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ABSTRACT

Automated essay evaluation (AEE) is a widely used practical solution for replacing
time-consuming manual grading of student essays. Automated systems are used in
combination with human graders in different high-stake assessments, as well as in
classrooms. During the last 50 years, since the beginning of the development of the
field, many challenges have arisen in the field, including seeking ways to evaluate the
semantic content, providing automated feedback, determining reliability of grades,
making the field more “exposed”, and others. In this dissertation we address several of
these challenges and propose novel solutions for semantic based essay evaluation.

Most of the AEE research has been conducted by commercial organizations that
protect their investments by releasing proprietary systems where details are not pub-
licly available. We provide comparison (as detailed as possible) of 20 state-of-the-art
approaches for automated essay evaluation and we propose a new automated essay
evaluation system named SAGE (Semantic Automated Grader for Essays) with all the
technological details revealed to the scientific community.

Lack of consideration of text semantics is one of the main weaknesses of the exist-
ing state-of-the-art systems. We address the evaluation of essay semantics from per-
spectives of essay coherence and semantic error detection. Coherence describes the
flow of information in an essay and allows us to evaluate the connections between the
discourse. We propose two groups of coherence attributes: coherence attributes ob-
tained in a highly dimensional semantic space and coherence attributes obtained from
a sentence-similarity networks. Furthermore, we propose the Automated Error De-
tection (AED) system and evaluate the essay semantics from the perspective of essay
consistency. The system detects semantic errors using information extraction and logic
reasoning and is able to provide semantic feedback for the writer. The proposed system

SAGE achieves significantly higher grading accuracy compared with other state-of-the-
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art automated essay evaluation systems.

In the last part of the dissertation we address the question of reliability of grades.
Despite the unified grading rules, human graders introduce bias into scores. Conse-
quently, a grading model has to implement a grading logic that may be a mixture of
grading logics from various graders. We propose an approach for separating a set of
essays into subsets that represent different graders, which uses an explanation method-
ology and clustering. The results show that learning from the ensemble of separated
models significantly improves the average prediction accuracy on artificial and real-

world datasets.

Keywords: automated scoring, essay evaluation, natural language processing, semantic

attributes, coherence, semantic feedback
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Semanticno usmerjeno avtomatsko ocenjevangje esejev

POVZETEK

Avtomatsko ocenjevanje esejev predstavlja prakti¢no reSitev za Stevilne tezave, poveza-
ne s ¢asovno zahtevnim ro¢nim ocenjevanjem. Avtomatizirani sistemi se uporabljajo
v kombinaciji s ¢loveskimi ocenjevalci pri $tevilnih standardiziranih testih, vse ve¢ pa
tudi v udilnicah. V zadnjih 5o letih, od zacetka razvoja podrogja, so se pojavili Ste-
vilni izzivi, vklju¢no z iskanjem pristopov za ocenjevanje semanti¢ne vsebine, zagota-
vljanjem avtomatskih povratnih informacij, dolo¢anjem zanesljivosti ocen, teznjo po
dostopnosti podrobnosti delovanja sistemov in s tem odprtosti podro¢ja, in drugi. V
pri¢ujo¢i disertaciji obravnavamo te izzive in predlagamo nove reitve za semanti¢no
usmerjeno avtomatsko ocenjevanje esejev.

Eden od glavnih problemov sistemov za avtomatsko ocenjevanje esejev je problem
ocenjevanja semanti¢ne pravilnosti besedila. V disertaciji obravnavamo ocenjevanje
semantike besedila z razli¢nimi pristopi: ocenjevanje koherence esejev in zaznavanje
semanti¢nih napak. Koherenca opisuje pretok informacij v eseju in nam omogoca,
da ocenimo povezanost besedila. Predlagamo dve skupini atributov za ocenjevanje
koherence: atributi, pridobljeni v visoko dimenzionalnem semanti¢nem prostoru, in
atributi, pridobljeni iz omrezij stavéne podobnosti. Poleg tega predlagamo sistem za
avtomatsko odkrivanje napak, ki nam pomaga oceniti semantiko eseja z vidika dosle-
dnosti. Sistem zaznava semanti¢ne napake z uporabo ekstrakcije informacij in logi¢ne-
ga sklepanja ter zagotavlja povratno semanti¢no informacijo. Predlagani sistem SAGE
(Semantic Automated Grader for Essays) dosega vi$jo napovedno to¢nost v primerjavi z
drugimi sodobnimi sistemi za avtomatsko ocenjevanje esejev.

V zadnjem delu disertacije se posve¢amo vprasanju zanesljivosti ocen. Kljub poeno-
tenim kriterijem za ¢loveske ocenjevalce, ocenjevalci vnasajo pristranskost v rezultate.
Zato mora napovedni model uporabiti napovedno logiko, ki je lahko mesanica ocenje-

valne logike razli¢nih ocenjevalcev. Predlagamo pristop za lo¢evanje mnozice esejev v

iii
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podmnotzice, ki predstavljajo razli¢ne ocejevalce, kjer uporabimo metodologijo razlage
napovedi in gru¢enje. Rezultati kaZejo, da u¢enje na ansamblu lo¢enih modelov bistve-

no izboljsa povpre¢no to¢nost napovedi na umetnih in realnih podatkovnih mnoZicah.

Kljucne besede: avtomatsko ocenjevanje, evalvacija esejev, procesiranje naravnega jezi-

ka, semanti¢ni atributi, skladnost, semanti¢na povratna informacija
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1 Introduction K. Zupanc

1.1 Motivation

Essays are short literary compositions on a particular subject (also referred to as prompt-
specific essays), usually in prose, and generally analytic, speculative, or interpretative
in nature. Essays are considered to be the most useful tool to assess learning outcomes,
giving students an opportunity to demonstrate their range of skills and knowledge,
including higher-order thinking skills, such as synthesis and analysis [Valenti et al.,
2003]. However, grading students” essays is a time-consuming, labor-intensive, and
expensive activity for educational institutions. Since teachers are burdened with hours
of grading of written assignments, they assign less essay writing tasks, thereby limit-
ing the needed experience to reach the writing excellency. This contradicts the aim to
make students better writers, for which they need to rehearse their skill by writing as
much as possible [Page, 1966].

A practical solution to many problems associated with manual grading is to have
an automated system for essay evaluation. Automated essay evaluation (AEE) is the
process of evaluating and scoring written essays via computer programs [Shermis and
Burstein, 2003]. For teachers and educational institutions, AEE represents not only a
tool to assess learning outcomes, but also helps save time, effort, and money without
lowering the quality of evaluation.

AEE is a multi-disciplinary field that incorporates research from computer science,
cognitive psychology, educational measurement, linguistics, and writing research [Sher-
mis et al., 2013]. Computer scientists are developing attributes and are implementing
AEE systems, writing scientists and teachers are providing constructive criticisms to
the development, and cognitive psychologists expert opinion is considered when mod-
elling the attributes. Psychometric evaluations provide crucial information about the
reliability and validity of the systems, as well.

The field has been developing since the 1960s when Ellis Batten Page and his col-
leagues proposed the first automated essay scoring (AES) system [Page, 1966]. The
system was using basic measures to approximate features of interest and thus describe
the quality of an essay. By the 1990s, the progress in the natural language processing
(NLP) field encouraged researchers to apply new computational techniques to auto-
matically extract essay writing quality measures. In the last decade, this automated
process became the preferred way of grading in many low-stake assessment in class-

rooms as well as in high-stake assessment as standardized tests. AEE systems can also



Semantics-based automated essay evaluation

essays
new

o0 essa
Y ’

grade: 4 l
| s faz] | oan
£ 2018 17 1051

!

o grade: 3
E1 1875 16 8.71 Scorl ng

—

model

Em 1541 14 1131

be used in all other application areas of text mining, where the content of the text
needs to be graded or prioritized, such as: written applications, cover letters, scientific
papers, e-mail classification etc.

Framework of operation (shown in Figure 1.1) is a common property of majority of
the AEE systems: Systems use a substantially large set of prompt-specific essays (i.e. set
of essays on the same topic) assessed by expert human graders. A computer program
extracts a set of attributes for each of these essays to construct the learning set. This
set is used to build the scoring model of the AEE system. Using this model, the AEE
system assigns scores to new, ungraded essays. The performance of the scoring model
is typically validated by calculating how well the scoring model replicated the scores
assigned by the human expert graders using metrics such as quadratic weighted Kappa
and exact agreement [Fazal et al., 2011].

Throughout the development of the field, several different names have been used for
the field interchangeably. The terms automated essay scoring (AES) and automated
essay grading (AEG) slowly became replaced with the term automated writing eval-
uation (AWE) or automated essay evaluation (AEE). The term evaluation within the
name (AWE, AEE) surfaced to use because the automated process enables students to

receive constructive feedback about their writing.

Figure 1.1

Ilustration of an auto-
mated essay evaluation: A
set of essays is pre-scored
by human graders and a
computer program extracts
attributes representing each
essay to build a training
set. The set is used to de-
velop the scoring model.
This scoring model is used
to assign the scores to new,
ungraded essays.
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1.2 Problem description

The field of automated essay evaluation is currently (as of 2018) focusing on three

main open challenges:

1. Weak consideration of text semantics.
The main weakness of existing AEE systems is that they consider text semantics
very weakly and focus mostly on its syntax. Although the details of the majority
of the systems have never been announced publicly, we can still deduce from the
literature that they mostly perform syntax and shallow content measurements
(calculating similarity between texts) and neglect the semantics. To analyse se-
mantics, the state-of-the-art systems use latent semantic analysis (LSA) [Lan-
dauer et al., 1998], latent Dirichlet allocation (LDA) [Kakkonen et al., 2008],
and content vector analysis (CVA) [Attali, 2011]. To measure the coherence of
essays’ content, LSA [Foltz et al., 1998; Foltz, 2007], random indexing [Higgins
etal., 2004], an entity-based approach [Burstein et al., 2010], and complex net-
work representation [Antiqueira et al., 2007; Ke et al., 2016] have been used.
However, only two existing systems [Gutierrez et al., 2014; Brent et al., 2010]
use approaches that partially check for consistency of the statements in the es-
says. Despite the efforts, the latter systems are not automatic, as they require

manual interventions from the user.

2. Reproduction of biased human grades.
In the last years, many researchers [Bejar, 2011; Attali, 2013; Williamson et al.,
2012] have debated that accurately reproducing the human graders is no longer
the main goal of AEE systems. Researchers in the field of Automated Essay
Evaluation (AEE) often consider expert human graders as unmistakeable and
objective, but scoring essays relies heavily on human judgement. In reality, hu-
man graders are inconsistent and unreliable. Biased scoring is thought to be
due to various aspects of reader characteristics (e.g., rating experiences), reader
psychology (factors that occur internally to the reader), and rating environment
(including pressure) [Bridgeman, 2013]. Scores are therefore subjective and in-
fluenced by grader effects. That is, scores can be affected by factors, such as bias
(strictness, leniency) and (un)reliability (non-systematic error) of the grader.

Systematic and non-systematic human errors introduce subjective variance into
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scores and therefore impact their validity [Lottridge et al., 2013].

It is desirable that the AEE systems can recognize certain types of errors in-

dependently of human raters, including syntactic errors, and offer automated
feedback on correcting these errors. In addition, the systems shall also provide
global feedback on content and development. The current limitation of the
feedback is that its content is limited to the syntactic aspect of the essay while
neglecting the semantic aspects. Exceptions are systems [Guticrrez et al., 2014;
Brent et al., 2010] that include semantic evaluation of the content, but are not

automatic.

3. Lack of standards and good practice (due to predominance of proprietary systems).
In the past, one of the main obstacles to achieve progress in this area was the
lack of open-source AEE systems, which would provide insight into their grad-
ing methodology. Namely, most of the AEE research and development has been
conducted by commercial or non-profit organisations that have protected their
investments by restricting access to the technological details. The first scoring
engine to be made available publicly was Rudner’s Bayesian Essay Test Scoring
sYstem (BETSY) [Rudner and Liang, 2002]. This was a preliminary investi-
gation and authors never continued with their work. More recently, Mayfield
and Rosé released LightSIDE [Mayfield and Penstein-Rosé, 2010], an easy-to-
use automated evaluation engine with both compiled and source code publicly
available. LightSIDE made a very important contribution to the field of AEE by
publicly providing the source code. However, the used methodology to predict
the final grade is very basic. Aside from these two systems, there were several
other attempts in the last couple of years to make the field more transparent,
including publishing the Handbook of Automated Essay Evaluation [Shermis

and Burstein, 2013].
1.3 Scientific contributions

In the light of the preceding discussion about the existing models’ weaknesses, the

following scientific contributions are presented in this dissertation:

1. New semantic attributes for evaluating semantic coherence of the text. We propose
two groups of coherence attributes: spatial attributes and network attributes.

We develop the first group of attributes by observing semantic changes within
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the flow of the text. To achieve this contribution, we complete the following
sub-tasks: optimally choosing sequential parts of the essay to be observed, build-
ing the semantic space by transforming essay parts using a variation of TF-IDF
vectors, and defining several metrics for describing variability of the essay parts
in that space. We obtain the second group of the attributes using sentence-
similarity networks. Within the network we represent each sentence as a node
and use weights to represent similarity between sentences. We derive different
structural metrics from such networks to propose novel coherence attributes.
Furthermore, we develop a new automated essay grading system that uses the
novel coherence attributes and perform systematic analysis of its performance
compared with all available state-of-the-art systems. On average the system sig-

nificantly improves the classification accuracy due to the novel attributes.

2. Methodology for cross-referencing facts in text with external fact sources. This con-
tribution yields additional semantic attributes that monitor the content of the
essay and detect the sentences that contradict the truth. We develop automated
error detection system (AED), a novel methodology that discovers semantic errors
and provides a comprehensive feedback. We define an approach to automati-
cally transform essay text into independent representation (ontology) and com-
pare it to a representation of common sense knowledge from the external sources
in a form of ontology. We enhance the developed automated essay evaluation
system with new attributes and the output of the AED system, i.e., automated

semantic feedback. We also published all the technological details of the system.

3. Methodology for detection of different graders. We propose a novel methodology
for separation of the original dataset that contains scores given by several differ-
ent graders into smaller subsets. We aim these smaller subsets to contain only
essays that were graded by the same grader. To differentiate between differ-
ent graders we use the explanation methodology and clustering, which enables
us to detect different dependencies (grading logics) between essays’ attributes
and its score. In our experiments we show that the single model learned on
resolved scores performs worse on the average than the ensemble of models that
represents individual different graders. Our results show that the approach is
able to detect different graders using unsupervised learning and obtain better

predictive performance on the ensemble of models. We augment the proposed
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AEE system with the methodology and we significantly improve the prediction

accuracy.

1.4 Dissertation overview

The main aim of this dissertation is to build a semantic automated essay evaluator
that would not only improve the grading accuracy but would be capable of providing
understandable feedback about essay’s semantics. Thus, we first build a basic system
and then upgrade it through the subsequent chapters and sections.

In Chapter 2 we first describe several subfields of the related work that are relevant
to our research. Most importantly, we compare the existing state-of-the-art systems
that represent a basis for our research. Through the Chapter 3 we build a new auto-
mated essay evaluation system and upgrade it with novel coherence and consistency
attributes. We conclude the chapter with the proposal of the automated error detection
system as part of the SAGE (Semantic Automated Grader for Essays) that provides se-
mantic feedback for students. In Chapter 4 we describe the methodological aspects of
the proposed system SAGE. We perform several experiments to demonstrate the per-
formance of the system. Among others, we compare the system with nineteen other
state-of-the art AEE approaches. Chapter 5 proposes a new methodology for grouping
similar graders into subsets which reflects in an improved grading prediction accuracy

and can be used on any AEE system. Chapter 6 draws conclusions.
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We approached the open challenges of the Automated Essay Evaluation (AEE) field
from different problem areas that we highlight in the following subsections. We start
with the overview and comparison of the existing AEE systems and continue with
the description of the state-of-the-art approaches for measuring coherence of an essay.
Next, we review the relevant fields for detection of semantic errors in an essay and we

conclude with the description of the research on biased scoring.
2.1 Automated essay evaluation systems

In 1966, the high school English teacher E. Page proposed the first automated system
for grading student essays [Page, 1966]. He saw the system as a solution to reducing
hours of manually grading student essays. In 1973 [Ajay et al.] he and his colleagues
had enough hardware and software at their disposal to implement the first AEE system
under the name Project Essay Grade. The first results were characterized as remarkable
as the system’s performance had more steady correlation with human graders than the
performance of two trained human graders. Despite its impressive success at predicting
teachers’ essay ratings, the early version of the system received only limited acceptance
in writing and education community. The availability of necessary tools (home com-
puters, Internet, computational techniques for automatically extracting measures of
writing quality, ...) was poor and the society criticised the idea of displacing human
graders [Shermis et al., 2013].

By the 1990s, with the widespread of the Internet, natural language processing tools,
e-learning systems, and statistical methods, the AEE became a support technology in
education. Nowadays, the AEE systems are used in combination with human graders
in different high-stake assessments such as the Graduate Record Examination (GRE),
Test of English as a Foreign Language (TOEFL), Graduate Management Admissions
Test (GMAT), Scholastic Aptitude Test (SAT), American College Testing (ACT), Test
of English for International Communication (TOEIC), Analytic Writing Assessment
(AWA), No Child Left Behind (NCLB) and Pearson Test of English (PTE). Further-
more, some of them also act as a sole grader.

In the past, one of the main obstacles to achieve progress in this area was lack of
open-source AEE systems, which would allow insight into their grading methodology.
In the following we present the known characteristics of the majority of proprietary
AEE systems developed by commercial organizations as well as two publicly-available

systems and approaches proposed by the academic community. We conclude this sec-
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tion with a comparison of described systems and their known characteristics.

» Project Essay Grade (PEG)
PEG is a proprietary AES system developed at Measurement Inc. [Page, 1966].

It was first proposed in 1966, and in 1998 a web interface was added [Shermis

et al.,, 2001]. The system scores essays through measuring #rins and proxes. A
trin is defined as an intrinsic higher-level variable, such as punctuation, fluency,
diction, grammar, etc., which as such cannot be measured directly and has to
be approximated by means of other measures, called proxes. For example, the
trin punctuation is measured through the proxes number of punctuation errors
and number of different punctuations used. The system uses regression analysis to

score new essays based on a training set of 100 to 400 essays [Page, 1994].

u e-rater
E-rater is a proprietary automated essay evaluation and scoring system devel-
oped at the Educational Testing Service (ETS) in 1998 [Burstein et al., 1998].
E-rater identifies and extracts several attribute classes [Attali and Burstein, 2006;
Burstein et al., 2004]: (1) grammatical errors (e.g. subject-verb agreement er-
rors), (2) word usage errors (e.g. their versus there), (3) errors in writing me-
chanics (e.g. spelling), (4) presence of essay-based discourse elements (e.g. thesis
statement, main points, supporting details, and conclusions), (5) development
of essay-based discourse elements, (6) style weaknesses (e.g. overly repetitious
words), (7) two content vector analysis (CVA)-based attributes to evaluate top-
ical word usage, (8) an alternative, differential word use content measure, based
on the relative frequency of a word in high scoring versus low-scoring essays, (9)
two attributes to assess the relative sophistication and register of essay words, and
(10) an attribute that considers correct usage of prepositions and collocations
(e.g. powerful computer vs. strong computer), and variety in terms of sentence
structure formation. The system uses regression modelling to assign a final score
to the essay [Burstein et al., 2013a]. E-rater also includes detection of essay sim-
ilarity and advisories that point out if an essay is off topic, has problems with
discourse structure, or includes large number of grammatical errors [Higgins

et al., 2006].
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Intelligent Essay Assessor (IEA)

In 1998 the Pearson Knowledge Technologies (PKT) developed Intelligent Es-
say Assessor (IEA). The system is based on the Latent Semantic Analysis (LSA), a
machine-learning method that acquires and represents knowledge about mean-
ing of words and documents by analysing large bodies of natural text [Landauer
et al., 2000]. IEA uses LSA to derive attributes describing content, organiza-
tion, and development-based attributes of writing. Along with LSA, IEA also
uses NLP-based measures to extract attributes measuring lexical sophistication,
grammatical, mechanical, stylistic, and organizational aspects of essays. The
system uses approximately 60 attributes to measure the above aspects within
essays: content (e.g. LSA essay semantic similarity, vector length), lexical so-
phistication (e.g. word maturity, word variety, and confusable words), grammar
(e.g. n-gram attributes, grammatical errors, and grammar error types), mechan-
ics (e.g. spelling, capitalization, and punctuation), style, organization, and de-
velopment (e.g. sentence-sentence coherence, overall essay coherence, and topic
development). IEA requires a training with a representative sample (between

200 and 500) of human-scored essays.

IntelliMetric

IntelliMetric was designed and first released in 1999 by Vantage Learning as a
proprietary system for scoring essay-type, constructed response questions
[Schultz, 2013]. The system analyses more than 400 semantic-, syntactic-, and
discourse-level attributes to form a composite sense of meaning. These attributes
can be divided into two major categories: content (discourse/rhetorical and con-
tent/concept attributes) and structure (syntactic/structural and mechanics at-
tributes). The content attributes evaluate the covered topic, the breadth of con-
tent, support for advanced concepts, logic of discourse, as well as cohesiveness
and consistency in purpose and main idea; whereas structure attributes evaluate
grammar, spelling, capitalization, sentence completeness, punctuation, syntac-
tic variety, sentence complexity, usage, readability, and subject-verb agreement
[Schultz, 2013]. The system uses multiple predictions (called judgements) based
on multiple mathematical models, including linear analysis, Bayesian approach,
and LSA to predict the final score and combines the models into a single final

essay score [Rudner et al., 2006]. Training Intellimetric requires a sample of
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at least 300 human-scored essays. IntelliMetric uses Legitimatch technology to
identify responses that appear off topic, are too short, do not conform to the ex-
pectations for edited American English, or are otherwise inappropriate [Schultz,

2013].

Bookerte

Bookette [Rich et al., 2013] was designed by California Testing Bureau (CTB)
and became operational in classroom settings in 2005 and in large-scale testing
settings in 2009. Bookette uses NLP to derive about 9o attributes describing
student-produced text. Combinations of these attributes describe traits of ef-
fective writing: organization, development, sentence structure, word
choice/grammar usage, and mechanics. The system uses neural networks to
model expert human grader scores. Bookette can build prompt-specific models
as well as generic models that can be very useful in classrooms for formative
purposes. Training Bookette requires a set (from 250 to 500) of human-scored
essays. The system provides feedback on students writing performance that in-
cludes both holistic feedback and feedback at the trait level including comments
on the grammar, spelling, and writing conventions at the sentence level [Rich

etal, 2013].

CRASE

Pacific Metrics proprietary automated scoring engine, CRASE [Lottridge et al.,
2013], moves through three phases of the scoring process: identifying inappro-
priate attempts, attribute extraction, and scoring. The attribute extraction step
is organized around six traits of writing: ideas, sentence fluency, organization,
voice, word choice, conventions, and written presentation. The system analyses
a sample of already-scored student responses to produce a model of the graders’
scoring behaviour. CRASE is a Java-based application that runs as a web ser-
vice. The system is customizable with respect to the configurations used to build
machine learning models as well as the blending of human and machine scoring
(i.e. deriving hybrid models) [Lottridge et al., 2013]. Application also produces

text-based and numeric-based feedback that can be used to improve the essays.

AutoScore

AutoScore is a proprietary AEE system designed by the American Institute for
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Research (AIR). The system analyses measures based on concepts that discrimi-
nate between high- and low- scored papers, measures that indicate the coherence
of concepts within and across paragraphs, and a range of word-use and syntactic
measures. Details about the system were never published, however, the system

was evaluated in [Shermis and Hamner, 2013].

Lexile Writing Analyzer

The Lexile Writing Analyzer is a part of The Lexile Framework for Writing
[Smith, 2009] developed by MetaMetrics. The system is score-, genre-, prompt-,
and punctuation-independent and utilizes the Lexile writer measure, which is
an estimate of student’s ability to express language in writing, based on factors
related to semantic complexity (the level of words used) and syntactic sophis-
tication (how the words are written into sentences). The system uses a small
number of attributes that represent approximations for writing ability. Lexile
perceives writing ability as an underlying individual trait. Training phase is not
needed since a vertical scale is employed to measure student essays [Smith et al.,

2014].

SAGrader

SAGrader is an online proprietary AEE system developed by IdeaWorks, Inc.
[Brent and Townsend, 2006]. The system was first known under the name
Qualrus. SAGrader blends a number of linguistic, statistical, and artificial in-
telligence approaches to automatically score the essay. The operation of the
SAGrader is as follows: The instructor first specifies a task in a prompt. Then
the instructor creates a rubric identifying the “desired features” — key elements of
knowledge (set of facts) that should be included in a good response, along with
relationships among those elements — using a semantic network (SN). Fuzzy
logic (FL) permits the program to detect the features in the students’ essays and
compare them to desired ones. Finally, an expert system scores student essays
based on the similarities between the desired and observed features [Brent et al.,
2010]. Students receive immediate feedback indicating their scores along with
the detailed comments indicating what they did well and what needs further

work.
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OBIE based AEE System

The AEE system proposed by Gutierrez et al. [2012, 2013, 2014] provides both,
scores and meaningful feedback, using ontology-based information extraction
(OBIE). The system uses logic reasoning to detect errors in a statement from
an essay. The system first transforms text into a set of logic clauses using open
information extraction (OIE) methodology and incorporates them into domain
ontology using manually selected vocabulary mapping. The system determines
if these statements contradict the ontology and consequently the domain knowl-
edge. This method considers incorrectness as inconsistency with respect to the
domain. Logic reasoning is based on the description logic (DL) and ontology

debugging [Gutierrez et al., 2014].

Bayesian Essay Test Scoring sYstem (BETSY)

The first scoring engine to be made available publicly was Rudner’s Bayesian
Essay Test Scoring sYstem (BETSY) [Rudner and Liang, 2002]. BETSY uses
multinomial or Bernoulli Naive Bayes models to classify texts into different
classes (e.g. pass/fail, scores A-F) based on content (e.g. word uni-grams and
bi-grams) and style attributes (e.g. sentence length). Classification is based on
assumption that each attribute is independent of another. BETSY worked well
only as a demonstration tool for a Bayesian approach to scoring essays. It re-
mained a preliminary investigation as the authors never continued with their

work.

LightSIDE

In 2010, Mayfield and Rosé released LightSIDE [Mayficld and Penstein-Rosé,
2010], an automated evaluation engine with both compiled and source code
publicly available. LightSIDE is designed as a tool for non-experts to effectively
use text mining technology for a variety of purposes, including essay assessment.
It allows choosing the set of attributes and algorithm to build prediction model
(e.g. linear regression, Naive Bayes, linear support vector machines) [Mayfield
and Rosé¢, 2013]. The set of attributes is mainly focused on n-grams, POS tags,
and “counting” attributes. However, the system allows users to manually input

the code for new attributes.
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Use of Syntactic and Shallow Semantic Tree Kernels for AEE

Chali and Hasan [2013] exposed the major limitation of LSA - it only retains
the frequency of words by disregarding the word sequence and the syntactic
and semantic structure of texts. They proposed the use of syntactic and shal-
low semantic tree kernels for grading essays as a substitute to LSA. The system
calculates the syntactic similarity between two sentences by parsing the corre-
sponding sentences into syntactic trees and measuring the similarity between
the trees. Shallow Semantic Tree Kernel (SSTK) method allows to match por-
tions of a semantic trees. The SSTK function yields the similarity score between

a pair of sentences based on their semantic structures.

= A Ranked-based Approach to AEE

Chen etal. [2012] consider the problem of AEE as a ranking problem instead of
classification or regression problem. Ranking algorithms are a family of super-
vised learning algorithms that automatically construct a ranking model of the
retrieved essays. They consider the following three groups of attributes: term
usage, sentence quality, and content fluency and richness. Authors showed that

their approach outperforms other classical machine learning techniques.

Neural Essay Assessor

Taghipour and Ng [2016] developed an approach based on recurrent neural net-
works. The system learns the relations between an essay and its assigned score
automatically, without any feature engineering. It encodes the information re-
quired for essay grading and learns the complex patterns in the data through
non-linear neural layers. The neural network is based on long-term memory

networks.

AES using neural networks

Alikaniotis et al. [2016] introduced a model that forms word representations
(embeddings) by learning the local linguistic environment of each word as well
as the extent to which a specific word contributes to an essay’s score. The system
uses the long short-term memory recurrent neural networks [Hochreiter and

Schmidhuber, 1997] to represent the meaning of essays.

AEG using Memory Networks

Zhao et al. [2017] proposed a generic model using memory networks inspired
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by a network’s capability to store rich representations of data and reason over
that data in memory. Their model is based on the idea that with enough graded
samples for each score in the rubric, such samples can be used to grade future
work that is found to be similar. For each possible score in the rubric, a student
response graded with the same score is collected. These selected responses rep-
resent the grading criteria specified in the rubric and are stored in the memory
component. The model is trained on these data with the rest of the student re-
sponses in a supervised learning manner to compute the relevance between the

representation of an ungraded response and that of each sample.

OzEgrader

OzEgrader is an Australian AES system proposed by Fazal et al. [2011]. Grading
process considers different aspects of content and style: audience, text structure,
character and setting, paragraphing, vocabulary, sentence structure, punctua-
tion, spelling, cohesion and ideas. Techniques such as POS tagging, named
entity recognition, artificial neural networks, and fuzzy regression are employed
in order to model linear or non-linear relationships between attributes and the
final score. The system also includes the methodology for noise reduction in the

essay dataset.

AEE using Generalized LSA

Islam and Hoque [2012] developed an AEE system using Generalized Latent
Semantic Analysis (GLSA) which makes 7n-gram by document matrix instead of
word by document matrix as used in LSA. The system uses the following steps
in grading procedure: preprocessing of the training essays, stopword removal,
word stemming, selecting the n-gram index terms, 7-gram by document matrix
creation, computation of the singular value decomposition (SVD) of n-gram by
document matrix, dimensionality reduction of the SVD matrices, and computa-
tion of the similarity score. The main advantage of GLSA is observance of word

order in sentences.

AEE using Multi-classifier Fusion
Bin and Jian-Min [2011] proposed an approach to AEE using multi-classifier
Fusion. The system first represents each essay by the vector space model and

removes stopwords. Then it extracts the attributes describing content and lin-

7
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guistic from the essays in the form of attribute vector. Three approaches includ-
ing document frequency (DF), information gain (IG) and chi-square statistic
(CHI) are used to select attributes by some predetermined thresholds. The sys-
tem classifies an essay to an appropriate category using different classifiers, such
as naive Bayes, k-nearest neighbours and support vector machine. Finally, the

ensemble classifier is combined by those component classifiers.

= Markit
Markit [Williams and Dreher, 2004] is a proprietary AEE system developed
by Blue Wren Software Pty Ltd. 'The system is capable of running on typi-
cal desktop PC platforms. It requires comprehensive knowledge in a form of
one model (exemplary) answer against which the student essays are compared.
A student essay is processed using a combination of NLP techniques to build
the corresponding propriety knowledge representation. Pattern matching tech-
niques (PMT) are then employed to ascertain the proportion of the model an-
swer knowledge that is present in the student’s answer, and a score assigned

accordingly.

= PS-ME
The Paperless School proprietary AEE system was designed primarily for day-
to-day, low-stake testing of essays. The student essay is compared against each
relevant master text to derive a number of parameters which reflect knowledge
and understanding as exhibited by the student. When multiple master texts are
involved in the comparison, each result from an individual comparison gets a
weight that could be negative in the case of a master text containing common
mistakes. The individual parameters computed during the analysis phase are
then combined in a numerical expression to yield the assignments’ score and
used to select relevant feedback comments from a comment bank [Mason and

Grove-Stephenson, 2002].

u Schema Extract Analyse and Report (SEAR)
Christie [1999] proposed a software system Schema Extract Analyse and Report
(SEAR), which provides the assessment both of style and content. The method-
ology adopted to assess style is based on a set of common metrics as used by

other AES systems. For content assessment the system uses two measures: us-
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age and coverage. Using content schema system measures how much of each
essay is included in schema (usage) and how much of schema is used by the

essay (coverage).

Comparison of the state-of-the-art systems

In order to compare technical, methodological, and structural characteristics of the
state-of-the-art systems, we present their comparison in Table 2.1 using the following

main criteria:

= Tjpe of attributes: The attributes describing the quality of an essay can roughly be
divided into three groups: style, content and semantic attributes. Style attributes
focus on lexical sophistication, grammar and mechanics (spelling, capitalization,
and punctuation). Content attributes shallowly describe semantics of an essay
and are based on comparing an essay with source text and other already graded
essays. Semantic attributes are based on verifying the correctness of content

meaning.

Methodology: Different systems use various approaches to extract attributes from
essays. The most widely used methodology is based on NLP. Systems focusing
on content mostly use Latent Semantic Analysis (LSA) - a machine learning
method that analyses related concepts between a set of documents and the con-
tained terms. LSA assumes that words with similar meaning occur in similar
parts of text. To evaluate content, systems also use pattern matching tech-
niques (PMT) and extensions to LSA such as Generalized Latent Semantic
Analysis (GLSA) (which uses an n-gram-by-document matrix instead of a word-
by-document matrix) and improvement that considers semantics by means of
the syntactic and shallow semantic tree kernels. For verifying the correctness
and consistency of content, approaches such as (Open) Information Extraction
((O)IE), Semantic Networks (SN), Ontologies, Fuzzy Logic (FL), and Descrip-
tion Logic (DL) are used.

Prediction model: The majority of the systems use machine learning algorithms
(usually regression modelling) to predict the final grade. An alternative is to use:
the Lexile measure - an estimate of student’s ability to express language in writing

based on semantic complexity (level of expressing) and syntactic sophistication
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(how the words are combined into sentences); cosine similarity; and rule-based

expert systems.

Table 2.1 provides a comparison of characteristics for the majority of AEE systems
and approaches, including proprietary (non-public) systems, two publicly available
systems, approaches proposed by the academic community, and our proposed system

named SAGE.
2.2 Measuring coherence of the text

Coherence is a concept that describes the flow of information from one part of dis-
course to another and ranges from lower level cohesive elements such as coreference,
causal relationship, and connectives, up to higher level elements that evaluate connec-
tions between the discourse and reader’s mental representation of it [Foltz, 2007].

Existing systems measure coherence in noisy text with different supervised and un-
supervised approaches. The unsupervised approaches usually measure lexical cohesion,
i.e. repetition of words and phrases in an essay. Foltz, Kintsch, and Landauer [Foltz
etal., 1998; Foltz, 2007] assume that coherent texts contain a high number of seman-
tically related words and measure coherence as a function of semantic relatedness be-
tween adjacent sentences. Relatedness can be computed using LSA without employing
syntactic or other annotations. Hearst [1997] subdivides texts into multi-paragraph
units that represent subtopics and identifies patterns of lexical co-occurrence and dis-
tribution, i.e. identifying repetition of vocabulary across adjacent sentences.

The supervised learning approaches require annotated data (graded essays). They
focus on occurrences of discourse elements (e.g. thesis statement, main idea, conclu-
sion), entity sentence roles, grammar errors, and word usage. Miltsakaki and Kukich
[2000] have explored the role of centering theory [Grosz et al., 1995] in locating topic
shifts in student essays. Centering theory argues that the discourse in a text contains
a set of textual segments, each containing discourse entities, which are then ranked by
their importance. Topic shifts are generated by short-lived topics and are indicative of
poor topic development. Higgins et al. [2004] have developed a system that computes
similarity across text segments based on their type of discourse element and seman-
tic similarity (LSA). A support vector machine (SVD) uses these features to capture
breakdowns in coherence due to relatedness to the essay question and relatedness be-

tween discourse elements. More recently, Burstein et al. [2010, 2013a] showed how
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Table 2.1

A comparison of the key features of the state-of-the art AEE systems.
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the Barzilay and Lapata [2008] algorithm can be applied to the domain of student
essays. In Barzilay and Lapata [2008] approach, entities (nouns and pronouns) are
represented by their sentence roles and the algorithm counts all possible entity transi-
tions between adjacent sentences in the text. By combining those entity-based features
with features related to grammar errors and word usage, Burstein et al. [2013b] im-
prove the performance of automated coherence prediction for student essays.

To best of our knowledge there are only two prior studies exploring the idea of using
complex network representations for automated essay grading [Antiqueira et al., 2007;
Ke et al., 2016]. In both approaches the authors used word adjacency networks to
derive network-based features for essay coherence evaluation. Antiqueira et al. [2007]
showed that there are strong correlations between basic structural network metrics
(e.g. the average node degree, the clustering coefficient and the characteristic path
length) and text quality scores assigned by human judges on a corpus of Portuguese
essays written by high-school students. Ke et al. [2016] obtained similar results for a
corpus of Chinese essays written by college students in a recently published study.

'The above approaches mainly focus on the local coherence, while our system SAGE
measures coherence as a function of semantic relatedness not only between adjacent
sentences, but through the entire essay. Our proposed system measures changes be-
tween sequential essay parts from three different perspectives: semantic distance (e.g. dis-
tance between consecutive parts of an essay, maximum distance between any two parts,
etc.), central spatial tendency/dispersion, and spatial autocorrelation in semantic space.
Moreover, we evaluate coherence with another, i.e. network based approach. In con-
trast to the previous two network-based studies, our approach is based on complex

networks capturing similarities between sentences.
2.3 Detection of semantic errors in an essay

Only two mentioned systems [Brent et al., 2010; Gutierrez et al., 2014] partially check
if the statements in an essay are correct. SAGrader, developed by Brent et al. [2010],
was the first AEE system that detected semantic information in an essay and upon
which we based the architecture of our system. For SAGrader, the teacher first speci-
fies the assignment prompt and desired features along with relationships among them.
Using fuzzy logic, the system recognizes word combinations that can be used by stu-
dents to detect desired features and relationships. Desired knowledge in the form of a

semantic network is then compared with the knowledge detected in a student’s essay.
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The system scores the student’s essay based on the similarities between observed and
desired knowledge using procedural rules. Detailed feedback indicates what student
did right and wrong [Brent et al., 2010].

Gutierrez et al. [2011, 2014, 2017] later proposed a system that not only detects the
desired (correct) knowledge but also detects incorrect knowledge using logic reason-
ing [Gutierrez et al., 2014]. The system extracts statements using Open Information
Extraction (OIE) and adds them to the domain ontology. The extracted tuples are in
a form that is compatible with the OWL ontology. In the final step, the system deter-
mines the correctness of a statement through an ontology-based consistency checking.
If the domain ontology becomes inconsistent after the extracted sentence is added
into it, then the sentence is incorrect with the respect to the domain [Gutierrez et al.,
2014]. Despite many efforts, this system is still not fully automated, as it requires man-
ual inputs from the user to build a vocabulary mapping mechanism between extracted
entities and vocabulary of the ontology.

In contrast to other systems, our proposed system focuses on completely automated
semantic evaluation and provides semantic feedback to students. SAGE analyses text
consistency by detecting entities in an essay, considering coreferences of entities, and
extracting relations between entities. SAGE exploits common sense knowledge on-
tologies, taxonomies, and can therefore work on different domains.

In the following we overview the related work concerning the methodology we used

for detecting the semantic errors in an essay.

2.3.1  Open information extraction

Information extraction (IE) is the task of automatically acquiring knowledge by trans-
forming natural language text into structured information, such as a knowledge base
[Wimalasuriya and Dou, 2010]. The main tasks of information extraction are entity
recognition (ER), relation extraction (RE), and coreference resolution (CR). We focused
on a tool for relation extraction called Open Information Extraction (OIE). Wu and
Weld [2010] define the OIE system as a function that maps an unstructured document
text d, to a set of triples, {<argl,rel,arg2>}, where the args are noun phrases and
rel is a textual fragment indicating an implicit, semantic relation between the two
noun phrases. Unlike other relation extraction methods focused on a predefined set
of target relations, the open information extraction paradigm is not limited to a small

set of target relations known in advance, but extracts new types of relations found in
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the text. The main properties of OIE systems are domain independency, reliance on
unsupervised extraction methods, and scalability to large amounts of text [Gamallo,
2014].

Gamallo [2014] categorized the existing OIE systems in four groups. First he di-
vided them into two broad categories: systems that require training data to learn a
classifier and systems based on hand-crafted rules or heuristics. In addition, each for-
mer category can be divided in two subsequent types: systems that use the shallow
syntactic analysis (e.g. part-of-speech tagging and/or chunking), and systems that use
dependency parsing (transforming sentences into dependency trees).

For implementing semantic consistency checking in our system, we used four dif-
ferent OIE systems. One of the systems, Open IE [Etzioni et al., 2014], belongs
to the group that needs training data and uses shallow syntax. The other three sys-
tems, ClausIE [Corro and Gemulla, 2013], CSD-IE [Bast and Haussmann, 2013],
and DepOE [Gamallo et al., 2012] belong to the group that relies on rules and uses
dependency parsing. We describe their use in detail in Section 3.3.

We also used a system for entity recognition (Illinois Shallow Parser [Punyakanok
and Roth, 2001]) and two coreference resolution systems (Illinois Coreference Reso-
lution [Bengtson and Roth, 2008] and Stanford Parser [Chen and Manning, 2014])
in our system for automated semantic error detection. We will further explain their

application in Section 3.3.
2.3.2 Ontology consistency

An ontology defines a set of representational primitives with which one can model a
knowledge or discourse. The representational primitives are typically classes (or sets),
attributes (or properties), and relationships (or relations among class members). The
definitions of the representational primitives include information about their meaning
and constraints on their logically consistent application [Gruber, 2009]. A semantic
network is a graphical notation for representing knowledge in patterns of intercon-
nected nodes and arcs. To formally represent knowledge and use it in our system we use
the Web Ontology Language (OWL) [Bechhofer et al., 2004]. Description logic (DL)
models concepts (e.g. Person), roles (e.g. isMarriedTo) and individuals (e.g. alice,
bob), and their relationships (e.g. alice:Person, (alice,bob) :isMarriedTo). The
fundamental modelling concept of a DL is an axiom - a logical statement that relates

roles and/or concepts using conjunction, disjunction, existential and value restrictions.
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Several reasoners exist for DL, one of them is HermiT [Motik et al., 2009]. The main
function of a reasoner is to determine if a given knowledge base (given as an ontology)
is consistent. Reasoners detect classes that are unsatisfiable, i.e. when there is a con-
tradiction in the ontology that implies that the class cannot have any instances (OWL
individuals). While OWL ontologies with unsatisfiable classes can be used, inconsis-
tency is a severe error: most OWL reasoners cannot infer any information from an
inconsistent ontology. When faced with an inconsistent ontology, they will report

this and abort the classification process.
2.4 Grader effects

Due to graders’ inconsistency and unreliability, it is very difficult to score essays objec-
tively. Scores are therefore subjective and influenced by grader (or rater) effects which
describe the influence of human factors on an assessment score. Grader bias and grader
reliability are the most frequently examined grader effects when it comes to assessing
essays. There is a strong empirical evidence of some graders being biased, meaning
being noticeably more severe or lenient. Researchers usually use a multifaceted Rasch
model to show the graders’ unreliability [Congdon and McQueen, 2000; Elder et al.,
2007; Myford and Wolfe, 2009].

The second most common studied grader effect is central tendency. Researchers pro-
vide evidence in favour of graders being biased away from the extreme scores (e.g. [En-
gelhard, 1994; Myford and Wolfe, 2009; Leckie and Baird, 2011]). Leckie and Baird
[2011] also found no significant differences in bias or reliability between more and less
experienced graders (grader experience).

An interesting and commonly observed grader effects are also cazegory/rubric pref-
erences. Eckes [2008] reported that graders differed significantly in their views on the
importance of the various scoring criteria, resulting in several distinct types of graders.
Rezaei and Lovorn [2010] report that graders were significantly influenced by mechan-
ical characteristics of students’ writing rather than the content, even when they used a
scoring rubric.

The authors of the above related work verified their results using various statistical
analyses. In our work we propose a novel approach for detecting different grading log-
ics that is based on explanation methodology [Scrumbelj et al., 2009]. In the proposed
approach we aim at separating the original dataset into subsets representing different

graders. By modelling each grader (subset) independently, we assume that we will be
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able to improve the grading accuracy, compared to modeling the entire dataset that

contains mixed graders.



Semantic Automated Grader

for Essays (SAGE)
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Our aim is to develop a semantic AEE system with the motivation that the system shall
(1.) improve the grading accuracy and (2.) provide an automatic feedback about the
essay’s semantic. Improving an existing AEE system is not an option since the majority
of the systems are proprietary and LightSIDE, the only publicly available system, uses
only a limited amount of mostly syntax attributes. Thus, we decided to build a new

AEE system. We developed a new automated essay grading system in four phases:

1. Automated Grader for Essays (AGE): The system with only linguistic and content

attributes (described in Section 3.1),

2. Automated Grader for Essays+ (AGE+): system AGE, augmented with additional

coherence attributes (described in Section 3.2),

3. Semantic Automated Grader for Essays (SAGE): system AGE+, augmented with
additional consistency attributes and automatic semantic feedback (described

in Section 3.3),

4. Semantic Automated Grader for Essays- (SAGE-): system AGE, augmented with
additional consistency attributes (but not also with the coherence attributes)

and automatic semantic feedback (described in Section 3.4).

We illustrate the hierarchy of the used and newly proposed attributes in the above

four AEE systems in Figure 3.1 and describe them in detail in the following sections.
3.1 Automated Grader for Essays (AGE)

We first developed a basic AEE system based on the attributes described in the liter-
ature. We named the system Automated Grader for Essays (AGE). In this section, we
present the used common syntax (linguistic and content) attributes that are illustrated

as the right branch in Figure 3.1.

3.1.1  Syntax attributes

To implement the baseline AEE system we used 72 different attributes that were men-
tioned in Section 2.1. A high number of attributes measures different aspects of each
essay, e.g. it has been shown that essay length significantly influences the human rater’s

score and we also know that the length of an essay has the highest influence on the
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final computer score [Perelman, 2014]. Different readability measures and variations
of the used words also impact the final score.

To group similar syntax attributes, we divide them into two groups:

Linguistic attributes.  The linguistic attributes describe lexical sophistication and gram-
matical and mechanical aspects of the essay. These attributes are measured by count-
ing all words, long words, different words, and number of words with different part
of speech (PoS) tags. More complex attributes measure the readability level [Dubay,
2007; Smith and J6nsson, 2011], lexical diversity [Mellor, 2011], and spellcheck-

ing/capitalization/punctuation errors.

Content attributes.  The second group contains the content attributes, which are based
on comparing the lexical content of unseen essays with the lexical content of the graded
ones using cosine similarity. To extract these attributes, we perform several compar-
isons of the new, ungraded essay; e.g. with the source text, with all already graded

essays, with the groups of essays graded with the same grade.
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Figure 3.1

Groups of attributes
used in the propsed AEE
systems.
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Figure 3.2

Transformation of sequen-
tial overlapping essay parts
into a high dimensional
semantic space [Zupanc
and Bosni¢, 2017a].
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3.1.2  Presentation of the syntax attributes

All linguistic and content attributes that we implemented in our baseline AES system
are presented in Table 3.1. Overall, we extracted 72 different linguistic and content
attributes. For a better presentation, we further divided linguistic attributes into three

subgroups (lexical sophistication, grammar, mechanics).
3.2 Automated Grader for Essays+ (AGE+)

We augmented the proposed system AGE from Section 3.1 with coherence attributes
and named the system Automated Grader for Essays+ (AGE+). We developed two

kinds of coherence attributes that are represented with the middle branch in Figure 3.1:

1. coherence attributes, obtained in a highly dimensional semantic space (described

in Section 3.2.1), and

2. coherence attributes, obtained from a sentence-similarity networks (described

in Section 3.2.3).

3.2.1  Coherence attributes obtained from a semantic space

We base our coherence attributes on the assumption that the semantic content of a
coherent essay changes gradually through its textual representation, as it has already
been stated by Foltz [2007]. We start by preprocessing the essays, namely removing the
numbers, punctuation, and stopwords. Then, we transform the text into lower-case
letters and perform stemming. We continue with dividing essays into many sequential
overlapping parts, obtained by moving a window through an essay by steps of 10 words
(illustrated in Figure 3.2). Window size is defined so that it contains 2 5% of the average
number of words per essay. For example, if the average essay length in a dataset was

280 words and the length of the essay was 320 words, we obtained 26 parts.
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Table 3.1

Lexical sophistication and grammar attributes.

lexical sophistication

grammar

-

13.

O W% ®N v p » P

number of characters,
number of words,

number of long words,
number of short words,
most frequent word length,
average word length,
number of sentences,
number of long sentences,
number of short sentences,
most frequent sentence length,
average sentence length,
number of different words,

number of stopwords,

Readability measures [Dubay, 2007;

Smith and Jénsson, 2011]

14.
15.
16.
17.
18.
19.
20.
21.

22.

Gunning Fox index,

Flesch reading ease,

Flesch Kincaid grade level,
Dale-Chall readability formula,
automated readability index,
simple measure of Gobbledygook,
LIX,

word variation index,

nominal ratio,

Lexical diversity [Mellor, 2011]

23.
24.
25.
26.
27.

28.

type-token-ratio,

Guiraud’s index,

Yule’s K,

the D estimate,

hapax legomena - number of
words occurring only once in a
text,

advanced Guiraud,

29.
30.
31.
32.

number of different PoS tags
height of the tree presenting sentence structure,
correct verb form,

number of grammar errors,

Number of each PoS tag

33.
34.
35-
36.
37.
38.
39.
40.
41.
42.
43.
44-
45-
46.
47-
48.
49-
50.
SI.
52.
53.
54-
55-
56.
57-
58.
59
6o.
61.
62.
63.
64.

coordinating conjunction,
numeral,

determiner,

existential there,
preposition/subordinating conjunction,
adjective,

comparative adjective,
superlative adjective,

ordinal adjective or numeral,
modal auxiliary,

singular or mass common noun,
plural common noun,

singular proper noun,

plural proper noun,
preposition,

participle,

predeterminer,

genitive marker,

personal pronoun,

possessive pronoun,

adverb,

comparative adverb,

superlative adverb,

particle, “to” as preposition or infinitive marker,
verb - base form,

verb - past tense,

verb - gerund/present participle,
verb - past participle,

verb - 3rd person sing. present,
wh-determiner,

wh-pronoun,

wh-adverb.
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Table 3.1

(continued) Mechanics and content attributes.

mechanics content
65. number of spellchecking errors, 68. cosine similarity with source text,
66. number of capitalization errors, 69. score point level for maximum cosine sim-
67. number of punctuation errors, ilarity over all score points,

70. cosine similarity with essays that have high-
est score point level,

71. pattern cosine [Attali, 2011],

72. weighted sum of all cosine correlation val-

ues [Attali, 2011].

For each essay corpus (dataset) we compute the term frequency - inverse document
frequency (TE-IDF) representation, which is a numerical statistic that reflects how im-
portant a word is to a document in a corpus. Term frequency TF(t,d) is computed
by counting frequency of a term t in a document d. The inverse document frequency

IDF(t, D) expresses how rare the term f is across all documents D:

TF-IDF(t,d, D) = TF(t,d) - IDE(t, D) =
[{t € d}| [{d € D}|

“iwedl 8TdeD teal G0

To compute the TF-IDF vectors of individual essay parts, we modify the compu-
tation of the TF-IDF to normalize words weights within each individual essay part
with the word frequency of an entire corpus. TF-IDF vectors of essay parts represent
points in high-dimensional semantic space that, according to our assumption, should
be close to each other in coherent essays. An example of an essay divided into parts
that can be visualized as points in semantic space is illustrated in Figure 3.2, in which
the thin gray lines connect the points that represent the sequential parts of an essay.
In Figures 3.3-3.6 we use the same example to illustrate the definition of our semantic
coherence attributes, which we explain in the following subsections that outline three
groups of attributes: (1) basic coherence measures, (2) spatial data analysis, (3) spatial

autocorrelation.
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Basic coherence measures measure the distance between parts of the essay, which are
represented as points in the semantic space. We use two variants of each attribute in
this group: one computed using the Euclidean distance metric and the other com-
puted using the cosine similarity. (In the following we will use the term “distance” to

interchangeably denote any of the two.) The proposed attributes are:

- average distance between neighbouring points in semantic space (denoted by thin

grey lines in Figure 3.3). Foltz [2007] has already shown by measuring cosine
similarity between sentences in an essay that highly coherent discourses have
small movements in semantic space and vice versa. We defined similar ateributes

that describe the average distance between these points;

Figure 3.3

Construction of semantic
coherence attributes: maxi-
mum distance between any
two points [Zupanc and
Bosni¢, 2017a].

- minimum and maximum distance between neighbouring points and their quo-

tient;
- average distance between any two points, which measures how well an idea persists

within the essay;

- maximum distance between any two points measures the diameter of area that is
covered with points and thus the breadth of the discussed concept in the space

(illustrated in Figure 3.3);

- Clark and Evans [1954] distance to the nearest neighbour of each point in the

semantic space for measuring spatial relationships:
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Figure 3.4

Construction of semantic
coherence attributes:
computation of the average
distance to the nearest
neighbor. Arrows indicate
the nearest neighbor of
each point [Zupanc and
Bosni¢, 2017a).
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where 7; is the Euclidean distance from a given point to its nearest neighbour
(see Figure 3.4) and N is the number of points. Itis the measure of the degree to
which the observed distribution differs from random expectation with respect

to the nearest neighbour [Clark and Evans, 1954];

- average distance to the nearest neighbour, which measures how fast an idea devel-

ops across an essay (see Figure 3.4);

- cumulative frequency distribution G of the nearest neighbours’ distances:

N

where 7 is the distance from a given point to its nearest neighbour (see Fig-

Ir <7l

G(r) = (3-3)

ure 3.4), 7 is the average distance to the nearest neighbour, and N is the number
of points. The measure expresses the percentage of content deviations from the

main idea.

Spatial data analysis

The second group of attributes describes spatial characteristics of the data and aims to

extract implicit knowledge, such as spatial statistics and patterns. We adjusted a set
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of descriptive spatial statistics for the use within our representation of the essays. The
proposed attributes measure the central spatial tendency and the spatial dispersion,

and are defined as follows:

- average Euclidean distance between the centroid and each point, which measures

an amount of dispersion in a point-pattern (see Figure 3.5);

Figure 3.5
Construction of semantic
coherence attributes:
distance from all points to

the centroid [Zupanc and
Bosni¢, 2017a).

- minimal and maximal Euclidean distance between the centroid and each point and
their coefficient, which measures the biggest content deviation from the main

idea;

- standard distance (a spatial equivalent of standard deviation) measures an amount

of absolute dispersion in a point-pattern:

(3.4)

where Di—‘,k =1,..,mi=1,..N is a k-th coordinate component of point 7,
Dk is a k-th coordinate component of a mean center, 71 is the number of di-
mensions, and N is the number of points. Similar to the standard deviation,
the standard distance is also strongly influenced by extreme values. Because
distances to the mean center are squared, the atypical points have a dominant
impact on the magnitude of this metric, which allows detecting deviating (in-

coherent) essay parts;
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- relative distance, a descriptive measure of the relative spatial dispersion. We
compute it by dividing the standard distance with a measure that describes the

area that is covered with points:

Sp

dmax

RD = (3 5)
where d,;;;, is a maximum distance of any point from the centroid. This enables
direct comparison of the dispersion of different point patterns from different

areas, even if the areas are of varying sizes;

- the determinant of the distance matrix, a measure of spatial dispersion. This al-
lows us to measure dispersity of the content and consequently how broad the

discussed topic is.

Spatial autocorrelation

Measures of spatial autocorrelation express how data tends to be clustered together in
space (positive spatial autocorrelation) or dispersed (negative spatial autocorrelation).
They enable us to detect global and local semantic coherence of the essays’ content. If
the essay exhibits positive spatial autocorrelation, this indicates that it is well structured
and that the parts of the essay are well related to each other.

Typical measures of spatial autocorrelation are Moran’s I [Moran, 1950], Gearys C
[Geary, 1954], and Getiss G [Getis and Ord, 1992]. We adjusted these three measures

so we can use them in our high-dimensional semantic space as follows:

- Moran’s I assesses the overall clustering pattern. The original measure is in-
tended for a 2-dimensional space, however, in this work, we adjust it to a high-

dimensional semantic space by averaging it over dimensions:

N N
% X w;(Df - DE)(D¥ - D)
1 n1i=1j=1
- 2 (3.6)
1’1 = N J—
Y (Df - Dky?
i=1

m|Z
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where Df, k=1,..,mi=1,..,N isak-th coordinate component of point i,
chc is a k-th coordinate component of a mean center, 71 is the number of dimen-
sions, N is the number of points, and S is a sum of all weights wj. Weights wy;
are assigned to every pair of points, with value wyj = 1, if i and j are neighbours,
and value w;; = 0 otherwise. The range of I varies from —1 to +1. A positive
sign of I indicates positive spatial autocorrelation and means that neighbouring
points cluster together, while the opposite is true for the negative sign. Values

close to zero indicate complete spatial randomness.

Geary’s C is inversely related to Moran’s I. In this case, the interaction is not a
cross-product of the deviations from the mean, but the deviations in intensities
of each observation location from one another. Again, our adjusted measure is
calculated in a high-dimensional semantic space and is averaged over all dimen-

sions:

N N
% 3 w;(Df - D}y’
(N-1) 1&|i=1=1

C:
2 n

N (3.7)

k=1 s
% Y w(Df - DY
i=1j=1

where Df,k =1,..,mi=1,..,N is a k-th coordinate component of point
i, DK is a k-th coordinate component of a mean center, 71 is the number of
dimensions, N is the number of points, and wy; are point weights as described

previously.

Gettiss G enables us to examine point patterns at a more local scale. Gettis’s
G measures overall concentration or lack of concentration of all pairs of values
(Dj, D)), such that 7 and j are within the distance d of each other. We adjusted

the measure to use it in a high-dimensional space:

N N
% 3 wy(d)DSD¥
T ==
Gd) = > BV vE— (3.8)
k=1 k 1~k
% X DiD;

i=1j=1
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Figure 3.6

Construction of seman-
tic coherence attributes:
computation of Gettis’s

G using average distance
d between any two points
in the semantic space [Zu-
panc and Bosni¢, 2017a].
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where Dl-(,k =1,..,mi=1,..,N is a k-th coordinate component of point
i, n is the number of dimensions, N is the number of points, and d is the
average distance between any two points in the semantic space. A weighting
function w;;(d) is used to assign binary weights to every pair of points, where
w;;(d) =1, if i and j are within distance d and w;;(d) = 0, otherwise (illustrated
in Figure 3.6).

o]
Q o
o)

o

o o
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0 o
o o

3.2.2  Presentation of the spatial coherence attributes

We extracted 29 different coherence attributes from a highly dimensional semantic
space and describe them in Section 3.2.1. Attributes are presented with the left part
of the middle branch in Figure 3.1 and are listed in Table 3.2. Note that the attributes
that were extracted twice, once using the Euclidean distance and once using the cosine

similarity, are in Table 3.2 denoted with “2x”.

3.2.3  Coberence attributes obtained from sentence-similarity networks

As a part of our collaboration with the University of Novi Sad we researched an idea
of using networks to analyse coherence of student essays. The work described in this
section is a result of a joint work [Zupanc et al., 2017]. We derived different structural
metrics from sentence-similarity networks and used them to improve our system.

A sentence-similarity network is an undirected, weighted graph, describing similar-
ities among sentences of an essay. Therefore, we represent each sentence as a node and
use weights to represent similarity between sentences, as shown in Figure 3.7. Two

nodes, representing distinct sentences A and B, are connected if their similarity is
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Table 3.2

List of novel coherence attributes obtained from a higly dimensional semantic space. The attributes that are denoted with
“(2x)” were computed twice, once using the Euclidean distance and once using the cosine similarity.

basic coberence measures

1—2 average distance between neighbouring points (2x),
3—4 minimum distance between neighbouring points (2x),
5—6 maximum distance between neighbouring points (2x),
7-8 index (minimum distance/maximum distance) (2x),
9-10 average distance between any two points (2x),
11-12 maximum distance between any two points (2x),
13. Clark’s and Evans’ distance to nearest neighbour,
14. average distance to nearest neighbour,

15. cumulative frequency distribution,

spatial data analysis

16-17 average distance between points and centroid (2x),
18-19 minimum distance between points and centroid (2x),
20-21 maximum distance between points and centroid (2x),
22-23 index (minimum distance/maximum distance) (2x),
24. standard distance,
25. relative distance,

26. determinant of distance matrix,

spatial autocorrelation

27. Morans I,
28. Geary’s C,
29. Getiss G.
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Figure 3.7

Representation of an essay
with a sentence-similarity
network.
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higher than a given threshold w. The weight of the link connecting A and B is equal

to the similarity between them.

To compute similarities between sentences we transform them to data points in a
highly dimensional semantic space and use a distance metric to quantify their sim-
ilarity. To achieve this, we compute the sentence-based TF-IDF [Robertson, 2004]
representation described in Equation (3.1) and compute cosine similarity between their
vectors. The sentence-based TE-IDF is computed by computing the document-based
TF-IDF and normalizing the weights of words within each essay part with the word
frequency of an entire essay. The obtained TF-IDF vectors represent points in a high-
dimensional semantic space, which should, according to our assumption, be close to
each other in coherent essays. We can form the final network either by connecting
sentences in the decreasing order of the computed similarities until the network be-
comes a connected graph (i.e. a graph with a single connected component) or choose
a fixed threshold. Here we decided to set the threshold equal to zero and thus obtain
a relatively dense network representations of essays.

We use the obtained sentence similarity networks to compute more than 30 metrics
to quantify coherence of essays. Those network-based coherence measures can be di-
vided into the following three categories: (1) basic structural metrics, (2) compound

structural metrics, and (3) network entropy measures.
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Basic structural metrics

Basic structural metrics are related to characteristics of connected components, local
connectivity of nodes, transitivity of links and global density and compactness of net-
works [Boccaletti et al., 2006]. Two nodes belong to the same connected component if
they are directly or indirectly connected (i.e. there is a path connecting them). Isolated
nodes (nodes that are not connected to any other nodes) also count as connected com-
ponents. Connected components of a network can be determined using basic graph
traversal algorithms, such as breadth-first search (BFS) or depth-first search (DFS).
To quantify essay coherence we use the following five metrics related to connected

components of sentence-similarity networks:

- NCOMPS, number of connected components;
- LCN, number of nodes in the largest connected component;
- LCL, number of links in the largest connected component;

- LCS, size of the largest connected component normalized by the total number

of nodes;

- IS0, number of isolated nodes normalized by the total number of nodes.

If a sentence-similarity network contains a large number of small connected com-
ponents and/or isolated nodes, then the corresponding essay contains a large number
of unrelated sentences. Consequently, higher values of LCN, LCL and LCS and lower
values of NCOMPS and ISO indicate a higher coherence of text.

Dense and compact sentence-similarity networks, in which nodes exhibit high lo-
cal connectivity and links exhibit high transitivity, are indicators of highly coherent
essays. The local connectivity of a node can be quantified by its degree — the number
of links incident to the node. The strength of connections of a node to its neigh-
bours in the network can be expressed by the weighted degree — the sum of weights
of links incident to the node. The transitivity of links in the network is commonly
quantified by the clustering coefficient which is defined as the probability that two
neighbours of a randomly selected node are neighbours among themselves. The com-

pactness of a network can be measured by the average shortest path length and the
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diameter of the network — which is the longest of all shortest paths. Since sentence-
similarity networks are weighted graphs, we compute both unweighted and weighted
density, degree, transitivity and shortest path measures [Antoniou and Tsompa, 2008;

Boccaletti et al., 2006; Costa et al., 2007]:
- LNR, total number of links divided by the total number of nodes;

- DEN, regular density which is the number of links of the network divided by

the maximal possible number of links the nodes can form (denoted by M);
- WDEN, weighted density which is the sum of weights of all links divided by M;
- ADEG, average node degree;

- AWDEG, average weighted node degree;

CC, the clustering coefficient [Watts and Strogatz, 1998];
- WCC, the weighted clustering coefficient;

- ASPL, average shortest path length considering all pairs of nodes in a largest
connected component. This metric is normalized by the size of the largest con-

nected component;

- AWSPL, average weighted shortest path length. Similarly as ASPL, AWSPL is
computed considering all pairs of nodes in the largest connected component.
The shortest weighted path between two nodes can be determined using the
Dijkstra’s algorithm. Also, weighted shortest paths are computed on a mirror
network — the network in which the weight of the link connecting sentences a

and b is equal to 1-S, where S is the similarity between a and b;
- DIAM, the diameter of the network;

- WDIAM, the weighted diameter of the network, using the same procedure as
for AWSPL when determining weighted shortest paths;

- WIENER, the Wiener connectivity index defined as the sum of the lengths of

shortest paths for all pairs of nodes in the network;
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- WIENERW, the weighted Wiener connectivity index defined as the sum of the

weights of shortest paths for all pair of nodes in the network;

- ZAGREB, the second Zagreb connectivity index [Das and Trinajsti¢, 2011],

which quantifies the degree of assortative mixing, i.e.:

ZAGREB= Y, d(a)d(b), (3.9)
(a,b)eL

where L is the set of links of the network, (g, b) is the link connecting nodes a
and b, and d(x) denotes the degree of node x;

- ZAGREBS, the weighted Zagreb connectivity index where weighted node de-

grees are used instead of regular degrees;

- RANDIC, the Randi¢ connectivity index [Yang and Lu, 2011] which quantifies

the degree of disassortative mixing, i.e.:

RANDIC= Y, !

—_—; (3.10)
WS NA@A®) '

- RANDICS, the weighted Randi¢ connectivity index where weighted node de-

grees are used instead of regular degrees;

- TLS, the total strength of links which is equal to the sum of weights of all links
in the network. It was considered because sentence-similarity networks, which

contain links with high weights, also indicate highly coherent texts;

- CS, chain strength which is equal to the sum of weight of links connecting

consecutive sentences in the essay; including due to same assumption as TLS.

Compound structural metrics

Compound structural metrics are refinements of the TLS metric in which a relative
importance is assigned to the network links. Namely, we can classify links of sentence-

similarity networks according to the following criteria:

= Distance of sentences in the essay where we can distinguish between short-range

and long-range links. The presence of long-range links indicates higher global
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coherence of the essay, thus the weight of those links can be considered more

important compared to the weights of short-range links.

Global centrality where we can distinguish between bridge links connecting dis-
joint groups of nodes and non-bridge links. The presence of bridge links is of
the utmost importance to the overall connectedness of the network, therefore

they can be considered more important than non-bridge links.

Local centrality where we can distinguish between local bridge links connect-
ing loosely coupled neighbours of two directly connected nodes and local non-
bridge links, which connect nodes that have a large number of common neigh-
bours. Obviously, local bridge links are more important to local essay coher-

ence.

According to the above mentioned criteria we propose three different adjusted TLS

metrics that have the following general form:

WILS= Y, w(a,b)f(a,b), (3.11)
(a,b)eL

where L is the set of links of the network, (a, b) is the link that connects nodes @ and b,
w(a, b) is the weight of (4, b), and f is a function quantifying the relative importance
of links in the network. The adjusted TLS metrics are:

- WTLS_RD where f is the relative distance between two sentences in the essay

computed as the number of sentences between them increased by one,

WTLS_BS where f is the link betweenness centrality metric. The betweenness
centrality of a link e is defined as the sum of the fraction of all-pairs shortest

paths that pass through e [Costa et al., 2007],

- WILS_CC, for which f = 1/CC where CC denotes the link clustering coef-
ficient metric. The clustering coefficient of a link is defined as the number of
common neighbours of the nodes connected by the link divided by the total

number of their neighbours [Costa et al., 2007].
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Network entropy measures

One of the main characteristics of complex real-world networks is a high heterogeneity
of their degree distributions [Miltsakaki and Kukich, 2000]. The degree distribution
of a network summarizes the local connectivity of all nodes in the network. It can be
given by the probability mass function P, where P(k) is equal to the probability that
the degree of a randomly selected node is equal to k. The heterogeneity of the degree

distribution can be quantified by the network entropy metric defined as

m
ENTR = - Y, P(k)log P(k), (3.12)
k=1
where m is the maximal node degree [Costa et al., 2007]. The minimal value of ENTR,
ENTR,;, = 0, is achieved whenever all nodes in the network have the same degtee.
Higher values of ENTR imply higher diversity of node degrees.
In addition to the entropy of the degree distribution we also compute entropies of

the distributions of the following node and link metrics:
- ENTR_BC, the entropy of the node betweenness centrality distribution;
- ENTR_BCL, the entropy of the link betweenness centrality distribution;

- ENTR_D, the entropy of the distribution of D, where D is the relative distance

between two sentences connected in the network;

- ENTR_SD, the entropy of the distribution of SD, where SD is the sum of rel-

ative distances between a sentence and its neighbours in the network;

- ENTR_F, the entropy of the node farness distribution. The farness of a node is
equal to the sum of geodesic distances (the length of a shortest path) between

the node and all other nodes in the network.
3.2.4 DPresentation of the network coberence attributes

As a result, we extracted 32 different coherence attributes from sentence-similarity
networks that are listed in Table 3.3. We joined the 29 spatial coherence attributes

and 32 network coherence attributes with 72 syntactic attributes in the system AGE+.
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Table 3.3

List of coherence attributes obtained from a sentence-similarity networks.

. Zupanc

basic structural metrics

O 00 N O\ WV AW N
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21.
22.
23.
24.

. # connected components (NCOMPS),

. # nodes in the largest connected component (LCN),
. # links in the largest connected component (LCL),

. largest connected component (LCS),

. # isolated nodes (ISO),

. # links divided by # nodes (LNR)

. regular density (DEN),

. weighted density (WDEN),

. average node degree (ADEG),

. average weighted node degree (AWDEG),

. clustering coefficient (CC),

. the weighted clustering coefficient (WCC),

. average shortest path length (ASPL),

. average weighted shortest path length (AWSPL),

. diameter (DIAM),

. weighted diameter (WDIAM),

. Wiener connectivity index (WIENER),

. weighted Wiener connectivity index (WIENERW),
. second Zagreb connectivity index (ZAGREB),

. weighted second Zagreb connectivity index (ZAGREBS),

Randi¢ connectivity index (RANDIC),

weighted Randi¢ connectivity index (RANDICS),
strength of links (TLS),

chain strength (CS),

compound structural metrics

25.
26.

27.

distance of sentences in the essay (WTLS_RD),
global centrality (WTLS_BS),
local centrality (WTLS_CC),

network entropy measures

28.
29.
30.
31.
32.

entropy of the node betweenness centrality distribution (ENTR_BC),
entropy of the link betweenness centrality distribution (ENTR_BCL),
entropy of the distribution of the relative distances (ENTR_D),

entropy of the distribution of the sum of the relative distances (ENTR_SD),
entropy of the node farness distribution (ENTR_F),
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3.3 Semantic Automated Grader for Essays (SAGE)

Accurately reproducing the human graders is no longer the main goal of AEE sys-
tems [Bejar, 2011; Attali, 2013; Williamson et al., 2012]. It is desirable that the AEE
systems can recognize certain types of errors, including syntactic errors, and offer auto-
mated feedback on correcting these errors. In addition, the systems shall also provide
global feedback on content and development. The current limitation of the feedback
is that its content is limited to the syntactic aspect of the essay while neglecting the
semantic aspects. Exceptions are systems [Gutierrez et al., 2014; Brent et al., 2010]
that include semantic evaluation of the content, but are not automatic.

When assessing student essays we can detect different kinds of errors: grammatical
errors, lexical errors, semantic errors, and mechanics errors [Wu and Garza, 2014].
The AGE system already detects the grammatical, lexical, and mechanics errors with
linguistic attributes (see Section 3.1). The semantic errors can be further divided into
detecting the wrong word choice and detecting contradictions in the text. In this sec-
tion we propose a fully automatic system that enhances AGE+: the system discovers
semantic errors focusing on discovering contradictions in the text and provides a com-
prehensive feedback. We name the system SAGE - Semantic Automated Grader for

Essays.

3.3.1  Automatic error detection system

The crucial novelty of the system SAGE is the Automatic Error Detection (AED) sys-
tem. The logic of the proposed AED system is illustrated in Figure 3.8 and described
in Algorithm 1. The system starts by constructing the base ontology based on com-
mon sense knowledge (everyday universal facts) and supplements it using a source text
(facts in text about which the students need to write), domain knowledge (facts about
a specific domain) and target knowledge (additional facts about the knowledge that
the students are required to show). In parallel to constructing the base ontology, we
use entity recognition, coreference resolution and open information extraction to ob-
tain extractions from an input essay. The result of open information extraction are
triples {<argl,rel,arg2>} that describe relations rel between arguments (subjects
or objects) argl and arg2. The system afterwards proceeds by iteratively adding ex-
tractions into the base ontology and using the Hermit logical reasoner [Motik et al.,

2009] to determine if an ontology is consistent after adding each extraction. If the
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Figure 3.8

Automatic Error Detec-
tion (AED) system. The
ontology-building (left)
part automatically builds
an ontology by combining
different ontologies into a
base ontology. The extrac-
tion (right) part extracts all
possible extractions using
entity recognition (ER),
coreference resolution
(CR) and open informa-
tion extraction (IE) tools.
In the final step, the AED
system merges extractions,
one by one, with the base
ontology. If the logical rea-
soner determines that new
extraction is inconsistent
with the base ontology,

it reports a semantic er-
ror [Zupanc and Bosni¢,
2017a).
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method 1 method 2
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consistency-checking algorithm finds a contradiction in the ontology, it reports a dis-
covered consistency error and includes it in the final feedback.
In the following subsections we describe each part of our system, illustrated in Fig-

ure 3.8, in detail.

3.3.2  Construction of the base ontology

The system starts building the base ontology with an ontology that contains the com-
mon sense knowledge (also referred to as an upper ontology). We use the Common
Semantic Model (COSMO) ontology [Cassidy, 2009], which is comprised of a lattice
of ontologies that serve as a set of basic logically-specified elements (classes, relations,

functions, instances). The ontology is derived from elements in the public ontologies
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OpenCyc', SUMO?, BFO? and DOLCE*. The COSMO ontology’ serves as a foun-
dation ontology that has enough fundamental concept representations so that it can
translate assertions from different ontologies into a common terminology and format.
The COSMO ontology is in the OWL format and contains inference rules in a form
of subclass and subproperty relations and restrictions [Cassidy, 2009].

We use the WordNet taxonomy [Miller, 1995] to add synonyms (gathered in synsets)
and hypernyms to our ontology. We proceed by supplementing the COSMO ontology
with the following:

1. Source text knowledge: Our system extracts the knowledge of the source text,
upon which the essay subject is based. It processes it using steps described in
Section 3.3.4. If the ontology becomes inconsistent after a new extraction is

added, we detect the error and disregard the extraction.

2. Domain knowledge: In addition to source text knowledge, the system supple-
ments the base ontology with domain knowledge that contains knowledge about
the wider scope of an essay in a form of an ontology, including synonyms and
hypernyms. For example, if students write an essay about genes and biology,

we add a Gene Ontologyé.

3. Target knowledge: The source text and the domain knowledge represent knowl-
edge about a specific domain. Professors or assessors can add specific desired
knowledge which they explicitly expect the students to express in an essay in a
form of triples. The presence of the target knowledge in an essay can have an
important role when grading an essay. Detection of this knowledge can increase

the accuracy of grading and improve the feedback quality.

Ambiguity is a problem inherent to language that cannot be ultimately resolved.
However, we do try to disambiguate words by considering their context. When our

system adds new knowledge to the ontology and it encounters ambiguity, the system

'http://www.opencyc.org/
*http://www.ontologyportal.org/
3http://www.ifomis.uni-saarland.de/bfo/
4http://www.loa-cnr.it/DOLCE.html
Shttp://www.micra.com/COSMO/
shttp://geneontology.org/


http://www.opencyc.org/
http://www.ontologyportal.org/
http://www.ifomis.uni-saarland.de/bfo/
http://www.loa-cnr.it/DOLCE.html
http://www.micra.com/COSMO/
http://geneontology.org/
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proceeds as follows: It first compares the context (i.e. sentence) in which an entity
appears in an essay with the meaning and examples of the possible instances (or classes)
from the ontology. The meaning is available through the WordNet inclusion in the
ontology. The instance with the most similar context use is selected. In the rare case

of zero similarity, the WordNet lemma with the lowest index is selected.

3.3.3  DProcessing of the ungraded essay

Preprocessing.  In the preprocessing phase the system first reads an essay and breaks
it into sentences. Then it creates a duplicate of each sentence (the system needs to
retain the original sentence for ER, CR, and OIE) and does several preprocessing steps:
tokenization; part-of-speech tagging; finding and labelling stopwords, punctuation

marks, determiners and prepositions; transformation to lower-case; and stemming.

Entity recognition.  Shallow parsing is the process of identifying syntactical phrases
in natural language sentences. A shallow parser identifies several kinds of phrases
(chunks) that are derived from parse trees; i.e. noun phrase (NP), verb phrase (VP),
prepositional phrase (PP), adverb phrase (ADVP), and clause introduced by subordi-
nating conjunction (SBAR). These chunks provide an intermediate step to natural lan-
guage understanding. Although identifying the whole parse trees can provide deeper
analyses of the sentences, it is a much harder problem [Punyakanok and Roth, 2001].

Our system uses the Illinois Shallow Parser [Punyakanok and Roth, 2001] to deter-
mine chunks which we can later use for coreference resolution, searching for a suitable
chunk when connecting extractions with a parts of sentences, and matching chunks

with individuals, classes and relations within the ontology.

Coreference resolution. A given entity — representing a person, a location, or an or-
ganization — can be mentioned in text in multiple and even ambiguous ways. Un-
derstanding natural language and supporting intelligent access to textual information
requires identifying whether different entity mentions are actually referencing the same
entity [Bengtson and Roth, 2008]. The coreference resolution processes unannotated
essay text and shows which mentions are coreferential.

Our system uses two different coreference resolution systems (the Illinois Corefer-
ence Resolution [Peng et al., 2015] and the Stanford Parser [Manning et al., 2014]) to

detect coreferences in an essay and use them when adding extractions to the ontology.
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The system combines coreferences discovered by both systems and thus increases the

accuracy of discovered coreferences.

Open information extraction. — After the coreference resolution, the system performs
information extraction using four different systems and returns triples, as we have de-
scribed in Section 2.3.1. Within the process, the duplicate extractions are removed,
as well as the faulty extractions (e.g. those consisting only of a subject and a relation,

while an object is missing).

After all of the previously described phases, the system starts to process each sentence

sequentially and adds each extraction to the ontology by utilizing the logic reasoner.
3.3.4 Logic reasoner

After obtaining the base ontology and the extractions from the essay, we can start with
discovering semantic errors. To achieve this we use Hermit, the logic reasoner [Motik
et al., 2009] (described in Section 2.3.2), as shown in Algorithm 1. If the ontology
is inconsistent or has an unsatisfiable concept after adding an extraction, the system
concludes that there is a semantic error in the essay. The system remembers where the
error occurred to later provide detailed feedback. The system then deletes the relation
from the ontology and continues with the next extraction. Whenever an extraction is
processed, the system first looks for both entities (predicates) in the ontology. If the
ontology does not yet contain any of them, the WordNet [Miller, 1995] taxonomy is
used to find synonyms or coreferenced entities within the ontology. If the ontology
still does not contain any synonyms or coreferences, the system looks for hypernyms
of the entity and creates a subclass (i.e. creating a triplet with subclassOf relation). If
all described attempts fail, the last alternative is to create a new class or individual in
the ontology (see Section 2.3.2). When both entities are included in the ontology, the
system first checks if the specific relation is not yet a part of the ontology and adds it

accordingly.

SI
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Algorithm 1

Pseudocode of the Automated Error Detection (AED) system.

function MaIN(common_sense_ontology, domain_knowledge,  target_knowledge,
source_text, ungraded_essay)
function exTract(fext, ontology)
Preprocessing
Entity recognition
Coreference resolution
Open information extraction
for sentence in text do
for relation in sentenceRelations do
Add to ontology
HermiT check
print errors
end for
end for
return (ontology, errors)
end function

ontology « common_sense_ontology

(ontology, ) < ExTRACT(S0urce_text, ontology)
ontology « ontology + domain_knowledge
ontology « ontology + target_knowledge

(__, errors) « extract(ungraded_essay, ontology)
return errors

end function
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3.3.5  DPresentation of the consistency attributes

Based on detections of semantic errors in an essay that were detected by the logic
reasoner (as explained in the previous section) we implemented three error attributes

that are illustrated as the right branch in Figure 3.1:
1. number of unsatisfiable cases when adding classes and individuals in the ontology,
2. number of inconsistency errors after adding a triple to ontology,
3. total number of consistency errors (sum of the first two attributes).

In the remaining sections we proceed to evaluate the benefits and performance of the
proposed attributes.
We extracted 3 different semantic attributes that are listed in Table 3.4. We joined

these attributes with 133 attributes from AGE+ into a system SAGE.

Table 3.4

Consistency attributes.

semantic

1. number of unsatisfiable cases
2. number of inconsistency errors,

3. total number of consistency errors,

3.3.6  Providing automated feedback

One of the main advantages of the system SAGE is that it provides comprehensive and
informative feedback about syntactic and semantic errors. When it detects an error, it
reports a pair of conflicting ontological relations to the student. The automated error
detection is based on the logic reasoner, which we evaluate in the following. We also

provide some examples of a semantic feedback from the AED system.

Performance of the automated error detection system

To preliminarily evaluate the proposed automated error detection system, we con-

structed an artificial dataset consisting of 50 sentences describing a girl named Lisa.
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We manually labelled sentences as correct and incorrect to denote the ground truth,
having 36 correct and 14 incorrect sentences. As an input to the automated error de-
tection system we used only a common sense ontology and were aiming to measure
how effectively the system detects incorrect sentences.

We measured sensitivity and specificity of our system, where the sensitivity expresses
the proportion of incorrect sentences that are correctly identified as incorrect, and the
specificity measures the proportion of correct sentences that are correctly identified as
correct. By running the experiment, we obtained 100% specificity and 71.4% sensitiv-
ity. The 100% specificity was expected, since the system treats each sentence as correct
unless it detects an error in the sentence. The sensitivity shows that there is still a room
for improving successful detection of incorrect sentences, and we know where to focus
on.

The pipeline of the proposed AED system consists of preprocessing, information
extraction, and a logic reasoner, where information extraction is further performed in
three steps: entity recognition, coreference resolution, and relation extraction. Note,
that our system can be only as good as the weakest tool in our pipeline. Even though
assessing the quality of each single step is not our objective, we have to be aware of the
quality of the NLP tools. The most questionable are the IE tools. The system used for
entity recognition (Illinois Shallow Parser [Punyakanok and Roth, 2001]) reports the
F1-score of approximately 0.92, and the two coreference resolution systems (Illinois
Coreference Resolution [Bengtson and Roth, 2008] and Stanford Parser [Chen and
Manning, 2014]) report F1-scores of 0.80 and 0.60, respectively. For higher consis-
tency, we used different approaches for the same task, however, especially the perfor-
mance of the coreference resolution is modest. We argue here, that our aim was not to
improve existing NLP tools, but to achieve the best possible results with the existing
ones. Therefore, we aim our system to detect as many errors as possible and we aim to
improve the accuracy of our system when novel approaches for information extraction
tasks will be proposed. We can furthermore also improve the detection of ambiguous
sentences and sentences that require reasoning by including many different relations

in the ontology. This subject shall be the focus of further research.
Examples of the provided feedback

In the following we first provide several examples obtained on the artificial dataset de-

scribed above. We then proceed with the examples obtained on the real world datasets.
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Figure 3.9 displays a simple example of a student who was writing about a girl Lisa.
When he wrote that Lisa is a boy, our system detected an error and reported it in the
form of feedback. The system discovered the error because the classes girl and boy
are subclasses of female and male classes, respectively, that are disjoint hypernyms,

but are yet taken into account by SAGE.

Extraction ['Lisa', 'is', 'a boy'] is inconsistent with

a relation ['Lisa’, 'is', 'girl'] in the base ontology.

In Figure 3.10 we can see an example that first uses coreference resolution to detect
that she and Lisa are synonyms. Furthermore, the relation born is a function in our
ontology, i.e. each class can have at most one relation of type born. When another

relation is added for the same class, system detects an error.

Extraction ['she', 'was born', 'in London'] is inconsistent with

a relation ['Lisa', 'born', 'Paris'] in the base ontology.

Figure 3.11 provides a third example in which the student first wrote that Lisa does
not like sports and later that she likes tennis. In the ontology, tennis is a subclass of
sport and relations like and not like are disjoint. Coreference resolution detected
that she and Lisa are synonyms, so the system recognized an error. Notice that an
ontology and the system allow that a class has more relations of the same type with
different classes (e.g. 1ike or isA relation) as long as these classes are not disjoint

(e.g. Lisa can be a girl and a student).

Extraction ['She', 'likes', 'tennis'] is inconsistent with

a relation ['Lisa’, 'not like', 'sport'] in the base ontology.

The fourth example (in Figure 3.12) represents a more complex example as a combi-
nation of three sentences. First two sentences: “Lisa likes slow sports and doesn’t like

quick sports.” and “Tennis is a quick sport.” do not initiate an error. When a student
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Figure 3.9

Error detection in case of
disjoint hypernyms [Zu-

panc and Bosni¢, 2017a].

Figure 3.10

Error detection by con-
sidering coreferences and
unique relations.

Figure 3.11

Error detection by con-
sidering synonyms and
coreferences [Zupanc and
Bosni¢, 2017a).
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Figure 3.12
Error detection of disjoint-

ness of hypernyms [Zu-
panc and Bosni¢, 2017a].

Figure 3.13

Error detection using
coreference resolution.
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writes a sentence “Lisa likes tennis.” the system returns an error. As mentioned before
in the ontology, tennis is a subclass of sport and relations like and not Llike are
disjoint. Likewise, the classes slow and quick are disjoint hypernyms, based on which

the system is able to detect an error and return the feedback.

Extraction ['Lisa', 'likes', 'tennis'] is inconsistent with
relations ['Lisa', 'like', 'slow sport'] and

['Tennis"', 'is', 'quick sport'] in the base ontology.

To test how the proposed system works on the real world data, we ran it on the
source-based essays written by 13- and 15- year-old students (for more details about
the data see Secton 4.1.1). We manually checked the output of several essays to report
on the AED system’s performance.

The first source was a short story titled Rough Road Ahead: Do Not Exceed Posted
Speed Limit by Joe Kurmaskie. Students had to write a response that explains how the
features of the setting affect the cyclist. We present a part of an essay where the student
was writing about the cyclist and wrote:

The setting was hot and dry, which affected the cyclist greatly. She didn’t have enough space
to carry a lot of water.

The coreference resolution detected that the cyclist and she are referring to the same
person, consequently meaning that the cyclist is a woman. The base ontology - among
other knowledge - includes data from the source text, where we extracted the fact that

the cyclist is a man named Joe Kurmaskie. The error is shown in Figure 3.13.

Extraction ['Joe Kurmaskie®, *is’, ‘a man'] is inconsistent with
*, 'a woman'] in the base ontology.

a relation ["the cyclist’,

Another feature of the proposed system is that it checks for the facts or objects
that have to be discussed in an essay. We input this information through the desired
knowledge part of the ontology. In one of the source-based essays students were writing
a response about the story 7he Mooring Mast by Marcia Amidon Liisted where they
had to describe the obstacles faced by the builders of the Empire State Building. The
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most important was to mention the dirigibles. The following short response did not

exhaustively address the problem:

The Empire state building was facing of with Chrysler building that was being constructed.
Chrysler building had a trick up his sleeve by constructing 185 foot spire inside the building
and then shocked the public. Bring it to a hieght of @DATET feet, 46 feet taller than the
originally announced hieght of the Empire State building. Soon to be the tallest building.

The empire state building was destined to never fulfill it’s purpose.

The system reports on the several missing pieces of information in the text as seen

in Figure 3.14.

In your essay you did not write about ‘dirigibles’.
To improve your essay you can include the following facts:
["steel frame', ‘has to be', ‘strengthened’] Figure 3.14

["dirigibles®, ‘cannot fly', *low’']
[*dirigibles®, ‘dock’, ‘in open landing fields']

Detection of the missing
information based on the
desired knowledge part of
the ontology.

However, because the pipeline of the proposed system is long and several tools
achieve only moderate accuracy, we expected to detect false positive and false nega-
tive examples. The first presented error occurs due to the mistake in the coreference
resolution step. The student is writing about a girl and her mother from the story
Winter Hibiscus by Minfong Ho. In the sentence

Saeng’s mother understood how she was feeling, and she was not dissapointed in her for failing

her driving test either.

the student wrote that the mother was not disappointed. But the coreference resolu-
tion refers to she in the first and she in the second part as the same entity even though
the first one is referring to the girl and the second one is referring to her mother. Con-
sequently, the system adds to the ontology that the girl is not disappointed. The on-
tology previously included the fact from the source text that the girl was disappointed,

thus the system returns an error (see Figure 3.15).

Figure 3.15
Extraction ["she’, ‘was not’, ‘disappointed’] is inconsistent with

An example of a false
positive error in an essay
due to the error in the
coreference resolution.

a relation [‘Saeng’, ‘is®, ‘disappointed’] in the base ontology.
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In the last example we provide a semantic mistake that remains undiscovered. A

student wrote the following sentence:

She says that she much rather do gardening then school work.

There was no such statement in the text, but because it did not contradict any fact

from the ontology, the semantic mistake remained undiscovered.
3.4 Semantic Automated Grader for Essays- (SAGE-)

Semantic Automated Grader for Essays- (SAGE-) focuses on evaluation of the consis-
tency of the facts written in an essay and thus includes only syntax and consistency
attributes described in Sections 3.1 and 3.3. We included this system for evaluation
purposes only to research the contributions of the consistency attributes in detail. Since
the syntax and consistency attributes are already described in previous sections, we

omit repeating them here.



Comparison of AGE, AGE+,
SAGE-, and SAGE against the
state-of-the-art
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The four proposed systems in Section 3 represent four different aspects of grading:

= scoring an essay without understanding the content (AGE),

= evaluating the content through the coherence (AGE+),

= prioritizing the semantic of an essay with provided feedback to a student (SAGE),

and
= prioritizing the consistency of the facts written in an essay (SAGE-).

To evaluate the systems we first extracted the proposed attributes from the text. For
extracting the syntax attributes, we helped ourselves by using the Natural Language
Toolkir (NLTK) [Bird et al., 2009] for natural language processing in Python and a
spellchecking library PyEnchant”. In this chapter we describe the methodological de-

tails of the grading models and how we compared and evaluated the systems.
4.1 Evaluation

4.1.1  Essay datasets

We performed the experiments on datasets that were provided within the Automated
Essay Scoring competition on the Kaggle website”. The datasets contain student essays
for eight different prompts (essay discussion questions). The anonymized students
were from the USA and were drawn from three different grade levels: 7, 8, and 10
(aged 12, 13, and 15, respectively). Four datasets included essays of traditional writing
genres (persuasive, expository, narrative) and the other four were source based (i.e. the
students had to discuss questions referring to a previously read source document). Each
training set was pre-scored by at least two human expert graders. Since Dataset 2 was
scored using two different criteria, it appears as two separate datasets 2a (scored with
an emphasis on writing skills) and 2b (scored with an emphasis on language skills) in
the tables with the results.

The authors of the datasets already divided them into fixed training and test sets.
We used training sets during the attribute development phase: for syntax and spa-

tial coherence attributes we trained on dataset 1, for network coherence attributes we

'https://pythonhosted.org/pyenchant/
*Access to data can be requested through the Kaggle website http://www.kaggle.com/c/asap-aes/
data or ASAP website http://www.scoreright.org/


https://pythonhosted.org/pyenchant/
http://www.kaggle.com/c/asap-aes/data
http://www.kaggle.com/c/asap-aes/data
http://www.scoreright.org/
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trained on dataset 8, and for consistency attributes we trained on dataset 3. During
the testing phase, we evaluated the performance also on other datasets that were not
included in the development process above. We used the same training and test sets
as authors of the datasets to build scoring models and measure prediction accuracy,

respectively. The characteristics of the used datasets are shown in Table 4.1.

Table 4.1

Properties of essay datasets divided into training (first part) and test set (second part).

Characteristic DS1 DS2 DS3 DS4 DSs DSé6 DSy DS8
source- source- source- source-
based based based based

Grade 8 10 10 10 8 10 7 10

Type of essay  persuasive persuasive expository narrative

# essays 1,783 1,800 1,726 1,771 1,805 1,800 1,569 723
Mean # words 366.40 381.19 108.69 94.39 122.29 153.64 171.28  622.13
SD of # words 120.40 156.44 53.3 SI.68 57.37 §55.92 85.2 197.08

Range of grades  2-12 1-6 1-4 03 0-3 0-4 0-4 0-24 0-60
Mean grade 8.53 3.42 3.33 1.85 1.43 2.41 2.72 19.98 37.23
# essays 589 600 568 586 601 600 441 233

Mean # words 368.96 378.4 113.24 98.7 127.17 152.28 173.48  639.05
SD of # words 117.99 156.82 56.0 $3.84 57.59 52.81 84.52 190.13
Range of grades  2-12 1-6 1-4 03 0-3 0-4 0-4 0-24 0-60
Mean grade 8.62 3.41 3.32 1.9 1.51 2.51 2.75 20.13 36.67

SD = standard deviation; # = number of

In the following we present two examples of written essays that are part of DS1.
Essays from DS1 were written by 13-year-old students where they had to write a letter
to a local newspaper and state their opinion on the effects that computers have on
people. Note that the authors of the datasets automatically anonymized names in
essays to prevent inference about the participating states. The first essay is an example
of a well written essay (resolved score 12):

Dear @ORGANIZATION1, @CAPS1 has been brought to my attention that some people
feel that computers are bad for us. Some people say that they are a distraction to our physical
and mental health. Although I can see how some people would think this, I believe that com-
puters are a good benifit to all society. I believe this because computers can help people learn,
stay intach with friends or family that live far away, and stay orginized. Sometimes people are

on the computer, learning and they don’t even know @CAPS1. Simply by visiting the @OR-
GANIZATION2 homepage, you automaticly see the news feeds of things happening around
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the world. Other times people go online diliberatly to learn. If someone is thinking about go-
ing to @LOCATIONT then they would probably go on the internet to learn about @ CAPS1.
Simply by searching equadore many choices will pop up you climate, sesonal weather, hotel
options, and other facts. But thats not the only way people are learning on the internet. Now,
many college students have the option of taking their lessons online. This is because some
students like calm quietness or own house the distractions of sitting in class. Friends could
be a big distraction in class, but how can you stay intouch with your friends if they moved
away? I remember in second grade my bestfriend, @LOCATION2, move away. I was so sad.
I badey ever talked to her, but then one day our parents set us up on a vidio chat! I felt like
T was right their with her! This was great, and I though about how many people could use
this to talk to relatives or friends. Another great way to stay intouch into friends and family
is through e-mail. By writing a message and sending @CAPS1 can make staying in touch so
easey, and your personal wants can chat and emails are a easey thing to send world wide. So
many people love to type on a keyboard as well, but so many different papers that you type
could be lost. I, for me, hate clutter, and I have so many school binders for papers to be lost
in. This is why I take great advantage of typing my paper every chance I get. My computer
keeps me orginiced because I could never loose my work. File save, is an idiot proof way to
keep all your files in a safe place. Then all you have to do is press print to get a hard copy. I
am sure that many people love using their computer for the same reason. Also, I myself am
a much faster typer than I am writer so my work is a lot needey on the computer. As you
can see their are plenty of reasons why using a computer is goof for our society you can learn,
stay intouch with friends and family, and stay orginiced. Many people, could agree with me.

Don't you?

The second essay is an example of a poorly written essay (resolved score 5):

Computers don't have any affect on kids we just love going on cause we use it for help and
this persuade the readers of the local newspaper cause we need to be able to communicate
also do writing essays and doing social studies or science homework my ideas are let us go
computers cause were not bothering u can just leave us alone and let us do what you need to
do cause what computers are what give us information for we have to do and were to do wat
we gotta do and u people can just leave us alone cause arent addicting to me or anyone and
if we were it still would it matter cause a computers a computer u dont punish it because just
punish us from the computer punish us because of it cause its the computer fault it can be
addicting cause the computer is device that gives us wat we need and the information we also

the computer does favors for us the computer is a amazing thing.

4.1.2  Evaluation measures

For evaluation of the prediction models performance we use two widely used perfor-

mance measures:

- the exact agreement measure, which is defined as the percentage of essays that

were graded equally by both graders.
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- the guadratic weighted Kappa, which is an error metric that measures the degree
of agreement between two graders and is analogous to the correlation coeffi-
cient. This metric typically ranges from 0 (expected agreement between ran-
dom scores) to 1 (complete agreement between graders). In case that there is a
lesser agreement between the graders than expected by chance, this metric can
have values below 0. Assuming that a set of essays E has S different possible
scores, 1,2, ..., S, and that each essay receives scores from two different graders

(e.g. human/computer), the metric is calculated as follows:

2, w0

(4.1)
2, wigEij

k=1

where w are weights, O is a matrix of observed scores and E is a matrix of
expected scores. The matrix of weights w;; is an S-by-S matrix that is calculated

based on the difference between graders’ scores, such that

-2

wi,] - (S _ 1)2 . (4'2)

The matrix of observed scores O, which is an S-by-S histogram (agreement)
matrix, is constructed over the essay scores, such that Oi,]' corresponds to the
number of essays that received a score i by grader A and a score j by grader B;

analogously, E is an S-by-S histogram matrix of expected scores:

_ Hy; - Hg;
WTOUN
where Hy;,i =1, ..., S denotes the number of essays that grader A scored with

E (4.3)

score i, and N is a number of gradings or essays. E is normalized with N such

that E and O have the same sum [Zupanc and Bosni¢, 2015].

To compare the significance of the difference between two quadratic weighted Kap-
pas, we used the Wilcoxon signed-rank test. This is a non-parametric statistical test that
is used when comparing repeated measurements on a single sample to assess whether
their population mean ranks differ. The test assumes that data are paired, come from

the same population and are not necessarily normally distributed [Kanji, 2006].
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4.1.3

Prediction model

Our first experiments to predict the final score included the following classifiers with

the described key properties:

linear regression: using QR decomposition, without regularization and param-

eter fitting; using /m from the szats’ package in R;

regression trees: with constructive induction in the inner nodes; node splitting
criteria: RReliefFexpRank, splits are binary; in regression tree leaves we are us-
ing linear reduced models (as in M5); using CoreModel from the CORElearn*
package in R;

feed-forward neural networks: single-hidden-layer neural network; 6 units in
the hidden layer; weight decay = 0.1; (case) weights set to 1; maximum number

of iterations 1000; using the nnet’ package in R;

random forest: 100 trees; sampling of cases is done with replacement; the num-
|attributes|

ber of attributes randomly sampled as candidates at each split is 3 using

the randomPForest® package in R;

extremely randomized trees: a model similar to random forest, but it uses the
same data to train all trees in a set and chooses splitting nodes randomly among
variables; the ensemble contained 100 trees; the number of attributes tried at

|attributes|
each node was ———

; the number of random cuts for each (randomly chosen)
attribute was 1 (default), which corresponds to the official ExtraTrees method;

cutting thresholds are uniformly sampled; using the exzraTrees” package in R.

Table 4.2 shows the results of the Kappa metric for each classifier using all the attributes

from the AGE system. We performed the evaluation using 10-fold cross-validation

on the training sets. Since the results showed that the random forest and extremely

randomized trees [Geurts et al., 2006] achieved the highest performance, we decided

to use them as essay grade predictors in further evaluation. Both models, using random

3https://stat.ethz.ch/R-manual/R-devel/library/stats/html/lm.html
4https://cran.r-project.org/web/packages/CORElearn/CORElearn.pdf

Shttps://cran.r-project.org/web/packages/nnet/nnet.pdf

6http://cran‘r—project.org/web/packages/randomForest/randomForest.pdf

7http://cran.r-project.org/web/packages/extraTrees/extraTrees.pdf


https://stat.ethz.ch/R-manual/R-devel/library/stats/html/lm.html
https://cran.r-project.org/web/packages/CORElearn/CORElearn.pdf
https://cran.r-project.org/web/packages/nnet/nnet.pdf
http://cran.r-project.org/web/packages/randomForest/randomForest.pdf
http://cran.r-project.org/web/packages/extraTrees/extraTrees.pdf
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Table 4.2

Values of the quadratic weighted Kappa for different regression models: linear regression (LR), regression trees (RT), neural
network (NN), random forest (RF), and extremely randomized trees (ERT).

Model DS1 DS2a DS2b DS3 DS4 DSs DS6
LR 0.8359 0.7232  0.5I75  0.6535  0.7090  0.7900  0.7663
RT 0.8070  0.6943 0.4885  0.6620 0.7113 0.7828  0.7184
NN 0.8247 0.6964 0.4883  0.6328 0.6877 0.7776  0.7428
RF 0.8447 0.7389  0.5386 0.6591 0.7174 0.7949  0.7636
ERT 0.8434 0.7439 0.5384 0.6554 0.7148 0.7967  0.7670
Model DSy DS8 average
LR 0.7781  0.7785 0.7280
RT 0.7323  0.7289 0.7028
NN 0.7601  0.7247 0.7039
RF 0.7888  0.7738 0.7356
ERT 0.7882  0.7807 0.7365

forest and extremely randomized trees, continued to achieve similar results in all the

following experiments, thus we report only the results for the random forest model.
4.2 Results

To analyse the potential benefits of the proposed attributes, we first evaluated their rel-
evance and contribution to predictive accuracy. We proceed by comparing predictive
accuracies of four different versions of our AEE system and continue by comparing

the best system to other state-of-the-art systems.

4.2.1  Evaluation of the implemented attributes

As described in Section 3, we implemented 136 existing and novel attributes (72 lin-
guistic and content attributes, 29 + 32 coherence attributes, and 3 consistency at-
tributes). To improve model interpretability, achieve shorter training times and en-
hance generalization by reducing overfitting, we performed attribute selection to detect
redundant and irrelevant attributes. Attribute selection was performed using the for-
ward attribute selection approach. Starting with an empty set of attributes, an attribute
that improves the model performance the most (measured by the quadratic weighted

Kappa measure) was included into the set in each iterative step. The procedure was
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Figure 4.1

The scatter plot of the
essay’s score in dependency
on the syntax attribute
number of words with the
smooth local regression
line using DS1.
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terminated when there were no more attributes that improved the model performance.
The model performance was measured using the internal 10-fold cross-validation on
the training set, and the best attribute in each step was selected according to the highest

average Kappa value among all folds.

The ranks of the 50 most relevant attributes, averaged across all data sets, are shown
in Table 4.3 in the decreasing order of the average rank. From the ranking we can
see that the number of words and number of different words influence the final grade
the most, as well as the score point level that uses cosine similarity between already
graded essays and a new essay. We can observe that some of the proposed coherence
attributes rank among the top 10 attributes: Geary’s C (7th), local centrality (8th),
and Clark’s and Evans’ distance to nearest neighbour (9th). Moreover, the results show
that coherence attributes present 38% of the top 5o attributes. The most highly ranked

proposed content attribute — number of inconsistency errors — is in the 46th place.

We further evaluated the influence of attributes on the final score, with the inten-
tion to interpret the meaning of their values by plotting the trend dependencies. In
the following we provide three representative examples from different attribute groups

(syntax, coherence, and consistency groups from Figure 3.1).

Score

600 800

ado
Number of words

Figure 4.1 illustrates the dependency of the length of the essay (measured in number
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Table 4.3

Average ranks of 50 most relevant attributes (1-25) within all 136 attributes across all 9 datasets. The ranks were obtained using
the forward attribute selection. Group abbreviations stand for: syntax-linguistic (S-L), syntax-content (S-C), coherence-spatial
(C-S), coherence-networks (C-N), and consistency (C).

attribute group  average rank
1. number of words S-L 16.44
2. number of different words S-L 23.33
3. score point level for max cos. sim. over all score points S-C 27.33
4. number of sentences S-L 32.11
5. number of tokens S-L 33.78
6. number of spellchecking errors S-L 36.78
7. Geary’s C C-S 38.33
8. local centrality (WTLS_CC) C-N 38.52
9. Clark’s and Evans’ distance to nearest neighbour S-L 38.67
10. pattern cosine S-C 39.11
I1. type-token-ratio S-L 39.89
12. number of genitive markers S-L 41.22
13. number of characters S-L 41.33
14. cosine similarity with source text S-C 42.00
15. entropy of the link betw. centr. distr. (ENTR_BCL) C-N 41.27
16. index (minimum distance/maximum distance) (Euclid) C-§ 42.89
17. average word length S-L 43.22
18. number of verbs - past tense S-L 43.89
19. average distance between neighbouring points (Euclid) C-S 44.22
20. number of long sentences S-L 44.89
21. min distance between points and centroid (cos) C-S 47.11
22. number of predeterminers S-L 50.44
23. number of particles S-L 50.67
24. Getiss G C-S 50.78

25. relative distance C-S SI.II
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(continued) Average ranks of 50 most relevant attributes (25-50) within all 136 attributes across all 9 datasets. The ranks were
obtained using the forward attribute selection. Group abbreviations stand for: syntax-linguistic (S-L), syntax-content (S-C),

coherence-spatial (C-S), coherence-networks (C-N), and consistency (C).

attribute group  average rank
26. standard distance C-S 51.67
27. simple measure of Gobbledygook S-L §3.11
28. weighted sum of all cosine correlation values S-C 5333
29. average weighted node degree (AWDEG) C-N 53.52
30. most frequent word length S-L 53.56
31. number of superlative adverbs S-L 54.00
32. happax legomena S-L 5$4.00
33. number of possessive pronouns S-L 54.11
34. cumulative frequency distribution C-S 54.22
35. number of adverbs S-L 54.89
36. min distance between points and centroid (Euclid) C-S 5544
37. min distance between neighbouring points (cos) C-S 56.56
38. max distance between any two points (cos) C-S 56.67
39. strength of links (TLS) C-N 56.72
40. number of superlative adjectives S-L 56.78
41. max distance between neighbouring points (cos) C-S 56.78
42. entropy of the node farness distribution (ENTR_F) C-N 56.94
43. max distance between neighbouring points (Euclid) C-S 57.00
44. number of verbs - base form S-L 57.44
4s5. LIX S-L 58.67
46. number of inconsistency errors C 58.75
47. Yule’s K S-L 59.11
48. weighted 2nd Zagreb connectivity index (ZAGREBS) C-N 59.26
49. number of participles S-L 59.33
so. number of wh-determiners S-L 59.56
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of words) on the final score on DS1. We observed the same trend on all datasets. As it
was also shown in Perelman [2014] this indicates that the higher graded essays a have
higher number of words.

Coherence attributes show similar trends on different domains (i.e. datasets). How-
ever, we extracted different values for coherent essays on different domains using the
same attributes. Hence, we are not able to define a scale for each attribute that would
define how coherent an essay is. Figure 4.2 shows that different datasets (DS1 and
DS6) have a similar trend of the Moran’s I values and confirms our assumption that a
coherent essay implies high positive autocorrelation, meaning that neighbouring parts
tend to cluster together. In Section 4.1.1 we provided examples of a good and a bad
essay. Note that the first one is a coherent essay and achieves a Moran’s I score of
0.27, while the second example is a less coherent essay and achieves a Moran’s I score
of 0.03. It is evident for a reader that the flow of information in the second essay is

disorganized and is thus hard to follow.

Score
Score

o2 os
Moran's | Moran's |

Using consistency attributes we plotted the normalized total number of consistency
errors (see Figure 4.3) on DS4. As expected, the trend mostly shows less mistakes for
essays with higher scores and more mistakes for essays with lower scores. The peak in
the beginning appears due to two reasons: (1) there are quite some short essays that
do not include many semantic errors but are of low quality because of other criteria;

and (2) the dataset includes a higher number of essays graded with scores 1 and 2 and
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Figure 4.2

The scatter plots of the
essay’s score in dependency
on the coherence attribute
Moran’s I with the smooth
local regression line using

DSt and DS6.
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Score

Figure 4.3 N
The scatter plot of the

essay’s score in dependency

on the number of con-

sistency errors with the o
smooth local regression

line using DS4.

a lower number of essays scored with score 3.

Dataset 8, in addition to the final score, provides 6 rubric scores describing ideas and
content, organization, voice, word choice, sentence fluency, and convention for each
essay. Since the organization rubric also describes the coherence, we decided to fur-
ther investigate how well our proposed coherence attributes predict the organization
rubric score. In this experiment, we prepared datasets with different sets of attributes:
(a) spatial coherence attributes only (29), (b) network coherence attributes only (32),
(b) syntax (linguistic and content) attributes only (72), and (c) syntax and coherence
attributes (133). We used random forest without attribute selection to build the pre-
diction models. Table 4.4 shows the results of all models using the quadratic weighted
Kappa and Table 4.5 shows p-values calculated between the results of all the models.
Based on the high influence of number of words on the final grade, we expected high
prediction accuracy already by using the set of syntax attributes only. Nevertheless,
by adding the set of coherence attributes to the set of syntax attributes, the accuracy
additionally increased. We can also see that both sets of coherence attributes alone also
achieved relatively high prediction accuracy, which enabled us to conclude in favour
of their benefit.

We additionally calculated the Spearman coefficients between the coherence attributes
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Table 4.4

Comparison of the prediction accuracies using quadratic weighted Kappa for the organization rubric, which also measures
coherence.

attributes quadratic weighted Kappa
spatial coherence attributes 0.6040
network coherence attributes 0.5813
syntax attributes 0.6928
syntax and coherence attributes 0.7025

Table 4.5

Comparison of the significance of the difference between prediction accuracies for different models for the organization rubric
using Wilcoxon signed-rank test.

. network coherence . syntax and

attributes . syntax attributes .
attributes coherence attributes

spatial coherence

. 0.020T 0.0019 0.0016
attributes
network coherence

. 0.0020 0.0009
attributes
syntax

) 0.0433
attributes

and the organization rubric score. Getis's G, Moran’s I, and weighted Wiener con-
nectivity index (WIENERW) achieved the highest absolute correlations with 0.5947,
0.5752, and 0.5627, respectively (p-values < 0.001). Overall 42 of 61 coherence at-
tributes correlate with the organization rubric score with p-value smaller than 0.05.
To further research the correlations between different attributes we calculated Spear-
man coeflicients between all attributes for all datasets. We expect the computed cor-
relation to reveal the dependencies between attributes, as well as the relation between
the attribute value and the final score. Figure 4.4 shows the heatmap with correlation
coeflicients averaged over all datasets. The attributes are arranged in the same order
as they are represented in Tables 3.1, 3.2, 3.3, and 3.4 from left to right and from the
bottom up on the x and y axis, respectively. Syntax attributes are followed first by
spatial and network coherence attributes and at the end by consistency attributes. The
last attribute is the resolved score, which in the first row and in the last column of the

heatmap illustrates the correlations of the attributes with the human score. We can

7T
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Figure 4.4

‘The heatmap representing
the average correlations
between attributes over all
datasets.
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observe that coherence attributes indicate higher correlation among themselves than
with the other attributes. An interesting observation indicates that a group of network
coherence attributes negatively correlates with others; those are average shortest path
length (ASPL), average weighted shortest path length (AWSPL), weighted diameter
(WDiam), and diameter (Diam). A smaller square with higher correlations among
the syntax attributes represents correlations between readability measures (Gunning
Fox index, Flesch reading ease, Flesch Kincaid grade level, Dale-Chall readability for-
mula, automated readability index, and a simple measure of Gobbledygook).

To further illustrate the relations between attributes we also visualized the aver-
age correlation matrix using multidimensional scaling (MDS) [Cox and Cox, 2008]

in Figure 4.5. MDS projects our 137-dimensional data (including the final score)
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to a 2-dimensional space such that similar objects in the 137-dimensional space are
close together on the 2-dimensional plot. Each attribute is presented with a dot and
the name, however because several attributes appear very close to each other in a 2-
dimensional space, the names of some attributes are remotely written and connected
with the associated dot with a line. For higher readability, the syntax attributes are
denoted with their sequential number from Table 3.1. We can observe the formation
of several groups including coherence attributes, which corresponds to the earlier ob-

servation that several coherence attributes strongly (positively or negatively) correlate
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Figure 4.6

The correlation coefficient
differences heatmaps
between datasets of essays
of the same type (left) and
datasets of essays with
different types (right).
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to one another.

When plotting the average correlations between attributes over all datasets in Fig-
ure 4.4, we noticed differences between the strength of correlations between the same
attributes on the different datasets. Thus, we calculated the correlation matrices for
each dataset and performed a pairwise subtraction between matrices of each dataset.
We detected small differences between pairwise coefficients in correlation matrices of
datasets that contain the same type of essays (e.g. persuasive, source-based, expository,
narrative) and noticeable differences between pairwise coefficients in correlation ma-
trices of datasets with different essay types. Figure 4.6 illustrates two representative
examples of matrix differences: the left one shows the differences between datasets of
the same type (including persuasive essays — DSt and DS2a), and the right example
shows the differences between datasets of different types (the source-based essays and
the narrative essays — DS4 and DSB8, respectively). We can conclude that the correla-
tions are domain-dependent. We ascribe the reasons for smaller correlation differences
between datasets that contain the same type of essays mainly to the fact that human
graders evaluate the same type of essays with the same grading instructions, meaning

that for each different type of essays they prioritize different aspects of essay quality.

DS1 - DS2a DS4 - DS8

Difference Difference
Spearman
Corelation

e

Aributes

Atrutes
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4.2.2 Accuracy of the semantic-based AEE system

In the following experiments, we compared four versions of our system to evaluate
if semantic attributes yield to better model performance: AGE, AGE+, SAGE-, and
SAGE. Since the systems SAGE- and SAGE require source-based essays to build an
ontology for the logic reasoner, we were able to evaluate it only on datasets that include
source-based essays (such datasets are 3, 4, 5, and 6).

Table 4.6 shows the quadratic weighted Kappas and exact agreement for AGE and
AGE+. We calculated the p-values between both approaches on the same dataset by
running the same two models 10 times (without setting the seed). The results show
that the prediction accuracy significantly (p-value< 0.05) improves on 8 out of 9
datasets when the coherence attributes are used in the system. The comparison of
the average results in the rightmost column of Table 4.6 shows that there is also a

significant difference between both systems over all datasets (p-value < 0.01).

Table 4.6

Comparison of the system AGE (syntactic attributes only) and the system AGE+ (with additional coherence attributes) us-
ing the quadratic weighted Kappa (1st row) and exact agreement (2nd row), p-values are computed for Kappas and star ()
indicates significant difference (p < 0.05).

System DSt DS2a DS2b DS3 DS4
AGE QW Kappa 0.9045 0.7473 0.6619 0.8096 0.8040
Exact agg. 0.7224 0.7716 0.7379 0.7886 0.7237
AGE+ QW Kappa 0.9251 0.7924 0.6714 0.8272 0.8109
Exact agg. 0.7507 0.8057 0.7481 0.8036 0.7375
p-value <0.001%  <0.00I%k  0.04I6% 0.0I16%  0.0398%

* p-value<o.os

System DSs DSé6 DSy DS8 average
AGE QW Kappa 0.8701 0.7736 0.8760 0.7851 0.8036
Exact agg. 0.7805 0.7314 0.2607 0.1577 0.6305
AGE+ QW Kappa 0.8729 0.7817 0.8814 0.8050 0.8187
Exact agg. 0.7847 0.7400 0.2627 0.2219 0.6505
p—value 0.0205% <0.00I% 0.0201% 0.0570 0.0039%

* p-value<o.os

Table 4.7 shows the quadratic weighted Kappas and exact agreement for four sys-
tems: AGE, AGE+, SAGE- and SAGE on four source-based datasets. We calculated
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Table 4.7

Comparison of the systems AGE (syntax attributes only), AGE+ (syntax and coherence attributes), SAGE- (syntax and consis-
tency attributes) and SAGE (syntax, coherence and consistency attributes) on source-based datasets using quadratic weighted
Kappa (1st row) and exact agreement (2nd row), p-values are computed for Kappas and star (%) indicates significant difference
(p < 0.05). The red color indicates p-values where varying component is only the set of consistency attributes. Some results are
copied from Table 4.6 for easier comparison.

System DS3 DS4 DSs DS6 average
AGE QW Kappa  0.8096 o0.8040  0.8701 0.7736 0.8143
Exact agg. 0.7886 0.7237 0.7805 0.7314 0.7561
AGE+ QW Kappa  0.8272  0.8109  0.8729  0.7817 0.8232
Exact agg. 0.8036 0.7375 0.7847 0.7400 0.7665
SAGE- QW Kappa  0.8246 0.8104 0.8719  0.7796 0.8216
Exact agg. 0.8017 0.7304 0.7813 0.7385 0.7629
SAGE QW Kappa  0.8340 0.8120  0.8791 0.7880 0.8283
Exactagg.  0.8100 0.7302 0.7962 0.7353 0.7679

p-value AGE — AGE+ 0.0116% 0.0398% 0.0205% <0.001% 0.0013%
p-value AGE — SAGE- 0.0337% 0.0527 0.0637  0.0172% 0.0183%

p-value AGE - SAGE 0.0086% 0.0349% 0.0071% <0.00I% <0.001%
p-value AGE+ — SAGE-  0.1563 0.2469  0.2258  0.0758 0.0852
p-value AGE+ — SAGE 0.0549  0.1312  0.0174% 0.0073% 0.0125%

p-value SAGE- — SAGE ~ 0.0442% 0.0789  0.0114% 0.0012% 0.0063%

* p-value<o.os

the p-values between approaches on the same dataset by running the same models
10 times. We also used 10 Kappas for each model to calculate the p-values over all
datasets. Since we already analysed the influence of coherence attributes in Table 4.6,
our aim was to determine whether the consistency attributes contribute to the higher
prediction accuracy. Thus, we compared the system AGE to the system SAGE- and
the system AGE+ to the system SAGE with the only varying component therefore be-
ing the consistency attributes. Hence, the p-values evaluating those two comparisons
in Table 4.7 are coloured red. The results show that using consistency attributes leads
to higher Kappa values on all four observed datasets for the both pairs of compared
systems (AGE vs. SAGE- and AGE+ vs. SAGE). Furthermore, the improvements were
significant on two out of four datasets (DS3 and DS6 for the AGE versus SAGE- com-
parison and DSs and DS6 for the AGE+ versus SAGE comparison) and also on the

average for both comparisons (the rightmost column). Note also that the difference
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between AGE+ and SAGE- is not significant on any of the datasets, indicating not
enough statistical evidence to conclude whether only coherence attributes or consis-
tency attributes in addition to syntax attributes (AGE) contribute to greater predictive
performance.

We repeated the experiment from Table 4.7 using 10-fold cross-validation instead
of using the fixed training and test sets. Table 4.8 reports on the results and shows the
quadratic weighted Kappas and variance for four systems: AGE, AGE+, SAGE- and
SAGE on four source-based datasets. We calculated the p-values between approaches
on the same dataset using all 10 Kappas obtained from 10-fold cross-validation. We

also used 10 Kappas for each model to calculate the p-values over all datasets. Again, we

Table 4.8

Comparison of the systems AGE (syntax attributes only), AGE+ (syntax and coherence attributes), SAGE- (syntax and con-
sistency attributes) and SAGE (syntax, coherence and consistency attributes) on source-based datasets using 10-fold cross-
validation. Quadratic weighted Kappa (1st row) and variance (2nd row) are reported, p-values are computed for Kappas and
star (%) indicates significant difference (p < 0.05). The red color indicates p-values where varying component is only the set of
consistency attributes.

System DS3 DS4 DSs DS6 average
AGE QW Kappa  0.7909 0.7873 0.8692 0.7573 0.8012
Variance  0.0012  0.0013  0.0003  0.0010 /
AGE+ QW Kappa  0.7965 0.8008  0.8767  0.7916 0.8164
Variance  0.0012  0.0009  0.0002  0.0007 /
SAGE- QW Kappa  0.7929  0.7914 0.8738  0.7598 0.8045
Variance  0.0008 0.0007  0.0003 0.0010 /
SAGE QW Kappa  o0.8010 0.8072  0.8805  0.7982 0.8217
Variance  0.00I5  0.0007  0.0002  0.0009 /
p-value AGE - AGE+ 0.1162  0.0157k 0.0436% <0.00I% <0.00T%
p-value AGE - SAGE- 0.3758  0.1869  0.0422% 0.3130 0.0718
p-value AGE - SAGE 0.00I9% <0.00I% 0.0048% <0.00I% <0.00I%

p-value AGE+ - SAGE-  0.6921  0.0372% 0.0507  <0.00I% 0.005 5%
p-value AGE+ - SAGE 0.2573 0.1704  0.0123% 0.00I5% 0.0259%
p-value SAGE- - SAGE  0.0489% <0.001% 0.0158% <0.00I% <0.00I%

* p-value<o.os

focused on the influence of the consistency attributes, thus we compared the system
AGE to the system SAGE- and the system AGE+ to the system SAGE. The consis-

tency attributes again induced higher Kappa values on all four observed datasets for
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both pairs of compared systems. However, the improvements were significant only on
one out of four datasets (DS5) for the AGE versus SAGE- comparison and on two out
of four datasets (DSs and DS6) for the AGE+ versus SAGE comparison. On the aver-
age (the rightmost column) the SAGE system showed a significant difference in com-
parison to AGE+ and SAGE- does not significantly improve the prediction accuracy
compared to the system AGE. Furthermore, the results show a significant difference
between the AGE+ and SAGE- systems on two out of four datasets (DS4 and DS6)
and also on the average (the rightmost column), in contrary to finding in Table 4.7,
indicating better contribution of coherence attributes to the predictive performance.
To verify how the proposed systems compare on real-world data, we provide an

example of an essay where AGE+ performs better than AGE, and SAGE performs
better than AGE+. We score the following essay with all three systems and obtain
three different scores:

This story is a heart-warming tale of how Family and community can thoroughly transform

one’s life. For example, the author briefly mentions the fact that his parents moved to make a

better life in @ LOCATIONT than the one that would’ve been possible in Cuba. Also, Narciso

tells of the support that neighbours gave him recived, regardless of race. For example, it says

that the author’s house always had ”open doors” to those who needed a place to stay.People

often think of happiness as some thing relatively hard to achieve, but this memoir makes it

clear that happiness can just be hosting a dinner for family, or letting struggling friends stay for

a while. Just like in "A strange Old @CAPS1”, the story shows how fruitful one’s life can be

by doing morally good things for people, no matter who it is. The distinct mood that someone

would obtain from reading this is a particular kind of hapiness-not an excited kind like when

someone wins the lottery, but the warm glowing kind when someone helps out; the satisfied

kind when someone knows they’ve made someone else happy.

AGE predicts the score 1 based on only syntax attributes where it detects several
misspellings and the length that is shorter than other well-scored essays. AGE+ predicts
the score 2 taking into account syntax attributes and the coherence attributes that
reveal the good coherence of the essay. SAGE predicts score 3 taking into account no

detected semantic errors. The human resolved score is 3 on the scale 0 — 4.

4.2.3  Comparison with the state-of-the-art AEE systems

We also compared the proposed system SAGE with the state-of-the-art systems that
were used in a previous study [Shermis and Hamner, 2013] at the end of 2012: PEG,
e-rater, IntelliMetric, CRASE, LightSIDE, AutoScore, IEA, Bookette, Lexile Writing
Analyzer, with a ranked-based approach [Chen et al., 2012] and with results obtained
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by researchers participating in the before mentioned Automated Essay Scoring com-
petition on the Kaggle website. The eight commercial systems among the above listed
systems capture over 97% of the current automated scoring market in the USA [Sher-
mis and Hamner, 2013].

Tables 4.9 and 4.10 show the results that were calculated between the automated
and human scores (resolved score of more human graders). Since notall the systems are
available for public experimenting, their results were obtained from the papers [Sher-
misand Hamner, 2013] and [Chen etal., 2012], and from the Kaggle website®. Results
reported in [Shermis and Hamner, 2013] and [Chen et al.,, 2012] include Kappa val-
ues for every data set and are reported in Table 4.9 together with results of SAGE. The
evaluated systems are sorted in descending order of the average Kappa value, which is
shown in the rightmost column of Table 4.9. Since dataset 2 has scores in two dif-
ferent domains (see Section 4.1.1), each transformed Kappa is weighted by o.5. The
Wilcoxon non-parametric test was used to compute p-values that express the signifi-
cance of differences between each evaluated system and SAGE. We can see that our
system achieves significantly better results on 5 out of 9 datasets (DS1, DS2a, DS3,
DSs, DS7). On the remaining four datasets, accuracy of SAGE was insignificantly dif-
ferent from the accuracy of the best performing system, while still significantly better
compared with some of the systems. On the average (the rightmost column), SAGE
achieved significantly better results than 9 out of 10 other systems.

We also compared SAGE with results obtained from the leader board of Automated
Essay Scoring competition. In Table 4.10 we ranked 8 commercial systems, 8 leading
systems from the competition, LightSide [Mayfield and Rosé, 2013], ranked-based
system [Chen et al., 2012] and SAGE. The results are reported in the form of the
average Kappas over all datasets, since the accuracy of 8 leading systems on the Kaggle

website is reported like that.

8http://wwmukaggle.com/c/asap—aes/data
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Table 4.9

K. Zupanc

Comparison of the proposed semantic grading system SAGE with other state-of-the-art systems. The table shows quadratic
weighted Kappas, achieved on different datasets. Significantly different values (p < 0.05) are marked with a %.

System DSt DS2a DS2b DS3 DS4 DSs
SAGE 0.93 0.79 0.67 0.83 0.81 0.89
PEG 0.82% 0.72% 0.70 0.75% 0.82 0.83%
e-rater 0.82% 0.74% 0.69 0.72% 0.80 0.81%
IntelliMetric 0.78% 0.70% 0.68 0.73% 0.79 0.83%
CRASE 0.76% 0.72% 0.69 0.73% 0.76% 0.78%
LightSIDE 0.79% 0.70% 0.63 0.74% 0.81 0.81%
ranked-based 0.81% 0.68% 0.68 0.67% 0.73% 0.80%
AutoScore 0.78% 0.68% 0.66 0.72% 0.75% 0.82%
IEA 0.79% 0.70% 0.65 0.65% 0.74% 0.80%
Bookette 0.70% 0.68% 0.63 0.69% 0.76%  0.80%
Lexile 0.66% 0.62% 0.55% 0.65% 0.67% 0.64%
* p-value<o.os

System DSe6 DS7 DS8 average

SAGE 0.79 0.88 0.81 0.83

PEG 0.81 0.84% 0.73 0.79

e-rater 0.75 0.81% 0.70% 0.77%

IntelliMetric 0.76 0.81% 0.68% 0.76%

CRASE 0.78 0.80% 0.68% 0.75%

LightSIDE 0.76 0.77% 0.65% 0.75%

ranked-based 0.72% 0.77% 0.71% 0.74%

AutoScore 0.76 0.67% 0.69% 0.73%

[EA 0.75 0.77% 0.69% 0.73%

Bookette 0.64% 0.74% 0.60% 0.70%

Lexile 0.65% 0.58% 0.63% 0.63%

* p-value<o.os
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Table 4.10

Accuracy comparison of various systems from the literature and results from the Kaggle competition.

System Avg. acc.  rank
SAGE 0.8325 1
Sollers & Gxav* 0.8014 2
SirGuessalot & PlanetThanet & Stefan* 0.7986 3
VikP & jman* 0.7978 4
Efimov+Berengueres* 0.7956 5
@ORGANIZATION* 0.7947 6
PEG [Page, 1994] 0.7888 7
Martin* 0.7857 8
cs224u* 0.7828 9
jackpot (Jason)* 0.7826 10
e-rater [Burstein et al., 2013a] 0.7656 11
IntelliMetric [Schultz, 2013] 0.7588 12
CRASE [Lottridge et al., 2013] 0.7494 13
LightSIDE [Mayfield and Rosé, 2013] 0.7494 14
Ranked-based [Chen et al., 2012] 0.7363 15
AutoScore [Shermis and Hamner, 2013] 0.7325 16
IEA [Foltz et al., 2013] 0.7344 17
Bookette [Rich et al., 2013] 0.6981 18
Lexile [Smith et al., 2014] 0.6331 19

* Results were obtained from the leader board of AES competition on Kaggle website’.
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We have stated already in Section 1.2 that human grading is inconsistent and unre-
liable. In Section 2.4 we provide some overview of the research proving that scores
are subjective and influenced by grader effects, i.e. scores are affected by factors such
as bias (strictness, leniency) and (un)reliability (non-systematic error) of the grader.
Systematic and non-systematic human errors introduce subjective variance into scores
and therefore impact their validity [Lottridge et al., 2013].

In this chapter we propose a novel approach for separation of the original dataset
that contains scores given by several different graders into smaller subsets that group
essays scored by the same grader. To detect different graders solely by their given
grades we use the explanation methodology [Strumbelj et al., 2009], which enables us
to detect different dependencies (grading logic) between essays’ attributes and its score.
Further, we build an ensemble of models on the detected subsets and aim to improve

the prediction accuracy in comparison to a model built on the initial joint dataset.
5.1 Explanation methodology

Strumbelj et al. [2009]; Strumbelj and Kononenko [2014] introduced a method
(Interactions-based Method for Explanation, IME) for explaining decisions of an ar-
bitrary regressor (classifier) on a level of each individual example. The method decom-
poses the model’s prediction value (class) for an instance into the contributions of the
attributes’ values. The method is independent of the used classification algorithm and
considers interactions and redundancies between attributes.

'The method provides explanation in term of attribute - value contributions. The
computed contributions reflect the attribute’s influence on the final decision of the
explained model. The contribution sign indicates if the individual attribute value af-
fected the predicted value in a positive or a negative way. That means, positive con-
tributions yield to a higher final score and negative contributions conversely yield to
a lower score. The output explanation is a vector of contributions that represents the
inner knowledge of the model.

Figure 5.1 illustrates an explanation of an individual regression prediction using
the IME method. From here on we will use nomogram as an alternative notion for
a bar chart from Figure 5.1 that represents attributes’ contributions. As we can see
from the text above and below the figure, the predicted score for the particular essay
using the random forest model was 3.65 and the true score was 4. The bars in the

chart represent the contributions of example’s attribute values that are returned by the
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Explaining prediction for ds2b, class
instance: 17911, model: randomForest

attribute attribute value
patternCos 7.5
scorePoint - -4
differentWords — ~179
avgWordLen — ~3.99
spellChecker — ~0.022
sqrtWords — 24
nSentences— F22
nTokens — 614
nWords < 554
nChars - —-3295
r T T T T T 1
-0.15 -0.10 -0.05 0 0.05 0.10 0.15
method IME

class = 3.65; true class = 4.00

explanation algorithm. The blue coloured bars indicate the positive influence of the
attribute value (higher predicted final score) on the final score and the red coloured bars
indicate the negative influence of the attribute value (lower predicted final score). The
attributes that strongly contribute to the higher score are: number of spell-checking
errors, number of characters, weighted score of the most similar graded essays based on
cosine similarity (patternCos), number of different words, and number of sentences.
Several other attributes slightly improve the predicted score: score for which the max
cosine correlation was obtained (scorePoint), number of tokens, and number of words.
Two attributes marginally negatively affect the final score: average word length and
square root of the number of words.

Since we assume that each grader has his/her own subjective grading logic and crite-
ria, we use the presented methodology to detect grading patterns within a dataset and

separate graders into smaller subsets.
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Figure 5.1

IME-based explanation of
an individual example. The
visualization is explaining
the influence of AEE
attributes on the final score
(ranging from 0 to 3).
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Figure 5.2

An overview of the pro-
posed approach for divid-
ing a DS into subsets that
represent different graders.
‘We use PCA and a two-
level clustering approach.
On the first and second
level of clustering we clus-
ter together similar graders
inside the essay clusters.
‘The obtained clusters serve
as training sets for building
the prediction models.
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—

1st level:

— PCA cluster
imilar essays

2nd level:
cluster
similar graders

Explaining
predictions

Prediction
models

Detection of similar graders

In this section, we describe the methodology for dividing a dataset into subsets that
represent similar graders. In the proposed methodology we lean on the underlying
assumption that we can detect different graders when they score similar essays with dif-
ferent scores or score explanations.

The steps of the proposed approach are illustrated in Figure 5.2 and summarized as

follows:

1. Since the essay datasets feature a high number of attributes that can impact the

size of the problem space, training time and generalization/overfitting, we be-
gin with PCA (principal component analysis) as a dimensionality reduction ap-
proach. PCA is a statistical procedure that uses an orthogonal transformation to
convert a set of observations of possibly correlated attributes into a set of values
of linearly uncorrelated attributes, called principal components. The number
of principal components is less than or equal than the number of original at-
tributes. This transformation is defined in such a way that the first principal
component has the largest possible variance (i.e., accounts for as much of the
variance in the data as possible), and each following component has the high-
est variance possible under the constraint that it is orthogonal to the preceding

components. The resulting vectors therefore form an uncorrelated orthogonal
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basis set [Abdi and Williams, 2010].

2. In the second step we perform the first-level clustering in which we group sim-
ilar essays. We perform clustering on the essays’ principal components that are
computed from their attributes. Here we apply different k-means clustering
approaches, as suggested by Hartigan and Wong [1979], Lloyd [1957], and
Macqueen [1967].

3. In the third step we calculate the explanations of essay grade predictions, as de-
scribed in Section 5.1. The explanations reveal the dependency between at-
tributes and the predicted grade, i.e., grading logic and grader’s criteria for each

essay.

4. We proceed by performing the second-level clustering within each of the first-

level clusters. In each cluster of similar essays, we cluster together essays accord-

ing to their grading explanations. This allows us to group essays into groups
that represent consistent grading criteria and therefore hopefully reflect differ-

ent graders.

5. In the last step, we build prediction models for each obtained second-level clus-
ter. To later grade a yet unseen essay the above procedure allows us to map it to
the most similar first-level cluster and predicta score using different second-level

cluster models.

The second-level clustering of similar essays in Step 4 groups essays according to
similarity of their grading logic with the aim to detect different grading patterns.
Note, that the discovered clusters in this group may either represent individual dif-
ferent graders or group similar graders into the same cluster. Since our main goal is
neither discovery of the number of graders nor the analysis of their grading patterns,
but rather improvement of grading prediction accuracy, this does not represent an
obstacle.

To classify an unseen essay, we compute its prediction explanation. Based on the ex-
planation, we find the closest existing second-level cluster and predict using the model
from that cluster (or create an ensemble of multiple learners represented by multiple

nearest clusters and predict the final grade using them).
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In our experiments we employ two variants of the above approach. They differ in
whether we use PCA only as the attribute space transformation or as an attribute se-
lection approach for the subsequent clustering. Both variants use the same remaining
workflow as shown in Fig. 5.2. We describe both variants in detail in the next subsec-

tions.

Variant 1: PCA as the attribute space transformation

The first variant transforms the attribute space and performs the level-one clustering
on the transformed space. The approach is comprised of the following § steps, adapted

from Fig. 5.2:

1. Only a number n.components of the most important PCA components are

selected.

2. Level-one clustering is performed on the transformed attribute space using the
selected components. The parameter n.clust.11 defines the number of re-

quired target clusters on this level.

3. We use attribute selection to lower the dimensionality of the original attribute
space by selecting n.import.attr attributes with the highest average rank us-
ing ReliefF [Kononenko, 1994], Gini index [Gini, 1912], and information
gain [Mitchell, 1997]. Afterwards, we calculate the explanations of predictions

on the resulting attribute space.

4. Level-two clustering is then performed on prediction explanations. The param-

eter n.clust.12 defines the number of clusters on the second level.

5. We learn prediction models for each cluster.

Variant 2: PCA as the attribute selection approach

The second approach utilizes PCA in a different manner, as follows:

1. The PCA on the input attributes is used to calculate the impact of each original
attribute on the first 5o principal components. Among the attributes that had
the highest sum of contributions, n.infl.attr attributes are selected.

From here further, the remaining steps follow implicitly as in Fig. 5.2.
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2. Level-one clustering is performed on the resulting attribute space with lowered

dimensionality.
3. We calculate explanations of predictions.
4. Level-two clustering is performed on prediction explanations.

5. We learn prediction models for each cluster.

To summarize, the main difference between both variants lies in Step 1, which also
reflects in Step 3, where an additional feature selection method is used to reduce the

problem space.
5.3 Experimental environment and evaluation

We perform the evaluation of the proposed approach in two steps. First, we analyse the
clustering quality to determine if the approach truly detects different graders. Since
the grader IDs are not known for real datasets, we produce the artificial datasets in
which the true grader ID is known (but hidden from the learning algorithm). In the
second step, we select the best performing approach from the first step and evaluate it
on two real datasets: one dataset contains single individual rater scores for each essay,

and the other contains resolved scores from multiple graders.

5.3.1  Datasets

We use real datasets (DS) and artificial datasets (ADS) that we derive from the real
datasets.

Real datasets. We use the real-world datasets described in Section 4.1.1 that provide a
variety of different essay types as well as datasets with single and resolved scores. All
datasets provide a resolved score from at least two human graders’ scores, but do not
provide the graders IDs. Additionally, each essay in a dataset can be graded by different
two graders.

Artificial datasers. To create a controlled environment with known grader IDs, we
created artificial datasets by grading essays from the real datasets using the Light-
SIDE [Mayfield and Rosé, 2013] (described in Section 2.1) AES system. We used
two different group of attributes: one using 2-grams and the second one using 3-

grams on the lemmatized essays. We used random forest and SVM, respectively, to
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build the models. We randomly assigned a score from one of these two systems to
each essay, simulating a dataset that contains mixed scores from two different graders.
Each dataset contained a balanced number of scores from both grading systems.

To form the datasets for supervised learning, we extracted 136 attributes that are

described in Chapter 3.

5.3.2  Evaluation metrics
Clustering quality

We evaluate similarity between clusters with an internal and an external clustering

validation measure:

= The Dunn Index [Dunn, 1974] is an internal clustering evaluation measure,
which relies only on the information in the data. It measures the ratio of the
smallest distance between observations from different clusters to the maximum
distance between observations in the same cluster. It is defined as:

. miny<i<j<m0(C;, C;)

, (5.1)
maxlSkSmAk

where m is the number of clusters; C; is a cluster of observations (vectors);

0(C;, C;) is an inter-cluster distance metric (an average distance between two

clusters elements); and Ay is a cluster-size value describing average distance be-

tween observations in the cluster. Note that larger inter-cluster distances (better

separation) and smaller cluster sizes (more compact clusters) lead to a higher

value of DI;

u The Fowlkes-Mallows index [Fowlkes and Mallows, 1983] is an external evalua-

tion measure (uses available grader labels) and is defined as follows:

TP TP
FM = X , (5.2)
TP+FP TP+FN

where TP stands for true positives, FP for false positives, and FN for false nega-
tives. The index ranges from O to 1. A higher index indicates a higher similarity

between a clustering and a benchmark classification.
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Supervised learning accuracy

91

We use two widely used performance measures: exact agreementand quadratic weighted

Kappa (for details see Section 4.1.2).

5.3.3  Evaluation protocol and libraries

In our experiments, we compare the accuracy obtained using our two-level clustering

approach with the baseline accuracy of a prediction model that is built on the initial

dataset. Figure 5.3 illustrates the workflow of our evaluation. It shows how we compare

the baseline accuracy (left side of the figure) to the joint prediction accuracy obtained

from several models built on the clustered dataset (right side of the figure).
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The evaluation is performed using 10-fold cross-validation. Each training fold is

used to perform all steps of the proposed approach: PCA, clustering, explanation

computation, and model learning. Each test fold contains essays that are transformed

into the existing PCA space defined by the training examples. After computing the
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Figure 5.4

Predicting a score for an
essay: We first obtain five
nearest essays and their
associated clusters on the
second level. We illustrate
the five models with their
attributes’ contributions.
In the shown example two
of the nearest essays were
from the same cluster. The
score represents the average
prediction of all models.
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explanations of predictions for test examples, they are mapped into the appropriate
clusters. For each test example, we predict a score that is an average prediction of clus-
ters’ models of the five nearest essays (based on Euclidean distance). An example of
calculating the prediction for an essay in dataset 3 is shown in Figure 5.4 where the
models are represented with their attributes’ contributions (in a form of nomograms).
To ensure higher stability of results, which are dependent on the underlying cluster-
ing method, we repeat the clustering process using three different k-means clustering
algorithms [Hartigan and Wong, 1979; Lloyd, 1957; Macqueen, 1967] and average
their scores. To compare the significance of the difference between two prediction
accuracies, we use the Wilcoxon signed-rank test [Kanji, 2006].

In our preliminary experiments on a subset of dataset 1, we used two methods for

the transformation of the attribute space: PCA and Independent Component Analysis
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(ICA) [Hyvarinen, 2013]. The results were comparable, thus we decided to proceed
with only one method, i.e. PCA.

For computing the prediction explanation, the ExplainPrediction package’ in R was
used. The random forest algorithm, which has shown to achieve the best results in
combination with the used attributes [Zupanc and Bosni¢, 2017a], was used from the
randomForest package” in R. The parameter settings for the random forest algorithm
were: 100 trees, sampling with replacement, the number of attributes randomly sam-

. . . l|attributes|
pled as candidates at each split is ——

5.4  Results

After evaluating the clustering quality of both approach variants (described in Sec-
tion 5.2), we evaluate the best performing method on real datasets. We used the fol-

lowing parameter settings for both variants (as defined in Section 5.2):

= n.clust.11: 20 first-level clusters for similar essays;

= n.clust.12: 2 or 3 (we experimented with both values) second-level clusters

for similar grading logics within each first-level cluster;

= n.components (for variant 1): 7 components, which corresponds to approxi-
mately 50% of variance in our domains and represents a sensible trade-off be-
tween keeping as few components as possible and as much information as pos-

sible at the same time;
= n.import.attr (for variant 1): 10 most important attributes;

= n.infl.attr (for variant 2): 10 most influential attributes.

Only for illustration purposes, we visualized the first-level clustering process on the
2D plot of PC1 (the most important principal component) vs. PC2 (the second most
important principal component) on the dataset 2b using variant 1. Figure 5.5 shows
the results of the k-means [Macqueen, 1967] clustering using 7 principal components.
Although we cluster into 20 clusters (n.clust.11) on the first level, the figure allows

us to identify two larger non-overlapping groups of essays. In the following section we

'https://cran.r-project.org/web/packages/ExplainPrediction/index.html
*http://cran.r-project.org/web/packages/randomForest/randomForest.pdf
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proceed with a quantitative evaluation of clustering, focusing on the correspondence

between the discovered second-level clusters and grader IDs.
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5.4.1  Experiments on artificial datasets

In our artificial datasets we experimented with two and three clusters on the second
level of clustering (parameter n. clust. 12) to simulate the frequent number of graders
in our real datasets. Since our artificial datasets include two different graders (simulated
by two versions of the LightSIDE system), the choice of clustering into two clusters
also seems sensible. Given that the problem of distinguishing different graders is hard,
we might also expect that the distinction between graders will be clear for some essay
while for others not — hence the experiments with an additional third cluster, which

could result in higher internal cluster homogeneity.

Clustering evaluation.

The results of internal (Dunn index) and external (Fowlkes-Mallows index) clustering
evaluation are shown in Table 5.1. We can see that the indices do not report large
differences between both variants. The Dunn index shows better results for Variant 2
and the Fowlkes-Mallows index shows slightly better results for Variant 1 when using

three clusters on the second level. The values of the Fowlkes-Mallows index reach
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Table 5.1

Clustering validation with the Dunn index and the Fowlkes-Mallows index, obtained on artificial datasets (ADSn). Indices are
reported for all three k-means clustering methods: Hartigan and Wong - HW [Hartigan and Wong, 1979], Lloyd - LI [Lloyd,
1957], and MacQueen - MQ [Macqueen, 1967].

appr. ‘measure ‘#C‘me[hod‘ ADS1 ADS2a ADS2b ADS3 ADS4 ADSs ADS6 ADS7; ADS8 ‘average

MQ 0.4286 0.6083 0.3493 0.5448 0.4170 0.4215 0.3789 0.2I139 0.5449 | 0.434T
P Ll 0.4281 0.6299 0.3562 0.5273 0.4164 0.4006 0.3732 0.1657 0.5812 | 0.4310
HW 0.4324 0.6339 0.3440 0.5522 0.4198 0.4182 0.5024 0.5481 0.5737 | 0.4916
Dunn average | 0.4297 0.6240 0.3498 0.54I5 0.4I77 0.4134 0.4182 0.3092 0.5666 | 0.4522
index MQ 0.3503 0.5444 0.3361 0.5096 0.2I30 0.4463 0.3776 0.2141 0.4522 [ 0.3826
3 Ll 0.3619 0.5572 0.3431 0.5078 0.2I97 0.4I31 0.3568 0.1765 0.4541 | 0.3767
HW 0.3548 0.5639 0.3347 0.5647 0.3454 0.4188 0.4583 0.1771 0.5168 | 0.4149
Variant average | 0.3557 0.5552  0.3380 0.5274 0.2593 0.4260 0.3975 0.1892 0.4744 | 0.3914
1 MQ 0.7076 0.7151 0.7008 0.7148 0.7218 0.7033 0.7034 0.7057 0.7214 | 0.7I04
2 Ll 0.7064 0.7179 0.7024 0.7158 0.7190 0.705I 0.7027 0.7055 0.7256 | 0.7111
Fowlkes HW 0.7049 0.7144 0.7021 0.7135 0.7225 0.7047 0.7010 0.7118 0.7269 | 0.7113
Mallows average | 0.7063 0.7158 0.7018 0.7147 0.7211 0.7043 0.7024 0.7077 0.7246 | 0.7110
index MQ 0.7170 0.7277 0.7066 0.7323 0.7483 0.70§1 0.7047 0.7155 0.7360 | 0.72I5
3 Ll 0.7178 0.7287 0.7063 0.7239 0.7448 0.7110 0.7043 0.7166 0.7331 | 0.7207
HW 0.7235 0.7238 0.7101 0.7259 0.7482 0.707§ 0.7071 0.7159 0.7392 | 0.7223
average | 0.7194 0.7267 0.7076 0.7273 0.747I 0.7079 0.7053 0.7160 0.7361 | 0.72I5
MQ 0.4061 0.5529 0.4751 0.5703 0.5592 0.5681 0.3826 0.4782 0.2832 | 0.4751
2 Ll 0.4276 0.5330 0.4765 0.5648 0.5522 0.5413 0.3828 0.4516 0.3181 | 0.4720
HW 0.3922 0.5808 0.4766 0.5985 0.5857 0.5858 0.4027 0.4554 0.3083 | 0.4873
Dunn average | 0.4086 0.5556  0.4761 0.5779 0.5657 0.5650 0.3893 0.4617 0.3032 | 0.4781
index MQ 0.3115 0.4987 0.4097 0.5086 0.5287 0.4558 0.3218 0.3700 0.2599 | 0.4072
3 Ll 0.2865 0.5062 0.4010 0.5120 0.4906 0.4367 0.3153 0.3650 0.2874 | 0.4001
HW 0.3309 0.4679 0.4304 0.5558 0.5392 0.4819 0.3254 0.3743 0.2918 | 0.4219
Variant average | 0.3096 0.4909 0.4137 0.5255 0.5195 0.4581 0.3208 0.3697 0.2797 | 0.4097
2 MQ 0.7028 0.6994 0.6987 0.6971 0.7036 0.7036 0.6979 0.7078 0.7231 | 0.7038
Ll 0.7028 0.6981 0.6985 0.6988 o0.70I5 0.7029 0.6973 0.7076 0.7226 | 0.7033

2
HW 0.7025 0.6994 0.6943 0.6958 0.7047 0.7045 0.6977 0.7088 0.7225 | 0.7034

Fowlkes

Mallows average | 0.7027 0.6990 0.6972 0.6972 0.7033 0.7037 0.6976 0.708 0.7227 | 0.7035
ind MQ 0.7089 0.7046 0.7098 0.7046 0.7128 0.7128 0.7075 0.7II1 0.7311 | 0.7IIS
index 3 Ll 0.7111 0.7082 0.7033 0.7066 0.7124 0.7081 0.7074 0.7125 0.7284 | 0.7I09
HW 0.7082 0.7077 0.7050 0.7067 0.709I 0.7073 0.7089 0.7114 0.7275 | 0.7I02
average | 0.7094 0.7068 0.7060 0.7060 0.7114 0.7094 0.7080 0.7117 0.7290 | 0.7109

#C = number of clusters

over 0.7 (maximum is 1), meaning that we are able to determine that the clusters are

well-formed. We proceed with the evaluation of the prediction accuracy.

Prediction accuracy evaluation

The results are shown in Table 5.2. They show that Variant 1 on the average performs
significantly better than the baseline model when using three clusters on the second
level. Furthermore, the results show a significant improvement in Kappa on five out
of nine datasets (ADS2a, ADS2b, ADS4, ADS7 and ADS8) and does not significantly
worsen on any dataset. When we compare Variant 2 with the baseline results using

three clusters on the second level, we can observe that the Kappas significantly improve
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on three datasets (ADS2a, ADS2b, and ADS4) and worsen on 1 dataset (ADS1); on
the average, the approach does not perform significantly different than the baseline.

However, all the results improve on average over all datasets.

Table 5.2

Quadratic weighted Kappa and exact agreement (EA) obtained on artificial datasets (ADSn) using the baseline, Variant 1, and
Variant 2 approaches. Red color indicates higher and gray color lower accuracy in comparison to the baseline, while star (%)

indicates significant difference (p < 0.05).

approach | measure ‘ #C ‘ ADS1 ADS2a ADS2b ADS3 ADS4
. Kappa 0.5546 0.4217 0.4091 0.4671 0.5687
Baseline /
EA 0.4966 0.6192 0.6263 0.6216 0.6228
2 0.4338% 0.4262% 0.4698 0.5772
. Kappa
Variant 3 0.5597 0.4504% 0.4318% 0.4737 0.5801%
1 EA 2 0.6292% 0.6408% 0.6386% 0.6343%
3 0.6371% 0.6471% 0.6369% 0.6364%
2 0.4398% 0.4333% 0.5762
. Kappa
Variant 3 0.4468% 0.4390% 0.4684 0.5792%
2 EA 2 0.6317% 0.6496% 0.6240 0.6330
3 0.6321% 0.6521% 0.6221 0.6373%
#C = number of clusters
approach | measure ‘ #C ‘ ADSs ADS6 ADS7 ADS8 average
. Kappa 0.7578  0.594s5 0.5602 0.6835 0.5575
Baseline /
EA 0.6804 0.6058 0.1363 0.124§ 0.5037
2 0.6016 0.5623 0.6835 0.5613
. Kappa
Variant 3 0.6023 0.5746% 0.6997% 0.5697%
1 EA 2 0.6812 0.6238% 0.1373 0.1286 0.5110%
3 0.6808 0.6246% 0.1427 0.1297 0.5I39%
2 0.5660 0.5596
‘ Kappa 566 5596
Variant 3 0.5747 0.5633
2 EA 2 0.6879  0.6217% 0.5105
3 0.6879 0.6212 0.1266 0.5108

#C = number of clusters

To summarize the accuracy results, the Variant 1 produces better average results
than Variant 2. Also, using three clusters yields better average results, regardless of the
used variant. We can ascribe the reason to the fact that the distinction between graders
is clear for some essays while not for the others (see Section 5.4.1). Based on this we

choose Variant 1 for further evaluation on the real-world datasets.
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Graders’ profiles

The obtained clusters on the second level combine similar graders, meaning that each
of n.clust.12 clusters on the second level represents a different grader profile. To
evaluate how much those profiles differ, we plotted three example attributes’ con-
tributions (nomograms) that represent characteristics of each of n.clust.12 grader
profiles in Figure 5.6. The presented models were built on clusters obtained on the
ADS3 using k-means clustering [Lloyd, 1957] with 20 clusters on the first level and 3

clusters on the second level (we present an example for one of the 20 clusters only).
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We can notice that the attribute value contributions between the three grader pro-
files differ. For example, different graders differently treat the length of an essay (num-
ber of characters — the attribute at the bottom): the first grader (left) has a tendency to
treat long essays negatively and the average-sized essays positively, the second grader

(middle) treats only long essays positively, and the third grader (right) treats only the
short essays positively.

5.4.2  Experiments on real-world datasets

We proceed by further evaluating Variant 1 on the real datasetss. Since each essay from
the real dataset can be graded either with scores from single graders or with the resolved

score (aggregated from multiple graders), we evaluate Variant 1 in both scenarios, as

well.
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Figure 5.6

The attributes’ contri-
butions (in a form of
nomograms) representing
the grading characteristics
for three different graders’
profiles.
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Single scores

Table 5.3 displays a comparison between the baseline and the joint prediction accura-
cies, when single scores are used. The results show that Variant 1 significantly improves
the average quadratic weighted Kappa (but not also the exact agreement) when used
with three clusters on the second level. When using three clusters on the second level,
quadratic weighted Kappa (exact agreement) of Variant 1 significantly increases on
three (four) of nine datasets (DS1, DS3, DS7; (DS1, DS3, DS4, DS5)), while it does

not significantly decrease on any dataset.

Table 5.3

Quadratic weighted Kappa and exact agreement (EA) obtained on real-world datasets with available single-score (DSn) using the
baseline and Variant 1 approaches. Red color indicates higher and gray color lower accuracy in comparison to the baseline,
while star (%) indicates significant difference (p < 0.05).

approach measure ‘ #C ‘ DSr DS2a DS2b DS3 DS4
. Kappa 0.6091 0.6864 0.6521 0.6583 0.6622
Baseline /
EA 0.3487 0.6996  0.6908 0.6717 0.6016
2 0.6270% 0.6678 0.6631
X Kappa
Variant 3 0.6416% 0.6707% 0.6680
1 EA 2 0.3647% 0.6809 0.6203%
3 0.3647% 0.6835% 0.6199%
#C = number of clusters
approach measure ‘ #C ‘ DSs DSe6 DS7 DS8 average
. Kappa 0.7774 0.7249 0.4687 0.6665 0.6562
Baseline /
EA 0.6467 0.6188 0.1299 0.1892 0.5108
2 0.7805 0.4727 0.6670 0.6582
‘ Kappa
Variant 3 0.7859 0.7315 0.4882% 0.6697 0.6655%
1 EA 2 0.6534 0.5134
3 0.6567% 0.6256 0.5175

#C = number of clusters

Resolved scores

Table 5.4 compares the baseline prediction accuracies with the joint prediction accu-
racies, when resolved scores are used. The results enable us to draw similar conclusions
as on the datasets with single-grader scores, as follows. Variant 1 significantly improves

the average quadratic weighted Kappa (but not also the exact agreement) when used
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with three clusters on the second level. When using three clusters on the second level,
quadratic weighted Kappa (exact agreement) of Variant 1 significantly increases on
three (three) of nine datasets (DS3, DS6, DS8), while does not significantly worsen

on any dataset.

Table 5.4

Quadratic weighted Kappa and exact agreement (EA) obtained on real-world datasets with available resolved-score (DSn) with
available resolved scores using the baseline and Variant 1 approaches. Red color indicates higher and gray color lower accuracy in
comparison to the baseline, while star () indicates significant difference (p < 0.05).

approach | measure ‘ #C ‘ DS1 DS2a DS2b DS3 DS4
. Kappa 0.8418 0.6864 0.6521 0.6789 0.6974
Baseline /
EA 0.5507 0.6996 0.6908 0.6718 0.6165
2 0.8472 0.6917%
. Kappa
Variant 3 0.8480 0.6920%
1 2 0.5582 0.6888%
EA
3 0.5582 0.6917  0.6888% 0.6176
#C = number of clusters
approach | measure ‘ #C ‘ DSs DSe6 DS7 ADS8 average
. Kappa 0.8115 0.7307 0.7241 0.78185 0.7339
Baseline /
EA 0.6920 0.6358 0.1478 0.1496 0.5394
2 0.8142 0.7428% 0.7343
) Kappa
Variant 3 0.8142 0.7442% 0.7292 0.8010% 0.7384%
1 EA 2 0.6450 0.1542 0.1558 0.5424
3 0.6933 0.6479% 0.1502 0.1621% 0.5453

#C = number of clusters

We focused on a problem of learning from datasets that contain essays graded by mul-
tiple different graders. Due to the subjective nature of humans, this affects the learning
algorithm as it has to model a noisy dependency between attributes and the grade. We
proposed an approach for separating a set of essays into subsets that feature similar
grading logics. We used a two-level clustering approach and employed the explana-
tion methodology. The results show that we can significantly improve the average pre-
diction accuracy by detecting groups of graders with similar grading characteristics.
The essential step is the extraction of the crucial information using the explanation
methodology, which is able to detect diverse grading logics. The higher joint predic-

tion accuracy of the models describing distinctive graders is then plausible, comparing
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to the model that has to combine different grading logics.
Moreover, the proposed methodology is robust and can work on top of any existing

AEE system to increase the prediction accuracy of the assessments.
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6.1  Main contributions to science

In this section we briefly summarize the main contributions to science listed in Sec-
tion 1. With each contribution we list the sections where the topic is discussed. In
addition, we also list our publications that discuss the topic. Note that the listed ref-
erences were published in reviewed scientific journals or presented on international

conferences and were thus internationally reviewed and discussed.

1. New semantic attributes for evaluating semantic coherence of the text. We present
two groups of coherence attributes: spatial attributes described in Section 3.2.1
and network attributes described in Section 3.2.3. The proposed attributes allow
us to evaluate one of the aspects of essay semantics, improve the prediction
accuracy of the implemented AEE system and obtain state-of-the-art results.
The proposed attributes are described in [Zupanc and Bosni¢, 2014, 201723

Zupanc et al., 2017].

2. Methodology for cross-referencing facts in text with external fact sources. We propose
a system for automatic detection of semantic errors in an essay in Section 3.3.1.
To implement the system we use entity recognition, coreference resolution, open
information extraction, ontologies, and logic reasoner. The output of the sys-
tem are three new semantic attributes and a semantic feedback. We propose
the system SAGE and demonstrate its contributions in [Zupanc and Bosni¢,

2017al.

3. Methodology for detection of different graders. Within the Section 5 we propose
an approach for separating a set of essays into subsets that represent different
graders. We use an explanation methodology and clustering to separate essay
datasets. The results show that learning from the ensemble of separated mod-
els significantly improves the average prediction accuracy on artificial and real-

world datasets. We describe the details in [Zupanc and Bosni¢, 2017b].

6.2 Future research directions

The open challenges for our future work are scattered over different approaches we
used through the development of the proposed AEE system. We mentioned a number

of them already through the thesis and we summarize them in the next paragraph.
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First and foremost, we shall further develop different semantic attributes and im-
prove the semantic feedback. We shall test alternative approaches to TF-IDF for trans-
forming text into attribute space to discover how the alternatives impact the results.
Word or paragraph embeddings is an NLP technique where words or passages of text
are mapped to vectors of real numbers. The literature describes approaches, such as
Word2Vec [Mikolov et al., 2013] and GloVe [Pennington et al., 2014]. We shall rep-
resent parts of an essay with vectors using the above algorithms to determine if dif-
ferent representations could improve the results. Considering the network coherence
attributes, we shall include a different approach for building networks by connect-
ing sentences in the decreasing order of the computed similarities until the network
becomes a connected graph (i.e. a graph with a single connected component). Fur-
thermore, we shall upgrade our automatic error detection system and use other exter-
nal sources to determine if statements in an essay are true and consistent. Moreover,
we also want to develop and incorporate new approaches for unsupervised taxonomy
learning, since our current approach uses only WordNet as the underlying taxonomy.
One of the future goals is to incorporate inference rules to the ontology that will help
detect implicit errors and facts/relations that are not explicitly written in an essay.

The performance of our system is dependent on a set of already graded essays. Other
systems report on needing at least between 100 and 300 essays [Page, 1994; Landauer
et al., 2000; Rudner et al., 2006; Rich et al., 2013] to build a scoring model. The
smallest training set we used consisted of 650 essays and performed well. Future work
shall include experiments about the influence of the training set size on the model’s
performance.

Development of the AEE field is of a great importance to teachers and students.
It can not only help reduce teachers” load but can also helps students become more
autonomous during their learning process. But currently, the majority of the systems
only work for English essays. Thus, one of our goals for the future is also a development
of the AEE system for Slovenian language. In recent years, a lot of NLP tools for
Slovenian language were developed as part of national research projects. We still do
not have all the tools we need (i.e. open information extractor), but we can start
with a simple grading system that does not include the semantic feedback and further

improve it when possible.
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6.3 Final thoughts

The field of AEE has been developed to the point where the systems can accurately re-
produce the human scores. Using deep learning, we might still achieve slightly higher
reproduction accuracy even without considering semantics, yet due to the black box
nature of deep learning, researchers cannot explain which aspects of the essay quality
influence the final score. Nevertheless, the development is now striving towards the
technologies that would help systems to understand the written text. Despite the re-
cent advances in the field of artificial intelligence (AI), natural language understanding
is still considered as the Al-hard problem [Yampolskiy, 2013], which is the biggest lim-
itation for developing an AEE system that would work perfectly. However, existing
NLP tools allow AEE systems to detect certain semantic errors in the written text.

To conclude, AEE systems with feedback can be an aid, not a replacement, for class-
room instructions and can help students to achieve progress faster. Students can use
SAGE in the classtoom as well as at home, while learning. Feedback for each specific
response returned by our system provides information on the quality of different as-
pects of writing, a score and a descriptive feedback. The system’s constant availability
for scoring gives a possibility to students to repetitively practice their writing at any
time. SAGE is consistent as it predicts the same score for a single essay each time that
essay is input to the system. This is important since the scoring consistency between
prompts turned out to be one of the most difficult psychometric issues in human
scoring [Attali, 2013]. Advantages of automated feedback are its anonymity, instanta-
neousness, and encouragement for repetitive improvements by giving students more
practice in writing essays [Weigle, 2013]. By publicly providing the technical details
and results of our AEE system, we also aim to promote the openness of this research
field. Hopefully, this shall open opportunities to progress and help bring more AEE

systems into practical applications.
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A.r Uvod

Eseji veljajo za najboljée orodje za pisno preverjanje posameznikovega znanja. Stu-
dentom nudijo priloznost, da pokaZejo Siroko paleto spretnosti in znanj, vklju¢no z
miselnimi sposobnostmi, kot sta sinteza in analiza [Valenti et al., 2003]. Kljub temu
pa je ocenjevanje esejev ena izmed najbolj zamudnih, napornih in dragih dejavnosti za
izobraZevalne ustanove, ki ucitelje obremenjuje z urami ocenjevanja pisnih izdelkov.
Posledi¢no dodeljujejo uéencem manj pisnih nalog, s tem pa jim omejujejo prepotreb-
ne izkudnje za doseganje u¢nih ciljev glede pisanja. Ce 7elimo, da uéenci in $tudenti
postanejo boljsi pisci, morajo pisati ve¢, saj le s tem vadijo svoje spretnosti [Page, 1966].

Prakti¢na resitev za $tevilne teZave, povezane z roénim ocenjevanjem, so avtomatski
sistemi za ocenjevanje esejev. Po definiciji je avtomatsko ocenjevanje esejev (AOE)
postopek ocenjevanja in tockovanja pisne proze z racunalniskim programom [Shermis and
Burstein, 2003]. Avtomatsko ocenjevanje esejev je multidisciplinarno podrogje, ki
vklju¢uje raziskave s podrodij ra¢unalnistva, kognitivne psihologije, jezikoslovja in pi-
sanja [Shermis and Burstein, 2013]. Ta avtomatski proces postaja zazelen nadin oce-
njevanja v izobrazevalnih ustanovah in tudi pri ocenjevanju standardiziranih testov.

Eden od glavnih problemov sistemov za avtomatsko ocenjevanje esejev je problem
ocenjevanja semanti¢ne pravilnosti besedila. Obstojeci sistemi to ve¢inoma resujejo s
primerjavo besedi$¢a med novim esejem in z Ze ocenjenimi eseji ter z oceno uporabe
diskurznih elementov. Nekateri sistemi pa uporabljajo metode, kot so latentna seman-
ti¢na analiza [Landauer et al., 1998], latentna Dirichletova alokacija [Kakkonen et al.,
2008], in analiza vsebinskih vektorjev [Attali, 2011]. Poskusi kazejo, da lahko skla-
denjske in pomenske strukturne informacije bistveno izboljsajo u¢inkovitost modelov
za avtomatsko ocenjevanje esejev. Zaenkrat pa le dva sistema [Gutierrez et al., 2014;
Brent et al., 2010] uporabljata metode, ki vsaj delno preverjajo konsistentnost dejstev,
zapisanih v eseju. Kljub trudu in izboljsavam pa omenjena sistema nista popolnoma
avtomatska, saj zahtevata ro¢ni vnos uporabnika pri oblikovanju povezav med prido-
bljenimi entitetami v eseju in entitetami v ontologiji.

Problem podrodja, o katerem v zadnjem dasu govori vse ve¢ znanstvenikov [Bejar,
20171; Attali, 2013; Williamson et al., 2012], je tudi golo reproduciranje ocen pristran-
skih ocenjevalcev. Raziskovalci ve¢inoma privzamejo, da so ocene uliteljev objektivne
in nepristranske, kar pa v realnosti ni tako. U¢itelji in strokovnjaki ocenjujejo nekonsi-

stentno in pristransko zaradi razli¢nih karakteristik, kot so na primer izkusnje, interno
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zaznavanje in okolje. ZaZeleno je, da lahko sistemi za AOE zaznavajo dolodene napake
v esejih neodvisno od ¢loveskih ocen in so tudi sposobni nuditi povratno informacijo
o teh napakah.

Do nedavnega je bilo pomanjkanje javno dostopnih AOE sistemov, ki bi omogo¢ili
vpogled v metodologijo ocenjevanja, ena od glavnih ovir za dosego napredka na tem
podro¢ju. Skoraj vse raziskave na podro¢ju avtomatskega ocenjevanja esejev so opra-
vili v komercialnih ali profitnih druzbah, ki so zai¢itile svoje naloZbe z omejevanjem
dostopa do tehnoloskih podrobnosti. Rudner je razvil prvi javno dostopen sistem,
imenovan Bayesian Essay Test Scoring sYstem (BETSY) [Rudner and Liang, 2002].
Sistem BETSY je bil rezultat zacetne raziskave glede uporabe Bayesovskega pristopa
pri ocenjevanju esejev, avtorji pa nikoli niso nadaljevali s svojim delom. Kasneje sta
Mayfield in Rosé predstavila LightSIDE [Mayfield and Penstein-Rosé, 2010], enosta-
ven sistem za avtomatsko ocenjevanje z javno dostopno izvorno kodo. Ta program je
zasnovan kot orodje za laike, ki lahko hitro izkoristijo tekstovno rudarjenje za razli¢ne
namene, vklju¢no z ocenjevanjem esejev. Pomanjkljivost sistema pa je, da vsebuje le
preproste atribute, ki ne zaznavajo vseh karakeeristik eseja. Poleg omenjenih sistemov
je bilo v zadnjem ¢asu $e kar nekaj poskusov, da bi podro¢je avtomatskega ocenjevanja
esejev naredili bolj odprto, med drugim tudi z objavo monografije avtorjev Shermis

and Burstein [2013].

A.x.1 Prispevki k znanosti

Glavna tema disertacije je razvoj novega sistema za avtomatsko ocenjevanje esejev, ki

naslavlja zgoraj opisane pomanjkljivosti obstoje¢ih sistemov in podrogja.

1. Novi semantiéni atributi za evalvacijo skladnosti ali koberence besedila. Predla-
gamo dve skupini atributov skladnosti: prostorske atribute in atribute omrezij.
Prvo skupino atributov razvijemo z opazovanjem semanti¢nih sprememb v toku
besedila, drugo skupino atributov pa pridobimo z omreZji podobnosti povedi.
Poleg tega razvijemo nov sistem za avtomatsko ocenjevanje esejev, ki upora-
blja nove atribute skladnosti. Njegovo delovanje podrobno analiziramo in ga
primerjamo s primerljivimi sodobnimi sistemi. V povpredju sistem znacilno

izbolj$a napovedno to¢nost.

2. Metodologija za primerjavo dejstev v besedilu z dejstvi iz zunanjih virov. Predla-

gamo dodatne semanti¢ne atribute, ki na podlagi vsebine eseja zaznajo stavke,
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A2

ki so v nasprotju z resnico. Avtomarski sistem za odkrivanje napak (ASON),
predstavlja novo metodologijo, ki odkriva semanti¢ne napake in nudi celovito
povratno informacijo. Sistem samodejno preoblikuje besedilo eseja v ontologijo
in ga primerja s predstavitvijo znanja iz zunanjih virov v obliki ontologije. Pre-
dlagani sistem za avtomatsko ocenjevanje esejev nadgradimo z novimi atributi
in sistemom ASON, torej tudi z avtomatsko semanti¢no povratno informacijo.
Vse tehnoloske podrobnosti sistema smo objavili v ve¢ ¢lankih in jih predstavili

na mednarodnih konferencah.

. Metodologija za odkrivanje raglicnih ocenjevalcev. Predlagamo novo metodolo-

gijo za lo¢evanje mnozice podatkov, ki vsebuje ocene ve¢ razli¢nih ocenjeval-
cev, v manj$e podmnozice. Te manj$e podmnoZice vsebujejo le eseje, ki jih je
ocenil isti ocenjevalec. Za razlikovanje med razli¢nimi ocenjevalci uporabimo
metodologijo razlage napovedi in grucenje razlag, ki nam omogo¢a detekcijo
razli¢nih odvisnosti (subjektivnih kriterijev ocenjevanja) med atributi eseja in
njegovo oceno. Z eksperimenti pokazemo, da je model, ki se u¢i na ocenah
ve¢ih ocenjevalcev, v povpredju slabsi od ansambla modelov, ki predstavljajo
razli¢ne ocenjevalce. Predlagan sistem za avtomatsko ocenjevanje esejev nadgra-
dimo s predlagano metodologijo in v povpre¢ju znadilno izbolj$amo napovedno

to¢nost.

Sistem za avtomatsko ocenjevanje esejev SAGE

V disertaciji razvijemo sistem za avtomatsko ocenjevanje esejev z motivacijo, da naj sis-

tem (1.) izbolj$a napovedno to¢nost in (2.) zagotovi avtomatsko semanti¢no povratno

informacijo. Nov sistem smo razvili v $tirih fazah:

I.

Avtomatski ocenjevalec esejev — Automated Grader for Essays (AGE): sistem z jezi-

kovnimi in primerjalnimi vsebinskimi atributi,

2. Avtomatski ocenjevalec esejev+ —Automated Grader for Essays+ (AGE+): sistem

3.

AGE, nadgrajen z dodatnimi atributi skladnosti,

Semantiéni avtomatski ocenjevalec esejev- — Semantic Automated Grader for Essays-
(SAGE-): sistem AGE, nadgrajen z dodatnimi atributi konsistence in avtomat-

sko povratno informacijo.
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4. Semanticni avtomatski ocenjevalec esejev — Semantic Automated Grader for Essays
(SAGE): sistem AGE+, nadgrajen z dodatnimi atributi konsistence in avtomat-

sko povratno informacijo.

A.2.1 Avtomarski ocenjevalec esejev (AGE)

Razvili smo osnovni sistem za avtomatsko ocenjevanje esejev, ki temelji predvsem na
atributih, opisanih v literaturi, in ga poimenovali AGE. Uporabili smo 72 skladenjskih

atributov in jih razdelili v dve skupini:

= Jezikovni atributi opisujejo leksikalno sofisticiranost, slovnico in mehaniko ese-
ja. Atribute pridobimo s pomod¢jo Stetja besed, dolgih besed, razli¢nih besed,
uporabo stav¢nih ¢lenov itd. Kompleksnejsi atributi merijo stopnjo berljivosti,

leksikalno razli¢nost in napake pri ¢rkovanju ali uporabi lo¢il in velike zacetnice.

u Vsebinski atributi temeljijo na primerjavi neocenjenega eseja z Ze ocenjenimi.
Za pridobitev teh atributov smo najprej zdruzili podobno ocenjene eseje, nato

pa smo primerjali vsebino novega eseja z vsebino Ze ocenjenih esejev.

A.2.2 Avtomatski ocenjevalec esejev+ (AGE+)

Predlagani sistem AGE smo nadgradili z dvema skupinama atributov skladnosti:

w Atributi skladnosti, pridoblieni v visoko dimenzionalnem semantiénem prostoru.
Atribute smo gradili na domnevi, da se semantika skladnega eseja postopno
spreminja skozi besedilo. Vsakega izmed esejev smo najprej razdelili v zaporedne
prekrivajoce dele in jih z uporabo mere TF-IDF (frekvenca izraza v dokumentu
- inverz frekvence izraza v zbirki dokumentov) preslikali v visokodimenzional-
ni semanti¢ni prostor. V tem prostoru smo merili razli¢ne karakeeristike esejev
s poudarkom na opazovanju semanti¢nih sprememb v toku besedila. Razvili
smo 29 atributov, ki jih lahko razdelimo v tri skupine: osnovne mere skladno-
sti besedila (merijo razdaljo med deli eseja v semanti¢nem prostoru), prostorska
skladnost (merijo centralno prostorsko tendenco in prostorsko razprenost) in
prostorska avtokorelacija (merijo stopnjo grucenja prostorskih podatkov) [Zu-

panc and Bosni¢, 2014].

w Atributi skladnosti, pridobljeni z uporabo omrezij podobnosti povedi. Vsak esej

smo spremenili v omrezje podobnosti povedi, kjer vsak stavek predstavlja eno



110 A Razirjeni povzetek K. Zupanc

vozlis¢e v omrezju, povezave med vozli§éi pa predstavljajo podobnost med dve-
ma povedima. Razvili smo 32 atributov, ki jih lahko razvrstimo v tri skupine:
osnovne strukturne metrike (osnovne karakeeristike omreZja in indeksi pove-
zanosti omrezja), sestavljene strukturne metrike (temeljijo na vsoti vrednosti
povezav, pomnozenimi z relativno pomembnostjo povezave), in metrike omre-
zne entropije (nanasajo se na stopnjo vozlis¢ in njihovo distribucijo ter raznoli-

kost) [Zupanc et al., 2017].

29 + 32 novih atributov skladnosti smo dodali sistemu AGE in zgradili nov sistem
AGE-+.

A.2.3  Semantini avtomatski ocenjevalec esejev (SAGE)

Nadaljevali smo z razvojem sistema za avtomatsko detekeijo semanti¢nih napak v eseju
in predlagali popolnoma avtomatski sistem, ki izboljsa AGE+: sistem odkriva seman-
ti¢ne napake in nudi povratno informacijo. Sistem smo poimenovali SAGE - Semantic
Automated Grader for Essays [Zupanc and Bosni¢, 2017a]. Glavna novost je avtomat-
ski sistem za odkrivanje napak (ASON).

ASON najprej zgradi temeljno ontologijo, ki je sestavljena iz:
= splodnega znanja — ontologije COSMO [Cassidy, 2009],

= domenskega znanja — domenska ontologija, ki zajema podrobno znanje dome-

ne, in

= izvornega besedila —znanja, ki ga ASON pridobi iz besedila, na podlagi katerega

je esej napisan.
Vzporedno iz eseja zgradimo semanti¢ni graf, kar poteka v ve¢ korakih:
1. predprocesiranje,
2. odkrivanje koreferen¢nosti med omenitvami in
3. ckstrakcija relacij med entitetami.

Rezultat ekstrakcije informacij so trojke {<argl,rel,arg2>}, ki opisujejo relacije
rel med argumenti (osebki ali predmeti) argl in arg2. Te relacije nato iterativno

dodajamo v temeljno ontologijo in vsaki¢ s pomo¢jo avtomatskega logi¢nega misleca
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(Hermit [Motik et al., 2009]) preverimo, ¢e je ontologija konsistentna. Ce zaznamo
nekonsistentnost, nam sistem omogoca, da zaznamo tudi nekonsistenta stavka. Le-to
nam omogoc¢a, da lahko ucencu vrnemo povratno informacijo, kje v eseju je prislo do
napake in kaksna je ta napaka.

Poleg avtomatske semanti¢ne povratne informacije nam ASON nudi tudi tri nove
atribute, ki jih vklju¢uimo v sistem SAGE - ti opisujejo $tevilo semanti¢nih napak v

eseju.

A.3  Primerjava sistemov AGE, AGE+, SAGE- in SAGE s sodob-

nimi sistemi za avtomatsko ocenjevanje esejev
Trije predlagani sistemi predstavljajo tri razli¢ne vidike ocenjevanja:
= ocenjevanje eseja brez razumevanja vsebine (AGE),
= ocenjevanje vsebine skozi skladnost (AGE+),

= ocenjevanje konsistentnosti dejstev v eseju z zagotovljeno povratno informacijo

(SAGE-) in
= ocenjevanje semantike eseja z zagotovljeno povratno informacijo (SAGE).

Za izgradnjo modelov na pridobljenih atributih smo uporabili metodo za izbiro atri-
butov in model naklju¢nih gozdov. Da bi ocenili kakovost predlaganih sistemov, smo
jih primerjali tako med seboj kot tudi s sodobnimi sistemi za avtomatsko ocenjevanje
esejev. Uporabili smo podatkovne mnoZice esejev, dostopne na spletni strani Kaggle'.

Za analizo potencialnih koristi predlaganih atributov smo najprej ocenili njihovo
pomembnost. Ugotovili smo, da na kon¢no oceno najbolj vplivata skupno Stevilo
besed in $tevilo razli¢nih besed ter tudi ocena, ki jo dobimo pri primerjavi vsebine z
Ze ocenjenimi eseji. Trije izmed predlaganih atributov skladnosti pa so se v povpre¢ju
uvrstili med prvih deset najvplivnejsih atributov. Poleg tega rezultati kazejo, da 38% v
povpre¢ju najvplivnejsih atributov predstavljajo atributi skladnosti. Najbolje uvrs¢en
predlagani atribut konsistentnosti se nahaja v povpredju na 46. mestu.

Pri primerjavi napovedne to¢nosti modelov AGE, AGE+, SAGE- in SAGE smo ugo-

tovili, da se napovedna to¢nost v povprecju znadilno zvisa, ko sistem AGE nadgradimo

"Podatke se lahko pridobi na spletni strani Kaggle http: //www.kaggle.com/c/asap-aes/data ali sple-
tni strani ASAP http://www.scoreright.org/

IIr
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z atributi skladnosti. Ko sistemu AGE+ dodamo $e atribute konsistence, napovedna
to¢nost ni znacilno slabsa na nobeni podatkovni mnozici, se pa napovedna to¢nost
znacilno poveda na 50% podatkovnih mnozicah. SAGE je poleg tega znacilno boljsi v
povpredju na vseh datasetih in kot nadgradnjo vsebuje semanti¢no povratno informa-
cijo. Tudi sistem SAGE- v enem izmed eksperimentov pokaze signifikantno izbolj$anje
napovedne to¢nosti v primerjavi s sistemom AGE.

Sistem SAGE smo primerjali s sodobnimi sistemi za avomatsko ocenjevanje esejev.
SAGE v povpregju dosega znadilno vijo to¢nost napovedi kot skoraj vsi ostali sodobni

sistemi in pristopi.
A.q4  Avtomatsko locevanje razlicnih ocenjevalcev

V zadnjem delu disertacije se lotevamo problema pristranskosti ocenjevalcev. Domne-
vamo, da je ¢lovesko ocenjevanje nekonsistentno in pristransko in da bodo modeli,
zgrajeni na mnozicah esejev, pridobljenih z lo¢evanjem razli¢nih ocenjevalcev, prine-
sli vi$§jo napovedno to¢nost. Tako predlagamo nov pristop za avtomatsko locevanje
ocenjevalcev glede na njihove karakteristike ocenjevanja esejev. Za razlikovanje med
ocenjevalci uporabljamo metodo razlage napovedi [Strumbelj et al., 2009], ki nam omo-
goca, da zaznamo razli¢ne odvisnosti (subjektivne kriterije ocenjevanja) med atributi
esejev in njegovo oceno.

Pri lo¢evanju ocenjevalcev se opiramo na hipotezo, da ocenjevalci z razli¢nimi su-
bjektivnimi kriteriji ocenjevanja podobne eseje ocenijo z drugaéno oceno ali razlago

ocene. Predlagani pristop lahko opiSemo v petih korakih:

1. V prvem koraku zmanj$amo dimenzionalnost vhodnega podatkovnega prosto-
ra, ki predstavlja karakteristike eseja z uporabo analize glavnih komponent (PCA)
[Abdi and Williams, 2010].

2. Nato izvedemo prvo grucenje, pri katerem zdruzujemo podobne eseje na pod-
lagi nade zgoraj opisane predpostavke. Grucenje izvedemo na lastnostih glavnih

komponent eseja, ki smo jih pridobili iz atributov eseja.

3. Tzratunamo razlago napovedi [Strumbelj et al., 2009], ki odraza subjektivne kri-

terije ocenjevalca za vsak ocenjen esej.

4. Nadrugem nivoju gru¢imo podobne ocenjevalce, pri tem pa si pomagamo z raz-

lago napovedi, ki omogoca, da za vsakega ocenjevalca dolo¢imo, kako pomemb-
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na je zanj posamezna karakteristika eseja. Tako pridobimo Zelene podmnoZice,

ki predstavljajo razli¢ne ocenjevalce.

5. V zadnjem koraku zgradimo napovedne modele za vsako pridobljeno podmno-
zico. V fazi ocenjevanja nato vsak nov, neocenjen esej razvrstimo v podmnozico,
ki najbolj ustreza njegovim karakteristikam, in uporabimo pripadajo¢i napove-

dni model.

Za evalvacijo predlaganega pristopa smo uporabili naravne in umetne podatkovne
mnozice. Za naravne podatkovne mnozice smo uporabili eseje, uporabljene tudi v
poglavju A.3. Umetne podatkovne mnoZice pa smo pridobili tako, da smo eseje is
naravnih podatkovnih mnozic ocenili z dvema ocenjevalcema: dvema razli¢icama sis-
temoma LightSIDE [Mayfield and Rosé, 2013] in naklju¢no dodelili eno izmed ocen
vsakemu eseju tako, da sta na koncu oba ocenjevalca ocenila enako $tevilo esejev.

Rezultati kazejo, da lahko s predlaganim pristopom lo¢imo ocenjevalce v skupi-
ne, ki predstavljajo razli¢no subjektivne kriterije ocenjevanja in v povpredju znacilno
izbolj$amo napovedno to¢nost. Bistven korak predlaganega pristopa je pridobivanje
informacij z uporabo metodologije razlag napovedi, s pomo¢jo katere lahko zaznamo
razli¢ne subjektivne kriterije ocenjevanja. Visja napovedna to¢nost ansambla modelov
je zato razumljiva, saj jo primerjamo z napovedno to¢nostjo modela, ki mora modelira-
ti razli¢ne subjektivne kriterije ocenjevanja. Poleg tega lahko predlagana metodologija
deluje kot nadgradnja za vse sodobne sisteme za avtomatsko ocenjevanje esejev in pri

tem izbolj$a napovedno to¢nost.
A5 Zakljucek

Zaklju¢imo z mislijo, da so lahko sistemi za avtomatsko ocenjevanje esejev s povratno
informacijo v veliko pomo¢ in ne nadomestilo za napotke in komentarje uliteljev.
Predlagani sistem vraca semanti¢no povratno informacijo in daje u¢encem moznost,
da vadijo in izboljsujejo svoje pisanje,s kadar zelijo. Z javno objavo vseh podrobnosti
delovanja in rezultatov predlaganega sistema, tudi upamo, da bomo spodbudili razvoj

tega podrodja.
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