The Phoenix prototype failed only on the last 80

req/s test with MTBF of 220 seconds. To be able to compare these MTBFs

they should be measured with same req/s but as the Rails prototype could

8.7. CONCLUSIONS 93

Table 8.2: Collected results from distributed load testing of prototypes

3k 6k 12k 24k

Requests R 2951 5874 - -

P 2963 5915 11314 23215

Connections R 2951 4238 - -

P 2963 5915 11313 20686

Data sent R 0,76 MB 1,07 MB - -

P 1,86 MB 3,73 MB 7,12 MB 14,33 MB

Data received R 10,07 MB 16,84 MB - -

P 2,12 MB 4,24 MB 8,08 MB 16,33 MB

Total data R 10,83 MB 17,91 MB - -

P 3,98 MB 7,97 MB 15,2 MB 30,66 MB

Error count R 0 99 - -

P 0 0 1 546

Error rate R 0/s 0,33s - -

P 0/s 0/s 0,003/s 1,78/s

Full load response time R 224ms 1530ms - -

P 210ms 834ms 1194ms 5692ms

MTBF R - 200s - (100s) - (50s)

P - - - 220s

94 CHAPTER 8. TESTING SERVER PROTOTYPES

not even be run in the 80 req/s test, the MTBFs for the Rails prototype are

inferred from the other tests results. As the Rails prototype is able to accept

only 4000 requests, the MTBF for the next two tests can be linearly mapped

to 100s and 50s. When compared this way, the Phoenix prototype has 4,4

times better MTBF than the Rails prototype thus making the solution more

fault tolerant and available.

All the rules about scaling mentioned before in the chapter 4.1 can be

applied for both prototypes. They can be vertically and horizontally scaled

and thus increase the total number of simultaneous user connections that the

solution can handle. To scale vertically a more powerful EC2 machine could

be used for the server instance. For example the AWS EC2 t2.2xlarge (men-

tioned in table 8.1) instance has 8 CPUs and 32GB of memory. Given the

200MB per instance memory allocation, a t2.2xlarge instance could probably

run over 100 instances of the Rails prototype application which would then

allow accepting much more requests. Similarly to that, the solution could

be scaled horizontally by running several t2.2xlarge instances behind a load

balancer and increase the total number of requests even more. With enough

server power and parallel server instances, hundreds of thousands user con-

nection can be handled. But the fact that the Phoenix prototype can handle

almost 5 times more requests using the same environment, makes it a more

scalable solution by default. Furthermore, another big advantage of Phoenix

over Rails is that Phoenix is concurrent and distributed by default and no

instance orchestration inside the same server is needed. The first Rails load

tests failed because not enough instances of the application were created and

the programmer has to worry about that. In all the Phoenix prototype tests,

no additional work was needed for handling concurrency and everything was

scaled internally by the language itself.

Chapter 9

Conclusions

Real-time web applications are an inevitable part of the modern WWW stack

that allows users to receive information as soon as it becomes available. From

full-fledged real-time applications like real-time collaborative editing tools to

web applications with real-time components like built-in chat messengers,

real-time is ubiquitous in modern web applications. These real-time compo-

nents enhance the user experience of modern web applications by speeding

up the access to new information making it almost instantly available.

From its beginnings in 1989 up to today, the foundation of the WWW

has been in the HTTP protocol. This stateless and unidirectional protocol

was designed for exchanging static HTML documents using simple request-

response cycles between clients and the server. With the emergence of Web

2.0 and especially real-time web applications, new techniques and protocols

have been designed to compensate the shortcomings of the HTTP proto-

col. Comet-like techniques like polling and long polling, streaming, reverse

HTTP, BOSH, Bayeux, SSE, and WebSocket simulate real-time behavior by

establishing bidirectional communication over the unidirectional HTTP pro-

tocol. After analyzing these client technologies and putting them to the tests,

the WebSocket protocol shows the best performance results and is superior

in every tested category. Compared to polling, long polling and streaming

test results, WebSocket shows a data size reduction up to 55% which directly

95

96 CHAPTER 9. CONCLUSIONS

impacts the speed and throughput of the real-time web application.

By establishing bidirectional full-duplex communication between the client

and the server, the real-time behavior is simulated and access to new infor-

mation is almost instant. But in the same time, it also results in increasing

the load on the network and server architecture. Server solutions that serve

these real-time applications have to cope with this increased load by being

scaled horizontally and vertically. Different methods like adding more hard-

ware power to the server and adding more server nodes to the web cluster

are used to increase the throughput of the solution and accommodate the

increased number of requests. Another important requirement is the fault

tolerance of the solution. Because of the increased load, the server solution

is more prone to faulty behavior due to software errors. If the solution is

not fault-tolerant enough, it might crash and become totally non-operational

and unavailable to the users. A high available system is highly fault-tolerant

and has an uptime measured in several nine of availability per year.

Both scalability and high availability are very important factors for real-

time applications. Real-time server solutions that are handling hundreds

of thousands of user requests have to be scalable to cope with high traffic

and also fault tolerant to gracefully handle exceptional conditions and keep

the service always available and operational. One factor that greatly affects

the scalability and fault tolerance is its underlying technology stack and the

programming language as its core. Not all programming languages for server

solutions are suited for real-time applications and although most provide

some basic scalability and high availability features, some are a better fit

than others.

The Erlang programming language was designed in 1998 to support mas-

sively scalable real-time systems with high requirements on fault tolerance

like telecom and banking applications. These high concurrency requirements

are achieved by using a powerful set of primitives for creating processes and

managing communication among them. However, its application for server

solutions has only started lately, after some modern functional based pro-

97

gramming languages have been designed that run on the Erlang virtual ma-

chine called BEAM like Elixir. Real-time web applications built on top of the

Erlang stack should exploit these scalability advantages and perform better

in terms of speed, throughput and error rate.

Distributed load testing can be used to measure the performance of real-

time web applications. To simulate high loads on the server, a cloud-based

testing environment is used where one machine is used to generate requests

and the other one serves the server solution. A great distributed load testing

automation tool called Tsung is used to orchestrate these tests. After running

several tests and comparing results with a similar server solution, the Erlang-

based solution could handle almost 5 times more requests with better MTBF

while running in the same environment. Also, the error rate was smaller

and the response times were better compared to the other solution. All the

measurements taken into account, the Erlang-based solution is proven to

be more scalable because it can handle more user requests using the same

hardware and more fault-tolerant because it reported better MTBF compared

to the similar server solution.

The presented solution can be optimized further by using binary proto-

cols, caching mechanisms, and other software improvements. By using the

standard scaling techniques like adding more hardware and distributing the

load on multiple parallel nodes, a real-time application built on Erlang can

be scaled to handle millions of user requests while remaining highly available

and operational. This makes Erlang a viable solution for developing server

solution for real-time web applications. The future of the real-time web is

greatly interlaced with the future of Erlang-based web solution stack.

98 CHAPTER 9. CONCLUSIONS

Bibliography

[1] T. J. Berners-Lee, R. Cailliau, J. F. Groff, The world-wide web, Com-

puter Networks and ISDN Systems 25 (1992) 454–459.

[2] T. J. Berners-Lee, R. Cailliau, J. F. Groff, B. Pollermann, World-wide

web: The information universe, Internet Research 2 (1) (1992) 52–58.

[3] K. Jeffay, F. D. Smith, F. Hernandez-Campos, Tracking the evolution

of web traffic: 1995-2003, Proceedings of the 11th IEEE/ACM Interna-

tional Symposium on MASCOTS (2003) 16–25.

[4] T. J. Berners-Lee, M. Fischetti, Weaving the Web: The Original Design

and Ultimate Destiny of the World Wide Web by Its Inventor, Barnes

and Noble, 1999.

[5] B. Sawyer, D. Greely, Creating GeoCities Websites, Muska and Lipman

Publishing, 1999.

[6] D. DiNucci, Fragmented future, Print 32 (1999) 221.

[7] T. O’Reilly, What is web 2.0. (2005).

URL http://www.oreilly.com/pub/a//web2/archive/

what-is-web-20.html

[8] G. Cormode, B. Krishnamurthy, Key differences between web 1.0 and

web 2.0 (2008), First Monday 13 (6).

[9] E. K. Gill, How can we measure the influence of the blogosphere (2004),

Proceedings of the WWW 2004 Conference.

99

http://www.oreilly.com/pub/a//web2/archive/what-is-web-20.html
http://www.oreilly.com/pub/a//web2/archive/what-is-web-20.html
http://www.oreilly.com/pub/a//web2/archive/what-is-web-20.html

100 BIBLIOGRAPHY

[10] J. Nielsen, Usability Engineering, Morgan Kaufmann Publishers, 1993.

[11] J. Stankovic, Real-time computing (1992), BYTE 17 (8).

[12] D. R. Herrick, Google this!: using google apps for collaboration and

productivity, Proceedings of the 37th annual ACM SIGUCCS (2009)

55–64.

[13] S. Dekeyser, R. Watson, Extending google docs to collaborate on re-

search papers (2006), Technical report, University of Southern Queens-

land, Australia.

[14] S. Greenberg, D. Marwood, Real time groupware as a distributed sys-

tem: concurrency control and its effect on the interface, In Proceedings

of the ACM conference on CSCW (1994) 207–217.

[15] C. Gutwin, M. Lippold, N. Graham, Real-time groupware in the

browser: Testing the performance of web-based networking, Computer

Supported Cooperative Work (2011) 167–176.

[16] B. Zimmer, A. Kerren, Harnessing webgl and websockets for a web-

based collaborative graph exploration tool, Integrated Communications,

Worldwide events (2015) 23–26.

[17] Y. Zhangling, D. Mao, A real-time group communication architecture

based on websocket, International Journal of Computer and Communi-

cation Engineering 1 (4) (2012) 409–411.

[18] S. Rakhunde, Real time data communication over full duplex network

using websocket, IOSR Journal of Computer Science (2014) 15–19.

[19] V. Pimentel, B. Nickerson, Communicating and displaying real-time

data with websocket, IEEE Internet Computing 16 (4) (2012) 45–53.

[20] W. Zhang, R. Stoll, N. Stoll, K. Thurow, An mhealth monitoring system

for telemedicine based on websocket wireless communication, Journal of

networks 8 (4) (2013) 955 – 962.

BIBLIOGRAPHY 101

[21] N. Kulkarni, T. Eltaieb, Video streaming over full duplex network using

websocket and its performance evaluation, Journal of Multidisciplinary

Engineering Science and Technology 2 (4) (2015) 589 – 592.

[22] L. Srinivasan, J. Scharnagl, K. Schilling, Analysis of websockets as the

new age protocol for remote robot tele-operation, 3rd IFAC Symposium

on Telematics Applications (2013) 83 – 88.

[23] B. Chen, Z. Xu, A framework for browser-based multiplayer online

games using webgl and websocket, International Conference on Mul-

timedia Technology (2011) 471 – 474.

[24] S. Arora, J. Maini, P. Mallick, Efficient e-learning management system

through web socket, International Conference on Computing for Sus-

tainable Global Development (2016) 509 – 512.

[25] T. J. Berners-Lee, The original http as defined in 1991 (1991).

URL https://www.w3.org/Protocols/HTTP/AsImplemented.html

[26] T. J. Berners-Lee, R. Fielding, H. Frystyk, Hypertext transfer protocol

– http/1.0 (rfc1945) (1996).

URL https://www.rfc-editor.org/rfc/rfc1945.txt

[27] T. J. Berners-Lee, R. Fielding, H. Frystyk, J. Gettys, J. Mogul, Hyper-

text transfer protocol – http/1.1 (rfc2068) (1997).

URL https://www.rfc-editor.org/rfc/rfc2068.txt

[28] T. J. Berners-Lee, R. Fielding, H. Frystyk, J. Gettys, J. Mogul, L. Mas-

inter, P. Leach, Hypertext transfer protocol – http/1.1 (rfc2616) (1999).

URL https://www.rfc-editor.org/rfc/rfc2616.txt

[29] R. Fielding, J. Reschke, Hypertext transfer protocol (http/1.1): Message

syntax and routing (rfc7230) (2014).

URL https://www.rfc-editor.org/rfc/rfc7230.txt

https://www.w3.org/Protocols/HTTP/AsImplemented.html
https://www.w3.org/Protocols/HTTP/AsImplemented.html
https://www.rfc-editor.org/rfc/rfc1945.txt
https://www.rfc-editor.org/rfc/rfc1945.txt
https://www.rfc-editor.org/rfc/rfc1945.txt
https://www.rfc-editor.org/rfc/rfc2068.txt
https://www.rfc-editor.org/rfc/rfc2068.txt
https://www.rfc-editor.org/rfc/rfc2068.txt
https://www.rfc-editor.org/rfc/rfc2616.txt
https://www.rfc-editor.org/rfc/rfc2616.txt
https://www.rfc-editor.org/rfc/rfc7230.txt
https://www.rfc-editor.org/rfc/rfc7230.txt
https://www.rfc-editor.org/rfc/rfc7230.txt

102 BIBLIOGRAPHY

[30] J. Postel, Transmission control protocol (1981).

URL https://www.rfc-editor.org/rfc/rfc793.txt

[31] J. Postel, User datagram protocol (1980).

URL https://www.rfc-editor.org/rfc/rfc768.txt

[32] B. A. Forouzan, TCP/IP Protocol Suite, McGraw-Hill, 2002.

[33] T. J. Berners-Lee, R. Fielding, L. Masinter, Uniform resource identifier

(uri): Generic syntax (2005).

URL https://www.rfc-editor.org/rfc/rfc3986.txt

[34] curl.1 the man page (accessed: September 2017).

URL https://curl.haxx.se/docs/manpage.html

[35] H. Parmar, M. Thornburgh, Adobe’s real time messaging protocol

(2012).

URL http://wwwimages.adobe.com/content/dam/Adobe/en/

devnet/rtmp/pdf/rtmp_specification_1.0.pdf

[36] W. Sanders, Learning Flash Media Server 3, O’Reilly, 2008.

[37] Historical yearly trends in the usage of client-side programming lan-

guages for websites (accessed: September 2017).

URL https://w3techs.com/technologies/history_overview/

client_side_language/all/y

[38] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, F. Yergeau,

J. Cowan, Extensible markup language (xml) 1.1 (2006).

URL https://www.w3.org/TR/2006/REC-xml11-20060816/

[39] T. Bray, The javascript object notation (json) data interchange format

(2014).

URL https://www.rfc-editor.org/rfc/rfc7159.txt

https://www.rfc-editor.org/rfc/rfc793.txt
https://www.rfc-editor.org/rfc/rfc793.txt
https://www.rfc-editor.org/rfc/rfc768.txt
https://www.rfc-editor.org/rfc/rfc768.txt
https://www.rfc-editor.org/rfc/rfc3986.txt
https://www.rfc-editor.org/rfc/rfc3986.txt
https://www.rfc-editor.org/rfc/rfc3986.txt
https://curl.haxx.se/docs/manpage.html
https://curl.haxx.se/docs/manpage.html
http://wwwimages.adobe.com/content/dam/Adobe/en/devnet/rtmp/pdf/rtmp_specification_1.0.pdf
http://wwwimages.adobe.com/content/dam/Adobe/en/devnet/rtmp/pdf/rtmp_specification_1.0.pdf
http://wwwimages.adobe.com/content/dam/Adobe/en/devnet/rtmp/pdf/rtmp_specification_1.0.pdf
https://w3techs.com/technologies/history_overview/client_side_language/all/y
https://w3techs.com/technologies/history_overview/client_side_language/all/y
https://w3techs.com/technologies/history_overview/client_side_language/all/y
https://w3techs.com/technologies/history_overview/client_side_language/all/y
https://www.w3.org/TR/2006/REC-xml11-20060816/
https://www.w3.org/TR/2006/REC-xml11-20060816/
https://www.rfc-editor.org/rfc/rfc7159.txt
https://www.rfc-editor.org/rfc/rfc7159.txt

BIBLIOGRAPHY 103

[40] Xmlhttprequest (accessed: September 2017).

URL https://developer.mozilla.org/en/docs/Web/API/

XMLHttpRequest

[41] Xmlhttprequest browser support (accessed: September 2017).

URL https://caniuse.com/#feat=xhr2

[42] A. Barth, The web origin concept (2011).

URL https://www.rfc-editor.org/rfc/rfc6454.txt

[43] Apache server keepalivetimeout config (accessed: September 2017).

URL https://httpd.apache.org/docs/2.4/mod/core.html#

keepalivetimeout

[44] N. E. Sit, Reverse http tunneling for firewall traversal (2000), Master

thesis at Massachusetts Institute of Technology.

[45] Reverse http draft (2009).

URL https://tools.ietf.org/html/draft-lentczner-rhttp-00

[46] Reverse http specifications (2009).

URL http://reversehttp.net/reverse-http-spec.html

[47] I. Paterson, D. Smith, P. Saint-Andre, J. Moffitt, L. Stout, W. Tilanus,

Xep-0124: Bidirectional-streams over synchronous http (bosh) (2009).

URL https://xmpp.org/extensions/xep-0124.html

[48] M. Laine, K. Saila, Performance evaluation of xmpp on the web (2012),

Master thesis at Massachusetts Institute of Technology.

URL https://pdfs.semanticscholar.org/23f8/

5450ab0cec26bd2e72ccaa09704682d79dcd.pdf

[49] A. Russell, G. Wilkins, D. Davis, M. Nesbitt, The bayeux protocol spec-

ification 1.0 (2007).

URL https://docs.cometd.org/current/reference/#_bayeux

https://developer.mozilla.org/en/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/en/docs/Web/API/XMLHttpRequest
https://developer.mozilla.org/en/docs/Web/API/XMLHttpRequest
https://caniuse.com/#feat=xhr2
https://caniuse.com/#feat=xhr2
https://www.rfc-editor.org/rfc/rfc6454.txt
https://www.rfc-editor.org/rfc/rfc6454.txt
https://httpd.apache.org/docs/2.4/mod/core.html#keepalivetimeout
https://httpd.apache.org/docs/2.4/mod/core.html#keepalivetimeout
https://httpd.apache.org/docs/2.4/mod/core.html#keepalivetimeout
https://tools.ietf.org/html/draft-lentczner-rhttp-00
https://tools.ietf.org/html/draft-lentczner-rhttp-00
http://reversehttp.net/reverse-http-spec.html
http://reversehttp.net/reverse-http-spec.html
https://xmpp.org/extensions/xep-0124.html
https://xmpp.org/extensions/xep-0124.html
https://pdfs.semanticscholar.org/23f8/5450ab0cec26bd2e72ccaa09704682d79dcd.pdf
https://pdfs.semanticscholar.org/23f8/5450ab0cec26bd2e72ccaa09704682d79dcd.pdf
https://pdfs.semanticscholar.org/23f8/5450ab0cec26bd2e72ccaa09704682d79dcd.pdf
https://docs.cometd.org/current/reference/#_bayeux
https://docs.cometd.org/current/reference/#_bayeux
https://docs.cometd.org/current/reference/#_bayeux

104 BIBLIOGRAPHY

[50] T. J. Berners-Lee, R. Fielding, H. Frystyk, J. Gettys, J. Mogul,

L. Masinter, P. Leach, Hypertext transfer protocol – http/1.1 (rfc2616)

- connections - practical considerations (1999).

URL https://www.w3.org/Protocols/rfc2616/rfc2616-sec8.

html#sec8.1.4

[51] E. Kahn, J. Riemer, L. Lechner, Xvsmp/bayeux: A protocol for scal-

able space based computing in the web, 2012 IEEE 21st International

Workshop on Enabling Technologies: Infrastructure for Collaborative

Enterprises 0 (2007) 68–73.

[52] I. Hickson, Server-sent events (2015).

URL https://www.w3.org/TR/eventsource/

[53] Eventsource (accessed: September 2017).

URL https://developer.mozilla.org/en-US/docs/Web/API/

EventSource

[54] Server-sent events browser support (accessed: September 2017).

URL http://caniuse.com/#feat=eventsource

[55] R. N. Darwish, M. I. Abdelwahab, Impact of implementing http/2 in

web services, International Journal of Computer Applications 147 (9)

(2016) 27–32.

[56] M. Belshe, R. Peon, M. Thomson, Hypertext transfer protocol version

2 (http/2) (2015).

URL https://www.rfc-editor.org/rfc/rfc7540.txt

[57] R. Peon, H. Ruellan, Hpack: Header compression for http/2 (2015).

URL https://www.rfc-editor.org/rfc/rfc7541.txt

[58] M. A. Abdillahi, U. Dossetov, A. Saqib, Performance evaluation of

http/2 in modern web and mobile devices, American Journal of En-

gineering Research 6 (4) (2017) 40–45.

https://www.w3.org/Protocols/rfc2616/rfc2616-sec8.html#sec8.1.4
https://www.w3.org/Protocols/rfc2616/rfc2616-sec8.html#sec8.1.4
https://www.w3.org/Protocols/rfc2616/rfc2616-sec8.html#sec8.1.4
https://www.w3.org/Protocols/rfc2616/rfc2616-sec8.html#sec8.1.4
https://www.w3.org/TR/eventsource/
https://www.w3.org/TR/eventsource/
https://developer.mozilla.org/en-US/docs/Web/API/EventSource
https://developer.mozilla.org/en-US/docs/Web/API/EventSource
https://developer.mozilla.org/en-US/docs/Web/API/EventSource
http://caniuse.com/#feat=eventsource
http://caniuse.com/#feat=eventsource
https://www.rfc-editor.org/rfc/rfc7540.txt
https://www.rfc-editor.org/rfc/rfc7540.txt
https://www.rfc-editor.org/rfc/rfc7540.txt
https://www.rfc-editor.org/rfc/rfc7541.txt
https://www.rfc-editor.org/rfc/rfc7541.txt

BIBLIOGRAPHY 105

[59] I. Hickson, D. Hyatt, Html5 - tcpconnection (2008).

URL https://www.w3.org/TR/2008/WD-html5-20080610/comms.

html#tcpconnection

[60] I. Fette, Google chrome 4 - websocket support (2010).

URL https://blog.chromium.org/2010/01/

more-resources-for-developers.html

[61] I. Fette, A. Melnikov, The websocket protocol (rfc6455) (2011).

URL https://www.rfc-editor.org/rfc/rfc6455.txt

[62] I. Hickson, The websocket api (2012).

URL https://www.w3.org/TR/websockets/

[63] Websocket browser support (accessed: September 2017).

URL https://caniuse.com/#feat=websockets

[64] P. Lubbers, F. Greco, Html5 websocket: A quantum leap in scalability

for the web (2010).

URL http://www.websocket.org/quantum.html

[65] M. Michael, J. E. Moreira, D. Shiloach, R. W. Wisniewski, Scale-up x

scale-out: A case study using nutch/lucene, Parallel and Distributed

Processing Symposium (2007) 1–8.

[66] H. Ludwig, A. Keller, A. Dan, R. P. King, R. Franck, Web service level

agreement (wsla) language specification (2003).

URL https://www.researchgate.net/profile/Heiko_Ludwig/

publication/200827750_Web_Service_Level_Agreement_WSLA_

Language_Specification/links/0912f50bcf2dfe836b000000.pdf

[67] Z. Chaczko, V. Mahadevan, S. Aslanzadeh, C. Mcdermid, Availability

and load balancing in cloud computing, 2011 International Conference

on Computer and Software Modeling 14 (2011) 134–140.

https://www.w3.org/TR/2008/WD-html5-20080610/comms.html#tcpconnection
https://www.w3.org/TR/2008/WD-html5-20080610/comms.html#tcpconnection
https://www.w3.org/TR/2008/WD-html5-20080610/comms.html#tcpconnection
https://blog.chromium.org/2010/01/more-resources-for-developers.html
https://blog.chromium.org/2010/01/more-resources-for-developers.html
https://blog.chromium.org/2010/01/more-resources-for-developers.html
https://www.rfc-editor.org/rfc/rfc6455.txt
https://www.rfc-editor.org/rfc/rfc6455.txt
https://www.w3.org/TR/websockets/
https://www.w3.org/TR/websockets/
https://caniuse.com/#feat=websockets
https://caniuse.com/#feat=websockets
http://www.websocket.org/quantum.html
http://www.websocket.org/quantum.html
http://www.websocket.org/quantum.html
https://www.researchgate.net/profile/Heiko_Ludwig/publication/200827750_Web_Service_Level_Agreement_WSLA_Language_Specification/links/0912f50bcf2dfe836b000000.pdf
https://www.researchgate.net/profile/Heiko_Ludwig/publication/200827750_Web_Service_Level_Agreement_WSLA_Language_Specification/links/0912f50bcf2dfe836b000000.pdf
https://www.researchgate.net/profile/Heiko_Ludwig/publication/200827750_Web_Service_Level_Agreement_WSLA_Language_Specification/links/0912f50bcf2dfe836b000000.pdf
https://www.researchgate.net/profile/Heiko_Ludwig/publication/200827750_Web_Service_Level_Agreement_WSLA_Language_Specification/links/0912f50bcf2dfe836b000000.pdf
https://www.researchgate.net/profile/Heiko_Ludwig/publication/200827750_Web_Service_Level_Agreement_WSLA_Language_Specification/links/0912f50bcf2dfe836b000000.pdf

106 BIBLIOGRAPHY

[68] M. Schneider, Self-stabilization, ACM Computing Surveys 25 (1) (1993)

45–67.

[69] E. Marcus, H. Stern, Blueprints for High Availability, Wiley Publishing,

2003.

[70] J. Armstrong, Concurrency oriented programming in erlang (2002).

URL http://www.rabbitmq.com/resources/armstrong.pdf

[71] J. Armstrong, Making reliable distributed systems in the presence of

software errors, Swedish institute of computer science, 2003.

[72] A. O’Connell, Inside erlang, the rare programming language behind

whatsapp’s success (2014).

URL https://www.fastcompany.com/3026758/

inside-erlang-the-rare-programming-language-behind-whatsapps-success

[73] Ruby on rails framework (accessed: September 2017).

URL http://rubyonrails.org/

[74] Django framework (accessed: September 2017).

URL https://www.djangoproject.com/

[75] Spring framework (accessed: September 2017).

URL https://spring.io/

[76] Elixir language (accessed: September 2017).

URL https://elixir-lang.org/

[77] Phoenix framework (accessed: September 2017).

URL http://www.phoenixframework.org/

[78] A. Orebaugh, G. Ramirez, J. Burke, L. Pesce, J. Wright, G. Morris,

Wireshark and Ethereal Network Protocol Analyzer Toolkit, Syngress

Publishing, 2007.

http://www.rabbitmq.com/resources/armstrong.pdf
http://www.rabbitmq.com/resources/armstrong.pdf
https://www.fastcompany.com/3026758/inside-erlang-the-rare-programming-language-behind-whatsapps-success
https://www.fastcompany.com/3026758/inside-erlang-the-rare-programming-language-behind-whatsapps-success
https://www.fastcompany.com/3026758/inside-erlang-the-rare-programming-language-behind-whatsapps-success
https://www.fastcompany.com/3026758/inside-erlang-the-rare-programming-language-behind-whatsapps-success
http://rubyonrails.org/
http://rubyonrails.org/
https://www.djangoproject.com/
https://www.djangoproject.com/
https://spring.io/
https://spring.io/
https://elixir-lang.org/
https://elixir-lang.org/
http://www.phoenixframework.org/
http://www.phoenixframework.org/

BIBLIOGRAPHY 107

[79] Wireshark (accessed: September 2017).

URL https://www.wireshark.org/

[80] R. Wach, Method of performing distributed load testing (2003).

URL https://www.google.com/patents/US20030009544

[81] Goad - load testing tool (accessed: September 2017).

URL https://goad.io/

[82] Artillery - a modern load testing toolkit (accessed: September 2017).

URL https://artillery.io/

[83] Locust - a modern load testing framework (accessed: September 2017).

URL http://locust.io/

[84] Apache jmeter (accessed: September 2017).

URL http://jmeter.apache.org/

[85] Tsung - open-source multi-protocol distributed load testing tool (ac-

cessed: September 2017).

URL http://tsung.erlang-projects.org/

[86] Tsung - background (accessed: September 2017).

URL http://tsung.erlang-projects.org/user_manual/

introduction.html#tsung-background

[87] Capistrano - remote multi-server automation tool (accessed: September

2017).

URL https://github.com/capistrano/capistrano

[88] Capistrano - remote multi-server automation tool for phoenix (accessed:

September 2017).

URL https://github.com/dabit/capistrano-phoenix

[89] Semaphore - hosted continuous integration and deployment service for

private and open source projects (accessed: September 2017).

URL https://semaphoreci.com

https://www.wireshark.org/
https://www.wireshark.org/
https://www.google.com/patents/US20030009544
https://www.google.com/patents/US20030009544
https://goad.io/
https://goad.io/
https://artillery.io/
https://artillery.io/
http://locust.io/
http://locust.io/
http://jmeter.apache.org/
http://jmeter.apache.org/
http://tsung.erlang-projects.org/
http://tsung.erlang-projects.org/
http://tsung.erlang-projects.org/user_manual/introduction.html#tsung-background
http://tsung.erlang-projects.org/user_manual/introduction.html#tsung-background
http://tsung.erlang-projects.org/user_manual/introduction.html#tsung-background
https://github.com/capistrano/capistrano
https://github.com/capistrano/capistrano
https://github.com/dabit/capistrano-phoenix
https://github.com/dabit/capistrano-phoenix
https://semaphoreci.com
https://semaphoreci.com
https://semaphoreci.com

108 BIBLIOGRAPHY

[90] Codeship - a continuous integration platform in the cloud (accessed:

September 2017).

URL https://codeship.com

[91] Heroku - cloud application platform (accessed: September 2017).

URL https://www.heroku.com

https://codeship.com
https://codeship.com
https://www.heroku.com
https://www.heroku.com

	Povzetek
	Abstract
	Introduction
	Methodology
	Web applications technology overview
	Origins of modern web applications
	Real-time web
	HTTP
	Plugins
	Comet
	Polling
	Long polling
	Streaming
	Reverse HTTP
	BOSH
	Bayeux
	Server-sent events
	HTTP/2
	Summary

	WebSocket

	Scalability and high availability
	Scalability
	High Availability
	Impact on real-time web applications
	Erlang

	Client-side prototypes
	Architecture
	Polling prototype
	Long polling prototype
	Streaming prototype
	WebSocket prototype

	Server-side prototypes
	Architecture
	Ruby on Rails prototype
	Phoenix prototype

	Testing client prototypes
	Methodology
	Results

	Testing server prototypes
	Methodology
	Distributed load testing
	Cloud deployment
	Ruby on Rails prototype tests
	Phoenix prototype tests
	Results
	Conclusions

	Conclusions

