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Povzetek

Naslov: Projekcija visokodimenzionalnih podatkov ob upoštevanju domen-

skih omejitev

Projekcija visokodimenzionalnih podatkov se običajno pripravi z zmanj-

šanjem dimenzionalnosti, ki se predstavi v latentnem prostoru, kar omogoča

smiselno vizualizacijo. Pripravili smo sintetične podatke, ki odražajo gensko

izražanje v pravih podatkovnih zbirkah. Metode smo kasneje testirali na

pripravljenih sintetičnih in pravih podatkih. V tem delu smo obravnavali

naloge z izvajanjem regularizirane SVD metode, z uporabo L0-norme in L1-

norme. Modelu je bila dodana informacija z regularizacijo dveh dodatnih

matrik sosednosti. Pokazali smo, da so te metode dale bolǰse rezultate kot

standardni SVD.

Ključne besede

projekcija podatkov, latentni prostori, regularizacija, podatkovna veda, geno-

mika posameznih celic





Abstract

Title: Knowledge-constrained projection of high-dimensional data

Projection of high-dimensional data is usually done by reducing dimen-

sionality of the data and transforming the data to the latent space. We cre-

ated synthetic data to simulate real gene-expression datasets and we tested

methods on both synthetic and real data. With this work we address the vi-

sualization of our data through implementation of regularized singular value

decomposition (SVD) for biclustering using L0-norm and L1-norm. Addi-

tional knowledge is introduced to the model through regularization with the

two prior adjacency matrices. We show that L0-norm SVD and L1-norm

SVD give better results than standard SVD.

Keywords

data projection, latent spaces, regularization, data science, single-cell ge-

nomics





Razširjeni povzetek

Nedavni napredek na področju biotehnologije je povzročil ustvarjanje orodij

molekularne biologije, kateri nam lahko pomagajo opazovati modelne or-

ganizme in ljudi, ki omogočajo zbiranje velikih količin podatkov. Primer

takšne nedavne tehnologije je enocelično RNA zaporedje [3, 20], kar je pri-

pomoglo ustvariti podatke o celicah in ekspresijah genov. Takšni podatki

postajajo veliki in lahko vključujejo tisoče celic in več deset tisoč genov.

Računalnǐski pristopi so potrebni za zmanǰsanje dimenzionalnosti podatkov

in njihovo predstavitev v latentnem prostoru, ki bi lahko vodili do vizualiza-

cije podatkov.

Projekcija podatkov in izbira lastnosti na takšnih področjih morata obravna-

vati več nalog, ki vključujejo obvladovanje podatkovnih podatkov, vključitev

dodatnih informacij (npr. genske ontologije [1]) in izkorǐsčanje redkosti vho-

dnih podatkov. V tem delu smo obravnavali naloge z izvajanjem regularizi-

rane SVD metode-razcepa s singularnimi vrednostmi. Modelu bomo dodali

informacije z regularizacijo.

I Kratek pregled sorodnih del

V [11] so avtorji predlagali L0-normo, graf-regulariziran redki SVD za gručenje

visokodimenzionalnih podatkov. Delo se opira na stare podatke, ki jih raz-

laga graf. V regularizirani SVD so trije glavni vidiki: redki SVD, graf-

regulariziran SVD in povezava med SVD metodo in PCA metodo. Gručenje

skozi SVD [9] je orodje za analizo za prepoznavanje interpretiranih pove-

i



ii

zav vrstic in stolpcev v matrikah visokodimenzionalnih podatkov. V [16] so

predlagali vključitev izbire stabilnosti za izbolǰsanje redkega SVD pristopa.

Njihov S4VD algoritem najde stabilne gruče in ocenjuje verjetnost selekcije

genov in vzorcev, k pripadajočim gručam. Kaznovani razcep matrike (PMD)

[18] ima za posledico regularizirano različico SVD. Pri tej metodi avtorji upo-

rabijo tudi kazni v vǐsini L1 in metoda je bila prikazana na javno dostopnem

podatkovnem nizu podatkov o ekspresiji genov. V [15] so avtorji predlagali

novo metodo PCA, in sicer redko PCA prek regulariziranega SVD (sPCA-

rSVD). Ta metoda zagotavlja enotno obravnavo obeh klasičnih večvrstnih

podatkov in visokodimenzionalnih podatkov z nizkim vzorcem.

II Predlagana metoda

V tem delu smo se odločili predstaviti metodi L0-norm SVD in L1-norm SVD.

Obe metodi izkorǐsčata poznavanje matrik sosednosti za vrstice in stolpce in

sicer ena od opisanih metod uporablja kot parameter regularizacije normo

L1, druga pa normo L0. Oba algoritma sta posplošitvi metode SVD, katera

je dejansko matrična faktorizacija s katero matriko faktoriramo nadalje v tri

nove matrike. Analizirali smo prvo matriko, ki je matrika levih singular-

nih vektorjev. Pri vizualizaciji obeh metod smo uporabili podatke iz dveh

stolpcev, kar pomeni da smo izračunali dva singularna vektorja.

III Eksperimentalna evaluacija

Naša eksperimentalna evaluacija je sestavljena iz dveh delov: vrednotenje

rezultatov sintetičnih podatkov in vrednotenje rezultatov resničnih genskih

izrazov. Sintetične podatke smo sintetizirali na naslednji način:

• konstruiranje matrike X: domnevali smo, da imamo pet različnih vrst

celic: T celico, B celico, dendritično celico, NK celico in granulocitom.

Izbrali smo 200 celic vsake vrste, tako da na koncu naša matrika X vse-

buje 1000 vrstic. Za vsak tip celice označujemo, kateri geni so ustrezni



iii

markerski geni. Nato smo za naše 78 predhodno ujemajočih se genov

(stolpcev) postavili vrednost večjo od nič, če je gen markerski za to vr-

sto celice. Svojo matrico X smo sešteli s šumno matriko. Na koncu smo

dodali 1000 naključnih genov (stolpcev), da bi bolje simulirali resnične

podatkovne zbirke genskih izrazov, kjer večina genov ni markerskih.

• konstruiranje matrike A2: za matriko sosednosti za stolpce smo vzeli

vrednosti iz baze podatkov STRING za ujemajočih 78 genov, za dru-

gih 1000 naključnih genov smo določili verjetnost 0.3, da so povezani

(sosednji).

Da bi prikazali, kako delujejo standardni SVD, L1-norm SVD in L0-norm

SVD in kako se spremeni vizualizacija glede na različne vrednosti parame-

trov, smo se odločili določiti nekaj parametrov in spremeniti le en parameter.

Zanima nas, kako dobri so SVD, L1-norm SVD in L0-norm SVD pri odkriva-

nju različnih vrst celic, ko ne vemo, kakšen je tip celice. Zato zdaj izvajamo le

zdrave celice. V tem delu naše analize ne moremo uporabiti ocene silhuete

kot merila učinkovitosti, saj ne poznamo tipov celic. Pregledali bomo grafe

porazdelitvenih funkcij srednjih vrednosti markerskih genov in videli, kakšna

je razlika med njimi. Za oceno razlike med porazdelitvami smo uporabili test

Kolmogorov-Smirnov (KS-test) za dva vzorca. Ta preizkus je neparametrični

preizkus, ki primerja zbirne porazdelitve dveh podatkovnih nizov. Ugotoviti

poizkuša, ali se dve podatkovni skupini bistveno razlikujeta. Prednost KS-

testa je, da ne daje nobene predpostavke o porazdelitvi podatkov. Ničelna

hipoteza je, da sta bili obe skupini vzorčeni iz populacij z enakimi porazde-

litvami. Preizkuša vsakršno kršitev te ničelne hipoteze - različnih medijev,

različnih odstopanj ali različnih porazdelitev. Če je vrednost p majhna, lahko

sklepamo, da sta bili obe skupini vzorčeni iz populacij z različnimi porazde-

litvami. Populacije se lahko razlikujejo glede na mediano, variabilnost ali

obliko porazdelitve. To lahko vidimo tako za algoritme kot za vse vrste ce-

lic, p-vrednost je manǰsa od 0.05. Ker test Kolmogorov-Smirnov ne primerja

nobenega določenega parametra, ne poroča o nobenem intervalu zaupanja.

Interval zaupanja je vrsta intervalne ocene, ki bi lahko vsebovala pravo vre-
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dnost nepoznanega populacijskega parametra. Najpogosteje se uporablja

interval zaupanja 95%, tudi drugi pa se lahko uporabijo. Izračunali smo in-

terval zaupanja 95%, s katerim smo ugotovili, da ima L1-norm SVD največjo

povprečno vrednost markerskih genov.

Obenem smo na resničnih podatkih analizirali, kako metode med seboj raz-

likujejo zdrave in AML celice. Pri tej analizi, merjenja učinkovitosti naših

metod smo se odločili za uporabo silhuete. Silhueta se nanaša na metodo

interpretacije in potrjevanja skladnosti v gručah podatkov. Izkazalo se je, da

ima metoda L1-norm SVD najbolǰse rezultate.

IV Sklep

Pregledali smo dva algoritma reguliranega SVD: L0-norm SVD in L1-norm

SVD [11]. Implementacija je bila izvedena v programskem jeziku Python,

koda pa je javno dostopna na Githubovem repozitoriju. Testirali smo metode

sintetičnih podatkov in resničnih podatkov o izraženosti genov iz aplikacije

scOrange: “mononuklearne celice kostnega mozga z AML” na dva načina:

1. metode preskušanja elementov na celotnem naboru podatkov in oce-

njevanje uspešnosti: kako različne metode razlikujejo med zdravimi in

AML celicami?

2. testiranje samo na zdravih celicah in ocenjevanje učinkovitosti z upo-

rabo markerskih genov: kako različne metode delijo povprečne ocene

markerjev?

Glede na vrednost parametrov smo pri obeh metodah dobili različne rezul-

tate, torej različne vizualizacije. Da pa bi dosegli najbolǰsi rezultat, smo

spremenili parametre in ugotovili, da pri preveliki regularizaciji parametrov

pride do slabše vizualizacije. V obeh testih so bili najbolǰsi rezultati pri

L1-norm SVD.



Chapter 1

Introduction

Recent advances in biotechnology have resulted in molecular biology tools

that can help us observe model organisms and humans, through analysis of

the collection of large volumes of gathered experimental data. An example

of a such recent technology is the single-cell RNA sequencing [3, 20], which

can gather the data on gene expressions in a collection of cells, one cell at a

time. Such data can include thousands of cells and can record expression of

full compendium of genes. Mammalian genomes where single-cell RNA has

been recently applied includes typically about 20 000 genes. Computational

approaches are required to reduce the dimensionality of such data and present

it in a latent space that could lead to data visualisation.

In such domains, data projection and feature selection, need to address

several problems. These include coping with data volume, the incorporation

of additional knowledge (e.g. gene ontologies [1]), and capitalizing on the

sparseness of the input data. Within this work, we will address the prob-

lems through the implementation of regularized singular value decomposition

(SVD) for biclustering. Additional knowledge of adjacency matrices will be

introduced to the model through regularization.

1



2 CHAPTER 1. INTRODUCTION

1.1 Related work

By computing singular value decomposition (SVD) we want do discover “con-

cepts”. By a “concept” we mean a new knowledge which shows relationship

between rows and columns and as a result we have content-aggregated data

that we are looking for. We observe certain data which is in the space that

we can observe, and we want to map it to a latent space where similar data

points are closer together. We want that latent space to capture the structure

of our data.

Min et al. [11] proposed a L0-norm sparse graph-regularized SVD for

biclustering high-dimensional data. The paper relies on old data explained

by the graph. In regularized SVD there are three main aspects: sparse SVD,

graph-regularized SVD and the relationship between SVD and PCA.

Biclustering via sparse singular value decomposition is an analysis tool

for identifying interpretable row-column associations within high-dimension-

al data matrices. Lee et al. [9] proposed sparse SVD which forces the left

and the right singular vectors to be sparse. They tested algorithms on a lung

cancer microarray dataset, on a food nutrition dataset and on a simulated

datasets.

Sill et al. [16] proposed to incorporate stability selection to improve sparse

SVD approach. Their S4VD algorithm finds stable biclusters and estimates

the selection probabilities of genes, and the samples which belong to the

biclusters. In a simulation study, their S4VD algorithm outperformed the

sparse SVD algorithm and two other SVD-related biclustering methods in

recovering artificial biclusters and in being robust to noisy data.

Penalized matrix decomposition (PMD) results in a regularized version

of the SVD [18]. The data matrix is approximated and singular vectors min-

imize the squared Frobenius norm, subject to penalties on those vectors. In

this method Witten et al. used L1 penalties and the method was demon-

strated on a publicly available gene expression data set. They showed that

when this method is applied to a cross-products matrix, it results in a method

for penalized canonical correlation analysis and this is tested on a simulated
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and genomic data.

Principal component analysis (PCA) is a widely used tool for data analy-

sis and dimension reduction, but since the principal components can be diffi-

cult to interpret, Shena et al. [15] proposed sparse PCA via regularized SVD

(sPCA-rSVD). They used the relation of PCA with singular value decompo-

sition (SVD) of the data matrix. This method provides a uniform treatment

of both classical multi-variant data and high-dimension-low-sample-size data.

Osher et al. [13] introduced l1 optimization for sparse vectors, L1 opti-

mization for finding functions with compact support, and computing sparse

solutions from measurements that are corrupted by unknown noise, while Lu

et al. [21] presented how l0-norm minimization problems can be reformulated

to an equivalent rank minimization problem and then by applying the penalty

decomposition, we solve the latter problem. Further use of singular value de-

composition in transforming genome-wide expression data is described by

Alter et al. [12]. They showed that SVD is a useful mathematical framework

for processing and modelling genome-wide expression data, in which for the

mathematical variables and operations we may assign biological meaning.

The penalized singular value decomposition, for a (noisy) data matrix,

when the left singular vector has a sparse structure and the right singular

vector is a discretized function is presented by Hong et al. [6]. It is shown,

that the value of only one parameter has to be chosen. They tested proposed

approach on the artificial and real dataset. More detailed, a sparse SVD for

high-dimensional data is explained by Yang et al. [19]. They proposed a new

approach for approximating a large, noisy data matrix and they compared the

method with two other existing methods, and showed that their algorithm is

computationally faster.

From these results we have learned how the general form of penalized

matrix decomposition looks like and how different penalties can be used. We

also learned applications of SVD methods on gene-expression data, so now

we proceed with two most common penalties: L0-norm and L1-norm and

how they transform our synthetic and real data.
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1.2 Methodology and contributions

We reviewed SVD by paying special attention to properties of the input

data. In particular, we consider the sparseness of the matrix and relatedness

of cells and relatedness of genes. We analysed the methods to optimize func-

tions with additional constraints. Some of the additional constraints were

Lagrangian multipliers and KKT conditions. Our approach benefited from

data sparseness by modifying numerical approaches for eigenvector compu-

tation. Python programming language was used and the resulting method

was tested on the visualisation of recently published data sets from single-cell

genomics.

The first step was modification of the SVD method [11] by implementing

and adapting the algorithm to our input data. We constructed data visual-

ization which relied on the first two components of SVD. The project resulted

in a Python code that is published on GitHub 1.

The rest of the thesis is structured as follows: in Subsection 2.4 and Sub-

section 2.5 we explain theoretical background of L1-norm SVD and L0-norm

SVD through foundations of norms, mathematical optimization and singular

value decomposition. In Section 3 we explain our gene-expression dataset

and how we use knowledge of STRING database in creating adjacency ma-

trices, which represent our additional knowledge necessary for regularization

process. In Section 4 we present how methods work on synthetic and real

gene-expression data, we discuss results, visualizations and compare them.

Our results showed that we got better visualizations with L0-norm SVD and

L1-norm SVD than with the standard SVD.

1https://github.com/Ejmric/L0-and-L1-Norm-SVD

https://github.com/Ejmric/L0-and-L1-Norm-SVD


Chapter 2

Theoretical background

2.1 L1-norm and L0-norm

A norm of a vector assigns strictly positive length or size to each vector in a

vector space. The higher the norm the bigger the vector.

Definition 2.1. A vector norm is a function from Rn to R, with certain

properties. If x ∈ Rn, we represent its norm by ||x||. The defining properties

of the vector norm are:

(i) ||x|| ≥ 0 for all x ∈ Rn and also ||x|| = 0 if and only if x = 0,

(ii) ||αx|| = |α| · ||x|| for all α ∈ R, x ∈ Rn (positive homogeneity),

(iii) ||x+ y|| ≤ ||x||+ ||y|| for all x, y ∈ Rn (triangle inequality).

For every real number p ≥ 1, we define ||x||p = p
√∑

i |xi|p, p ∈ Rn, which

is a vector norm. In particular, we are interested in a special case, when

p = 1, which we call L1-norm.

Definition 2.2. L1-norm of x ∈ Rn represents the sum of absolute values

of the components of the vector x:

||x||1 =
n∑
i=1

|xi|

5
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The L1-norm is often called Manhattan norm. It is used in finding the

sparsest solution, the solution that has fewest non-zero elements and this

problem is regarded as L1-optimisation [13]. We will also use the so-called

L0-norm:

Definition 2.3. L0-norm represents the total number of non-zero elements

of a vector:

||x||0 = |{i, xi 6= 0}|

L0-norm is actually not a norm. If we look at the condition (ii) in Def. 2.1

we can see that the L0-norm does not satisfy it. We can multiply x by any

non-zero scalar and it does not change the L0- norm. L0-norm is actually a

cardinality function, a measure of the “number of elements of the set”.

There are many applications that use L0-norm, also in finding the sparsest

solution. Finding the lowest L0-norm is called the optimisation problem of

L0-norm [21]. Compared to L1-norm, L0-norm can enforce a desirable level

of sparsity.

2.2 Mathematical optimization

Mathematical optimization is a branch of applied mathematics which is useful

in many different fields. The basic optimization problem consists of:

(i) the objective function f(x). This is the output that we are trying to

maximize or minimize,

(ii) variables x1, x2... are the inputs,

(iii) constraints are equations or inequations that restrict the variables.

They can be equality constraints hn(x) or inequality constraints gn(x).

There are no strict inequalities and gn defines domain of f ,

f : Df → R (then gn restricts domain of f).
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An optimization problem can be represented in the following way:

Find max/min f(x)

under constraints hn(x) = 0

gn(x) ≥ 0 or gn(x) ≤ 0

(2.1)

In order to get a proper form of optimization problem, the general conversions

that can be used are:

• interchange of ≤ with ≥ or interchange of ≥ with ≤. It is done by

multiplying with −1.

• conversion to inequality: x = y ⇔ x ≤ y and y ≥ x.

• interchange of ≤ with = : x ≤ y ⇔ y = x + t and t ≥ 0, where t is

“slack variable”.

The subfield of mathematical optimization in which we are interested

is convex optimization, where we want to find the minimum of the convex

function f over convex sets. So, our basic problem is:

Find min f(x)

with constraints hn(x) = 0

gn(x) ≤ 0

Definition 2.4. A real-valued function f : Rn → R defined on an n-dimensi-

onal interval is called convex if the line segment between any two points on

the graph of the function lies above or on the graph in an Euclidean space.

Then for all x1, x2 ∈ Rn and t ∈ [0, 1]:

f(tx1 + (1− t)x2) ≤ tf(x1) + (1− t)f(x2)

Function f is called concave if and only if −f is convex.

We can also define convexity using derivatives:
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Definition 2.5. The derivative of f(x) with respect to x is the function

f ′(x) and is defined as:

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

Definition 2.6. The second derivative of f is the derivative of the deriva-

tive of f :

f ′′ = (f ′)′

Definition 2.7. Function f is convex if and only if f ′′(x) ≥ 0 for all x.

These three definitions are for functions of one variable. For multivariable

functions, we need to introduce partial and total derivatives.

Definition 2.8. The partial derivative of a function f : Rn → R at the

point a = (a1, a2, ..., an) ∈ Rn with respect to the i-th variable x-i is defined

as:

∂

∂xi
f(a) = lim

h→0

f(a1, ..., ai−1, ai + h, ai + 1, ..., an)− f(a1, ..., ai, ..., an)

h

Example The partial derivative of f(x, y) = 3x2y + 2y2 with respect to

x is 6xy. Its partial derivative with respect to y is 3x2 + 4y.

Definition 2.9. A total derivative of a multivariable function is equal

to the sum of the partial derivatives with respect to each variable times the

derivative of that variable with respect to the independent variable.

We will also define derivative over vector [5]:

Definition 2.10. Let f represent a function, defined on a set S, of a vector

x = (x1, ..., xm)T of m variables. Suppose that S contains at least some

interior points, and let c = (c1, ..., cm) represent an arbitrary one of those

points. Further, let uj represent the jth column of Im. Consider the limit

lim
t→0

f(c+ tuj)− f(c)

t
.

When this limit exists, it is called the jth (first-order) partial derivative of f

at c.
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Definition 2.11. The gradient is a vector of derivatives for each variable

of a function and its symbol is usually ∇.

One of the operations that preserve convexity is composition: if f and g

are convex functions and g is non-decreasing over a univariate domain, then

h(x) = g(f(x)) is convex.

Some of the examples of convex functions:

• The function f(x) = x2 has f ′′(x) = 2 > 0, so f is a convex function.

• The exponential function f(x) = ex is convex.

• The function -log det(X) on the domain of positive-definite matrices is

convex.

• Every norm is a convex function, by the triangle inequality and positive

homogeneity. For A,B ∈ Rn and α, β ∈ [0, 1], α + β = 1:

||αA+ βB|| ≤ ||αA||+ ||βB|| = |α|||A||+ |β|||B|| (2.2)

Now, let us define biconvex set and biconvex function [4].

Definition 2.12. The set set B ⊆ X×Y is called a biconvex set on X×Y
or biconvex for short, if Bx is convex for every x ∈ X and By is convex for

every y ∈ Y .

Definition 2.13. A function f : B → R on a biconvex set B ⊆ X × Y is

called a biconvex function on B if:

1. fx(•) := f(x, •) : Bx → R is a convex function on Bx for every fixed

x ∈ X

2. fy(•) := f(•, y) : By → R is a convex function on By for every fixed

y ∈ Y .

Definition 2.14. Convex optimization is to minimize a convex f(x) on

a convex set D.
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Definition 2.15. A real-valued function f defined on domain X ∈ Rn has

a local minimum point at x∗ ∈ X if there exists some ε > 0 such that

f(x∗) ≤ f(x) for all x ∈ X within distance ε of x∗. The function has a local

maximum point at x∗ ∈ X if there exists some ε > 0 such that f(x∗) ≥ f(x)

for all x ∈ X within distance ε of x∗.

Convex optimization has some nice properties: every local minimum is

global, theoretically it is well explained, there are numerical efficient algo-

rithms for it, and it comes from applications. Some of the applications are

in norm approximation and regularization, semidefinite programming, linear

matrix inequalites, convex relaxation, and parameter estimations [10].

The method of Lagrange multipliers is a strategy for finding the local

maxima and minima of a function subject to equality constraints. When we

want to maximize (minimize) a multivariable function f(x1, ..., xn) subject

to the constraint g(x1, ..., xn) = c, then the method of Lagrange multipliers

works like this:

• introduce a new variable λ and define a new function L:

L(x1, ..., xn, λ) = f(x1, ..., xn)− λ(g(x1, ..., xn)− c)

The function L is called the “Lagrangian” and the new variable λ a

“Lagrange multiplier”.

• set the gradient of L equal to the zero vector:

∇L(x1, ..., xn, λ) = 0, (2.3)

where 0 means the zero vector and in this step we find the critical

points of L.

• consider each solution of (2.3) and plug each one into f . Whichever

gives the greatest(or the smallest) value is the maximum (or the mini-

mum) point.
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The method of Lagrange multipliers is generalized by the Karush–Kuhn-

–Tucker (KKT) conditions [2]. We defined our functions f, g, h in (2.1).

KKT conditions can also take into account inequality constraints of the form

h(x) ≤ c. These conditions are first-order necessary conditions for a solu-

tion in nonlinear programming to be optimal, provided that some regularity

conditions are satisfied. The KKT conditions for the solution x ∈ Rn are:

• stationarity

for minimization:

∇xf(x) +
m∑
i=1

∇xλihi(x) +
n∑
i=1

ηi∇xgi(x) = 0

for maximization:

∇xf(x) +
m∑
i=1

∇xλihi(x)−
n∑
i=1

ηi∇xgi(x) = 0

• equality constraints

∇λf(x) +
m∑
i=1

∇λλihi(x) +
n∑
i=1

ηi∇λgi(x) = 0

• inequality constraints a.k.a. complementary slackness condi-

tion

ηigi(x) = 0, ∀i = 1, 2, ..., n

ηi ≥ 0,∀i = 1, 2, ..., n

The KKT conditions are necessary to find an optimum, but not necessarily

sufficient.

2.3 Singular value decomposition (SVD)

We shall assume that the reader is familiar with orthogonality, matrix fac-

torization, eigenvalues and eigenvectors.
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Definition 2.16. The singular value decomposition (SVD) of a n × p
real matrix X is a factorization:

X = UDV T

where U is an n× r orthogonal matrix, D is an r× r diagonal matrix and V

is an p× r orthogonal matrix.

The diagonal entries of D are known as the singular values of X sorted

in decreasing order. The columns of U and the columns of V are called the

left-singular vectors and right-singular vectors of X, respectively.

The non-sparse singular vectors can be difficult to interpret. Many stud-

ies [19] impose sparsity on singular vectors which lead to better capturing

inherent structures and patterns of input data.

By computing SVD we want do discover “concepts”. By “concept” we

mean a new knowledge which shows relationship between rows and columns

and as a result we have content-aggregated data that we are looking for. We

observe data which is in the observable space, and we want to map it to a

latent space where similar data points are closer together. So we want that

latent space captures the structure of our data.

Matrix U is the “row-to-concept” similarity matrix, V is the “column-to-

concept” similarity matrix and D is the ’strength’ of each concept.

Now, we review sparse graph-regularized penalty. Given a simple graph

G, the adjacency matrix A of graph G and diagonal matrix D whose diagonal

elements are the degrees of vertices in G, Laplacian matrix L is defined as:

L = D − A.

We can impose sparsity on singular vectors in SVD with the following

penalty:

P (v) = λ1l + λ2v
TLv

where λ1 ≥ 0 and λ2 ≥ 0 are two regularization parameters, and l can be

L0-norm penalty or L1-norm penalty. The procedure of different penalties

and how they work in SVD can be found in [6, 18].
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In the following subsections, we present two algorithms: L1-norm sparse

graph-regularized SVD and L0-norm sparse graph-regularized SVD which are

generalizations of SVD algorithm.

2.4 L1-norm sparse graph-regularized SVD

Frobenius norm for the vectors is equal to the Euclidean norm, but for the

matrix X ∈ Rm×n it is defined as:

||A||F =
√

(A,A) =
√

tr(ATA) (2.4)

where tr is the trace (sum of the elements on the main diagonal) of the matrix

A.

We have the following optimization problem [18]:

minimize
u,v

||X − duvT ||2F

subject to ||u||2 ≤ 1, ||u||1 ≤ s1, |u|TL1|u| ≤ s2,

||v||2 ≤ 1, ||v||1 ≤ c1, |v|TL2|v| ≤ c2

(2.5)

where X is a matrix of size n× p, d is a positive singular value of X, u and

v are column vectors of dimension n × 1 and p × 1 respectively, L1 and L2

are Laplacian matrices of adjacency matrices for rows and columns (A1 and

A2), and s1, s2, c1 and c2 are given parameters.

We want to show that our objective function ||X − duvT ||2F in (2.5) is

biconvex according to u and v. By the definition of biconvex function we

need to show convexity when u is fixed over v and when v is fixed over u.

Without loss of generality because of symmetry between u and v we will

show convexity by fixing u over v.

Let A = X − duvT and let the objective function be ||A||2F . The function

A → ||A||F is convex, which is a part of norm properties (2.2). Moreover,

the square function x2 is increasing and convex on [0,∞], so A → ||A||2F
is the composition of a convex function with a convex increasing function,
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which makes it convex as well. By this we showed that our objective function

||X − duvT ||2F is biconvex to u and v.

For the matrix properties we used [7].

Proposition 1. Some of the properties of a trace function tr are:

(a) tr(AT ) = tr(A)

(b) tr(AB) = tr(BA)

(c) tr(ABC) = tr(BCA) = tr(CAB)

(d) tr(vuTX) = tr(uTXv) = uTXv

(e) tr(vuTuvT ) = tr(uTu)(vTv) = (uTu)(vTv) = ||u||2||v||2

(f) tr(A+B) = tr(A) + tr(B)

where A,B,C are matrices and v, u are column vectors.

Norm || · ||F arises from (A,B) = tr(ATB), where A,B ∈ Rm×n. From

Proposition 1. we also have that (A,B) = tr(ATB) = tr(BTA) = tr(ABT ) =

tr(BAT ).

Using property of biconvexity we will first fix u and optimize over v:

minimize
v

||X − duvT ||2F

subject to ||v||2 ≤ 1, ||v||1 ≤ c1, |v|TL|v| ≤ c2

(2.6)

Using definition 2.4 of Frobenius norm we can write our objective function

as:
||X − duvT ||2F = tr((X − duvT )T (X − duvT )) =

= tr(XTX − dvuTX − dXTuvT + d2vuTuvT )
(2.7)

where we used (AB)T = BTAT .

Further use of properties from Proposition 1 and the fact that tr(XTuvT ) =

tr((XTuvT )T ) = tr(vuTX) = tr(uTXv)) transforms the right-hand side of

(2.7) in:

||X − duvT ||2F = ||X||2F − 2duTXv + d2||u||2||v||2
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Since u, v can be assumed to be nonzero, we now prove that without loss

of generality we can assume ||u||2 = 1 and ||v||2 = 1.

duvT = d · ||u|| · ||v|| · u

||u||
· v

T

||v||
= d′u′v′T

for d′ = d · ||u|| · ||v||, u′ = u
||u|| and v′ = vT

||v|| . By dividing the vector by its

norm we got new vectors u′ and v′. We can check that ||X ′ − d′u′v′T ||2F =

||X − duvT ||2F :

d′ · u′T ·X · v′ = d · ||u|| · ||v|| · u
T

||u||
·X vT

||v||
= duTXv

We will still denote vectors as u and v. Like this we gained:

||X − duvT ||2F = ||X||2F − 2duTXv + d2

Minimizing this function is equivalent to minimizing −uTXv, because d

is a positive value and ||X||2F is positive, so we do not have to take it into

account while optimizing.

If we put that z = XTu which implies zT = uTX then −uTXv = −zTv
and since z, v are vectors then we can change the places to −vT z. Now we

have the following optimization problem:

minimize
v

− vT z

subject to ||v||2 ≤ 1, ||v||1 ≤ c1, |v|TL|v| ≤ c2

(2.8)

We want to remove the absolute operator in the condition |v|TL|v| ≤ c2

since it is generally not a convex condition.

Theorem 2.1. Suppose v∗ is an optimal solution of (2.8), then v∗i zi ≥ 0 for

all i, where 1 ≤ i ≤ n and vi, zi are coordinates of vectors v, z respectively.

Proof. Suppose that the Theorem 2.1 is false: it exists i : v∗i zi < 0.

We first construct a vector v′ which satisfies: v′j = v∗j for all j 6= i and

v′i = −v∗i . Obviously the number of non-zero elements of v′ and v∗ is the

same, ||v′||0 = ||v∗||0, and their Euclidean norms are equal ||v′||2 = ||v∗||2.
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Let f1 = −vT∗z and f2 = −vT ′
z. Then f1−f2 = (−v∗+v′)T z = −2v∗i zi >

0. So f1 − f2 > 0 which means that f1 > f2, i.e. −vT∗z > −vT ′
z.

We found a vector v′ which corresponds to a smaller objective value than

v∗ and that leads to a contradiction, so the theorem is true.

Based on the Theorem 2.1 we can change our minimization problem to:

minimize
v

− vT |z|

subject to ||v||2 ≤ 1, ||v||1 ≤ c1, v
TLv ≤ c2, vk ≥ 0, for all k

where |z| = (|z1|, ..., |zp|)T .

We will solve this optimization problem using Lagrangian form. First let

us write all constraints in appropriate form and add Lagrangian multipliers:

• ||v||2 ≤ 1, which is equal to vTv ≤ 1 and vTv − 1 ≤ 0. Let the corre-

sponding Lagrangian multiplier be 1
2
η ≥ 0 (which results in η(vTv−1)).

• ||v||1 ≤ c1, which is equal to
∑p

i |vi| ≤ c1 and
∑p

i vi ≤ c1. Then we

have that
∑p

i vi− c1 ≤ 0. Let the corresponding Lagrangian multiplier

be λ ≥ 0 (which results in λ(
∑p

i vi − c1)).

• vTLv ≤ c2, which is equal to vTLv − c2 ≤ 0 and let the corresponding

Lagrangian multiplier be 1
2
σ ≥ 0 (this results in σ(vTLv − c2)).

• vk ≥ 0 for all k, which is equal to −vk ≤ 0 and let the corresponding

Lagrangian multiplier be τ ≥ 0 (it results in −τkvk,∀k).

Now, we will formulate the Lagrangian form as:

M(v, η, λ, σ, τ1, ...τp) =− vT |z|+ 1

2
η(vTv − 1) + λ(

p∑
i

vi − c1)+

+
1

2
σ(vTLv − c2)− (

p∑
i

τivi)

(2.9)

We added 1
2

in front of some elements so that there would be no canceling

after the derivation process.
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Rules for the first order derivatives [8], where v is a vector, a is a scalar

and L is a matrix:
∂a

∂x
= 0 (2.10)

∂xTa

∂x
=
∂axT

∂x
= a (2.11)

∂xTx

∂x
= 2x (2.12)

∂xTLx

∂x
= (L+ LT )x

For symmetric L:
∂xTLx

∂x
= 2Lx (2.13)

We can write sums in (2.9) in a different form before derivation:

p∑
i

vi =
[
v1 v2 · · · vp

]


1

1
...

1

 = vT · e

p∑
i

τivi =
[
v1 v2 · · · vp

]

τ1

τ2
...

τp

 = vT · τ

Using the rules (2.10), (2.11), (2.12) and (2.13), the derivative of M over

v is:
∂M

∂v
= −|z|+ ηv + λe+ σLv − τ = 0 (2.14)

We know that L = D − A, so we can replace L in (2.14) with D − A.

The easiest way to learn vector v is to use a coordinate descent method, so

the subgradient of vk just by coordinates in (2.9) is:

∂M

∂vk
= −|zk|+ ηvk + λ+ σdkvk − σAkv − τk = 0, (2.15)
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where dk is the degree of node k and Ak is the kth row of the adjacency

matrix A.

The complementary slackness KKT condition (2.2) gives:

• if vk > 0 then τk = 0

• if vk = 0 then τk > 0

So, if vk > 0 then τk = 0, and from (2.15) we have:

−|zk|+ ηvk + λ+ σdkvk − σAkv = 0

ηvk + σdkvk = |zk| − λ+ σAkv

(η + σdk)vk = |zk| − λ+ σAkv

vk =
|zk| − λ+ σAkv

η + σdk
(2.16)

If vk = 0 then τk > 0, and we can merge this case with (2.16) in:

vk =
max(|zk|+ σAkv − λ, 0)

η + σdk
, k = 1, 2, ...

Let v′k = max(|zk| + σAkv − λ, 0) and v′ = (v′1, v
′
2, ..., v

′
p)
T . To meet the

normalizing condition we have v′ = v′

||v′||2 . In the end using Theorem 2.1 the

optimal solution of (2.6) is:

v = v′ • sign(z),

where “•” is element-wise product.

In the same way, with a fixed v while optimizing u, we can get vector u.

When we have u and v, our objective function becomes a quadratic function

in d, so the minimum is only related to d, and we can control iteration by

monitoring the change of d.

Algorithm 1 shows the L1-norm sparse-graph regularized SVD algorithm

[11].

An input to the Algorithm 1 is a data matrix, two adjacency matrices

(for rows and columns) and four parameters: λu (regularization parameter for
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Algorithm 1 L1-norm SVD

Input: data matrix X ∈ Rn×p; prior networks A1 ∈ Rn×n and A2 ∈ Rp×p;

parameters λu, λv, σu, σv

1: Initialize v with ||v||2 = 1

2: repeat

3: Let z = Xv, A = A1 and u = |u|
4: for i = 1 to n do

5: ui = max(|zi|+ σuAiu− λu, 0)
6: end for

7: u = u
||u||2

8: u = u • sign(z)
9: Let z = XTu, A = A2 and v = |v|

10: for k = 1 to p do

11: vk = max(|zk|+ σvAkv − λv, 0)
12: end for

13: v = v
||v||2

14: v = v • sign(z)
15: d = zT v

16: until d convergence

17: return u, v, d
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the left singular vector), λv (regularization parameter for the right singular

vector), σu (importance of the prior graph A1) and σv (importance of the

prior graph A2). Lines 3-8 compute u singular vector and lines 9-14 compute

v singular vector.
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2.5 L0-norm sparse graph-regularized SVD

Similar to 2.4 we have the following optimization problem:

minimize
u,v

||X − duvT ||2F

subject to ||u||2 ≤ 1, ||u||0 ≤ ku, |u|TL1|u| ≤ c1,

||v||2 ≤ 1, ||v||0 ≤ kv, |v|TL2|v| ≤ c2

The difference between those two problems are that here we have the L0-norm

constraints instead of L1-norm constraints.

We will first fix u, optimize over v and let z = XTu and similar to 2.4 we

obtain:

minimize
v

− vT z

subject to ||v||2 ≤ 1, ||v||0 ≤ kv, |v|TL|v| ≤ c2

(2.17)

Similarly to Theorem 2.1 now we have:

Theorem 2.2. Suppose v∗ is an optimal solution of (2.17), then v∗i zi ≥ 0

for all i, 1 ≤ i ≤ n.

Based on the Theorem 2.2 we can change our minimization problem to:

minimize
v

− vT |z|

subject to ||v||2 ≤ 1, ||v||0 ≤ kv, v
TLv ≤ c2, vk ≥ 0,∀k

where |z| = (|z1|, ..., |zp|)T .

We will solve this optimization problem using Lagrangian form:

M(v, η, σ, τ1, ...τp) = −vT |z|+ 1

2
η(vTv−1)+

1

2
σ(vTLv−c2)−(

p∑
i

τivi) (2.18)

We will deal with the following constraint ||v||0 ≤ kv later.

The optimal solution of (2.18) satisfies:

∂M

∂v
= −|z|+ ηv + σLv − τ = 0
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The subgradient of vk in (2.18) is:

∂M

∂vk
= −|zk|+ ηvk + σdkvk − σAkv − τk = 0 (2.19)

where dk is the degree of node k, L = D − A and Ak is the kth row of the

adjacency matrix A.

The complementary slackness KKT condition gives:

• if vk > 0 then τk = 0

• if vk = 0 then τk > 0

So, if vk > 0 then τk = 0, and from (2.19) we have:

−|zk|+ ηvk + σdkvk − σAkv = 0

ηvk + σdkvk = |zk|+ σAkv

(η + σdk)vk = |zk|+ σAkv

vk =
|zk|+ σAkv

η + σdk
(2.20)

If vk = 0 then τk > 0, and we can merge this case with (2.20) in:

vk =
max(|zk|+ σAkv, 0)

η + σdk
, k = 1, 2, ...

Let v′k = max(|zk|+ σAkv − λ, 0) and v′ = (v′1, v
′
2, ..., v

′
p)
T .

Definition 2.17. The order statistics of a random sample X1, ..., Xn are

the sample values placed in ascending order. The kth smallest X value is

normally called the kth order statistic, denoted by |X|kv .

The first order statistic is the smallest sample value (i.e. the minimum),

once the values have been placed in order. For example, in the sample 9, 2,

11, 5, 7, 4 the first order statistic is two. The second order statistic is the

next smallest value, which is in the same sample, equal to four.
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Definition 2.18. The indicator function is a function defined on a set

X that indicates membership of an element in a subset A of X, having the

value one for all elements of A and the value zero for all elements of X not

in A.

To satisfy the condition ||v||0 ≤ kv, that the value of L0-norm of vector

v has to be less or equal to kv, we force the p − kv elements of v with the

smallest absolute values to be zeros:

v′ = v • I(|v| ≥ |v|kv)

where I(·) is the indicator function, “•” denotes element-wise product and

|v|kv is the kth order statistic of |v|.
To meet the normalizing condition we have v′ = v′

||v′||2 . In the end using

Theorem 2.2 the optimal solution of (2.17) is:

v = v′ • sign(z)

In the same way with a fixed v while optimizing u, we can get vector u.

When we have u and v, our objective function becomes a quadratic function

about d, so the minimum is only related to d, and we can control iteration

by monitoring the change of d.

Algorithm 2 shows the L0-norm sparse-graph regularized SVD algorithm

[11].

An input to the Algorithm 2 is a data matrix, two adjacency matrices

(for rows and columns) and four parameters: ku (regularization parameter for

the left singular vector), kv (regularization parameter for the right singular

vector), σu (importance of the prior graph A1) and σv (importance of the prior

graph A2). Lines 3-9 compute u singular vector and lines 10-16 compute v

singular vector.

We calculated second coordinates of singular vectors u, v for L1-norm SVD

and L0-norm SVD naming the methods again on the new data matrix X =

X − duTv.
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Algorithm 2 L0-norm SVD

Input: data matrix X ∈ Rn×p; prior networks A1 ∈ Rn×n and A2 ∈ Rp×p;

parameters ku, kv, σu, σv

1: Initialize v with ||v||2 = 1

2: repeat

3: Let z = Xv, A = A1 and u = |u|
4: for i = 1 to n do

5: u′i = |zi|+ σuAiu

6: end for

7: u = u′ • I(|u′| ≥ |u′|ku)

8: u∗ = u
||u||2

9: u = u∗ • sign(z)
10: Let z = XTu, A = A2

11: for k = 1 to p do

12: v′k = |zk|+ σvAkv

13: end for

14: v = v′ • I(|v′| ≥ |v′|kv
)

15: v∗ = v
||v||2

16: v = v∗ • sign(z)
17: d = zT v

18: until d convergence

19: return u, v, d
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Gene expression data

Data visualization is one of the most important steps in the analysis of high-

dimensional data. Plots that reveal relationships between columns or be-

tween rows are more complicated due to the high dimensionality of data. If

we are able to reduce down to two dimensions, we can then easily present

the data in a scatter plot like visualizations.

3.1 Bone marrow mononuclear cells with AML

dataset

“Bone marrow mononuclear cells” dataset represents gene expressions in bone

marrow mononuclear cells from a patient with acute myeloid leukemia (AML)

and two healthy donors that are used as controls. The data we have con-

sidered includes a sample of 1000 cells and 1000 genes with the highest dis-

persion. This is a sample dataset which includes cells from three separate

experiments with datasets published on 10x Genomics single-cell data sets

page: AML027 Pre-transplant BMMCs, Frozen BMMCs (Healthy Control

1), and Frozen BMMCs (Healthy Control 2) [22]. The Table 3.1 shows part

of our dataset looks like.

25
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Type HBG1 HBG2 S100A9 S100A8 GNLY LYZ

healthy 0 0 2.279 2.761 0 4.037

healthy 0 0 0 0 0 0

healthy 0 0 0 0 0 1.056

AML 2.397 1.276 0 0 0 1.276

AML 0 0 0 0 0 0

AML 0.943 2.985 0 0 0 0

Table 3.1: The sample of dataset “Bone marrow mononuclear cells”

3.2 STRING database

The STRING database 1 provides a critical assessment and integration of

protein–protein interactions, including direct (physical) as well as indirect

(functional) associations. We uploaded our 1000 genes as a “.txt” file to the

STRING database [17]. The report from STRING is shown in Table 3.2.

value

number of nodes 872

number of edges 5325

average node degree 12.2

avg.local clustering coefficient 0.412

expected number of edges 2553

PPI enrichment p-value 1 · 10−16

Table 3.2: Network analysis from STRING database

The Figure 3.1 shows us the network, but since it is a large network, it

becomes hard to interpret it. The first step is to export it to the “.tsv” file.

1http://string-db.org

http://string-db.org
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Figure 3.1: Gene network graph from STRING database. We uploaded

all genes from “Bone marrow mononuclear cells with AML” dataset to the

database and got the image above as the result.

The sample of this file can be viewed in Table 3.3.
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node1 node2 co-expression

ORC1 MCM2 0.757

CDC45 MCM2 0.828

CHEK2 ATM 0.055

MCM2 CDC6 0.582

UBA52 RPS4X 0.956

EFNA5 EPHA4 0.381

Table 3.3: Sample of our gene network, where genes are represented

as “node1” and “node2” and their co-expression score as obtained from

STRING database

3.3 Human CD markers

Cluster of differentiation (CD) molecules are cell surface markers useful for

the identification and characterization of leukocytes. The CD nomenclature

was developed and is maintained through the Human Leukocyte Differenti-

ation Antigens (HLDA) workshop started in 1982. New CD markers were

established at the HLDA9 meeting held in Barcelona in 2010.

We downloaded the official “.pdf” file of Human CD Markers 2, Fig-

ure 3.2, but we could not automatically convert it to a “.csv” file, so we did

it manually.

Human CD Markers handbook considers eleven types of cells, each type

has a different number of “+” and “-” gene markers (Table 3.5). We will

consider only markers that are overexpressed for a given cell type, that is,

that are marked with “+”. Genes can have more than one name or symbol,

especially when the same gene is known by different scientific, informal, and

historical names. That is why we decided to match gene names from “Bone

2http://www.bdbiosciences.com/documents/cd_marker_handbook.pdf

http://www.bdbiosciences.com/documents/ cd_marker_handbook.pdf
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Notation Meaning

+ Positive (co-expression is greater than 0)

- Negative (co-expression is less than 0)

empty Neutral (co-expression is 0)

Table 3.4: The meaning of different notations in Figure.3.2

marrow mononuclear cells with AML dataset” with genes from Human CD

markers. From the initial 19 matched genes we came to matched 78 genes.

We used scOrange software 3 and the procedure is shown in Figure 3.3.

3http://singlecell.biolab.si

http://singlecell.biolab.si
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Cell type # of “+” # of “-”

T Cell 223 81

B Cell 185 88

Dendritic Cell 125 67

NK Cell 131 131

Stem Cell/Precursor 111 36

Macrophage/Monocyte 219 73

Granulocyte 135 122

Platelet 50 124

Erythrocyte 29 149

Endothelial Cell 110 69

Epithelial Cell 94 50

Table 3.5: Cell types and number of associated overexpressed (“+”) and

underexpressed(“-”) marker genes in CD Marker handbook
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Figure 3.2: First few CD markers from human genome. The rows refer to

genes and the columns represent cell types. The sign “+” means that the

gene is a marker gene for that cell type.
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Figure 3.3: Matching gene names from “Bone marrow mononuclear cells

with AML dataset” with Human CD markers in scOrange software. We up-

loaded our dataset and Human CD Markers. On CD Markers we performed

“Gene Name Matcher” and after that we merged data to get matched gene

names.



Chapter 4

Experimental evaluation

Our experimental evaluation consists of two parts: evaluation on synthetic

data and evaluation on real gene-expression data. Evaluation will use the

following matrices:

• with X we shall denote the gene-expression matrix,

• with A1 we shall denote the adjacency matrix corresponding to the

graph in which vertices are cells and there is an edge between two

vertices if and only if the cells are of the same type,

• with A2 we shall denote the adjacency matrix in which vertices are

genes and there is an edge between two vertices if and only if the genes

have value greater than 0 in a matrix. For A2 we used the matrix from

STRING database.

We shall show the visualization of the first two components of each method.

We can calculate more components, but we need only two of them, so that

we can make a 2D-plot.

4.1 Evaluation of methods on synthetic data

In this part, we evaluate performance of three different algorithms with sim-

ulated (synthetic) data. The process of constructing synthetic data was the

33
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following:

• constructing a matrix X: we assumed that we have five different

cell types: T cell, B cell, dendritic cell, NK cell and Granulocyte. We

chose to have 200 cells of each type, so that in the end our matrix

X contains 1000 rows. For each cell type we look in the Human CD

Markers to see what are the corresponding marker genes. Then, for

our 78 previously matched genes (columns) we put value greater than

zero for a gene that is a marker gene for that cell type. We added a

noise matrix to our matrix X. In the end, we added 1000 random genes

(columns) to better simulate real gene-expression datasets where most

of the genes are not the marker ones.

• constructing a matrix A2: for the adjacency matrix for columns we

took the data from the STRING database for the matched 78 genes.

For the remaining 1000 random genes we have considered that they are

adjacent with probability 0.3.

In measuring the efficiency of our methods used silhouette score. Silhou-

ette scoring is a method of interpretation and validation of consistency within

clusters of data. The silhouette score measures how similar an object is to

its own cluster (cohesion) compared to other clusters (separation). The sil-

houette ranges from −1 to +1, where a high value indicates that the object

is well matched to its own cluster and poorly matched to neighboring clus-

ters. If most objects have a high value, then the clustering configuration is

appropriate. If many points have a low or negative value, then the clustering

configuration may have too many or too few clusters [14].

We performed analysis on matrix X with 1000 cells and 1078 genes. In

our experimental evaluation on synthetic data we are interested to see how

good are standard SVD, L1-norm SVD and L0-norm SVD in discovering

different types of cells. That is why in our analysis we do not have the

adjacency matrix A1 and therefore, the parameter for the importance of the

prior graph A1 is always equal to zero. The presence of matrix A1 will make
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the problem trivial and in the real datasets most of the time we do not own

this knowledge.First, we performed standard SVD and the visualization is

shown in Figure 4.1. The value of silhouette score for this visualization is

0.464.

Figure 4.1: Standard SVD algorithm performed on synthetic data. The

value of silhouette score for this visualization is 0.464.

4.1.1 L1-norm SVD

To demonstrate how the L1-norm SVD and L0-norm SVD work and how the

visualization changes depending on different values of parameters, we chose

to fix some parameters and to change only one parameter.

We can see different visualizations of L1-norm SVD algorithm in Fig-

ure 4.2. We fixed σu, A1 and σv with the following values: λv = 1, σu = 0

and σv = 0.1. We chose these values so that we can see how change of λu in-

fluence the visualization when value of λv is maximum and when importance

of σv is small.

Table 4.1 shows how silhouette score changes with different values of λu. We
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started with λu = 0.1 and we immediately got better result, 0.604, than with

standard SVD, which has score 0.464. We are interested to see what is the

maximum value of silhouette score which we can obtain by change of λu. We

reached the maximum when λu = 0.33 (Figure 4.2 (b)) and score is equal

to 0.645, which is a great improvement comparing to standard SVD and its

score. For λu = 0.4 the score is -0.328, which is a sign that regularization

parameter is too large. If we take a look in Algorithm 1, line 5, we can see

that when we are updating coordinates for the left singular vector we are

doing it by choosing the maximum between 0 and some value from which we

substract λu. If we take too large value of λu, the algorithm will choose 0

as the coordinate update. This leads to a smaller silhouette score and worse

visualization (Figure 4.2 (c)).
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(a) λu = 0.1 (b) λu = 0.33

(c) λu = 0.4

Figure 4.2: L1-norm SVD algorithm performed on synthetic data with

parameters λv = 1, σu = 0, σv = 0.1 and different values of parameter

λu. Synthetic data contains five types of cells: T cell (red), B cell (blue),

dendritic cell (yellow), NK cell (orange) and Granulocyte (black).
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λu Silhouette score

0.1 0.604

0.2 0.621

0.3 0.640

0.33 0.645

0.4 -0.328

Table 4.1: Silhouette scores for L1-norm SVD performed on synthetic data

with parameters λv = 1, σu = 0, σv = 0.1 and different values of parameter

λu.

4.1.2 L0-norm SVD

We fixed parameters ku, kv and σu with the following values: ku = 0, kv = 0

and σu = 0. The visualization of L0-norm SVD is in Figure 4.3.

Table 4.2 shows how silhouette score changes by different values of σv.

We started with σv = 0.1 and we got a result that is slightly better, 0.488,

than with standard SVD. We are interested to see what is the maximum

value of silhouette score which we can obtain with the change of σv. We

reached the maximum when σv = 0.9 (Figure 4.3 (b)) and score is equal to

0.505. For σv = 0.4 the score is 0.502. With this we showed that putting too

much importance of prior graphs can lead to worse silhouette score. In our

case we got the adjacency matrix from STRING database and it did not find

all genes and their interactions, thus the algorithm relies too much on data

that is not necessarily correct. So, we have to be careful in regularization

when depending on prior graphs.
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(a) σv = 0.1 (b) σv = 0.9

Figure 4.3: L0-norm SVD algorithm performed on synthetic data with

parameters ku = 0, kv = 0, σu = 0 and different values of parameter σv.

Synthetic data contains five types of cells: T cell (red), B cell (blue), dendritic

cell (yellow), NK cell (orange) and Granulocyte (black).

σv Silhouette score

0.1 0.488

0.4 0.495

0.8 0.503

0.9 0.505

1 0.502

Table 4.2: Silhouette scores for L0-norm SVD performed on synthetic data

with parameters ku = 0, kv = 0, σu = 0 and different values of parameter σv.

We also present visualizations of synthetic data without 1000 random

genes, when we only have marker genes as columns (Figure 4.5 and Fig-

ure 4.4). Here we can see that different cell types are separated better, since

there are no random genes which create noise. This was an expected result.
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(a) ku = 0 (b) ku = 2

Figure 4.4: L0-norm SVD algorithm performed on synthetic data with

parameters kv = 0, σu = 0, σv = 1 and different values of parameter ku.

Synthetic data contains five types of cells: T cell (red), B cell (blue), dendritic

cell (yellow), NK cell (orange) and Granulocyte (black).
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(a) λu = 0.1 (b) λu = 0.2

(c) λu = 0.6

Figure 4.5: L1-norm SVD algorithm performed on synthetic data with

parameters λv = 1, σu = 0, σv = 0.1 and different values of parameter

λu. Synthetic data contains five types of cells: T cell (red), B cell (blue),

dendritic cell (yellow), NK cell (orange) and Granulocyte (black).

4.2 Evaluation of methods on real dataset

4.2.1 Analysis on healthy and AML cells

In Subsection 4.1 we performed analysis without taking into consideration

adjacency matrix A1. The purpose of this subsection is to show that algo-

rithms work well given the A1. Visualization of standard SVD is in Figure 4.6
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with score -0.002.

Figure 4.6: Standard SVD algorithm performed on dataset “Bone marrow

mononuclear cells with AML”.
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L1-norm SVD is shown in Figure 4.8 and L0-norm SVD is in Figure 4.7.

(a) σu = 0.2 (b) σu = 0.4

(c) σu = 0.8 (d) σu = 1

Figure 4.7: L0-norm SVD algorithm performed on Bone marrow mononu-

clear cells with AML dataset with parameters ku = 0, kv = 0, σv = 0.1 and

different values of parameter σu. Healthy cells are red and AML cells are

blue.

Notice how the visualization for L1-norm SVD and L0-norm SVD is

changing by increasing the importance of A1. The best results for both

methods are when the σu has the maximum value, 1. The best result has

L1-norm SVD which is 0.47. The values for both algorithms with different

parameters are in Table 4.3 and Table 4.4.
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(a) σu = 0.2 (b) σu = 0.4

(c) σu = 1

Figure 4.8: L1-norm SVD algorithm performed on Bone marrow mononu-

clear cells with AML dataset with parameters λu = 1, λv = 1, σv = 0.1 and

different values of parameter σu. Healthy cells are red and AML cells are

blue.
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σu Silhouette score

0.2 0.06

0.4 0.16

0.8 0.22

1 0.25

Table 4.3: Silhouette scores for L0-norm SVD performed on “Bone marrow

mononuclear cells with AML” with parameters ku = 0, kv = 0, σv = 0.1 and

different values of parameter σu.

σu Silhouette score

0.2 0.41

0.4 0.43

0.8 0.47

1 0.47

Table 4.4: Silhouette scores for L1-norm SVD performed on “Bone marrow

mononuclear cells with AML” with parameters λu = 1, λv = 1, σv = 0.1 and

different values of parameter σu.

4.2.2 Analysis on healthy cells

We are interested to see how good are standard SVD, L1-norm SVD and

L0-norm SVD in discovering different types of cells, when we do not know

what is the cell type. That is why we now perform analysis only on healthy

cells. At the beginning, we selected one of the cell types, for example T Cell

and we see which genes are markers (label “+” in 3.2) for the select cell type

(CD1a, CD1b, CD1c...). Markers are collected in a set that is denoted by

“X” and the number of elements in this set is denoted by “n”.

On our dataset we performed standard SVD, L0-norm SVD and L1-norm
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SVD.

The visualization of these methods is in Figure 4.9.

Figure 4.9: Standard SVD algorithm, L0-norm SVD and L1-norm SVD

performed on healthy cells from “Bone marrow mononuclear cells with AML”

dataset. We can see that standard SVD and L0-norm differ slightly while in

L1-norm SVD there is a bigger regularization.

We chose each point from our visualization and “k” (in our case we put

k = 10, since we have ten cell types) closest points around it. We calculated

closest points using Euclidean distance. For each of the “k” points and our

selected point, we look at the expression of the marker genes from our dataset

(matrix X). For expression value 0 we have number 0 and for expression

value > 0 we have number 1. We counted how many ones (1) we have and

we denoted their number with “m”. Score for this point is m
n
· 100. Then

we made a distribution of all mean scores for standard svd, L0-norm SVD

and L1-norm SVD and compared their graphs. We repeated this for all cell

types. The goal was to show that methods L1-norm SVD and L0-norm SVD

better combine cell types than standard SVD. In this part of our analysis

we cannot use silhouette score as the measure for efficiency since we do not

know the cell types. We shall take a look at distribution graphs of mean

scores and see what is the difference among them.
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(a) T cell (b) B cell (c) NK cell

(d) Dendritic cell (e) Endothelial cell (f) Epithelial cell

(g) Granulocyte (h) Macrophage (i) Platelet

(j) Stem-cell

Figure 4.10: Distributions of average means scores for different cell types.

L0-norm SVD is blue, L1-norm SVD is green and standard SVD is red.

To evaluate the difference between the distributions we used the two sam-

ple Kolmogorov-Smirnov test (KS-test). This test is a non-parametric test

that compares the cumulative distributions of two datasets. It tries to de-

termine if two datasets differ significantly. The KS-test has the advantage of

making no assumption about the distribution of data. The null hypothesis
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isthatbothgroupsweresampledfrompopulationswithidenticaldistribu-

tions.Ittestsforanyviolationofthatnullhypothesis–differentmedians,

differentvariances,ordifferentdistributions.Ifthep-valueissmall,wecan

concludethatthetwogroupsweresampledfrompopulationswithdifferent

distributions.Thepopulationsmaydifferinmedian,variabilityortheshape

ofthedistribution.

Wecanseethatforbothalgorithmsandforallcelltypesp-valueissmaller

than0.05.Fromthiswecanconcludethatthesedistributionsaredifferent.

SincetheKolmogorov-Smirnovtestdoesnotcompareanyparticularparam-

eter(i.e. meanormedian),itdoesnotreportanyconfidenceinterval. A

confidenceintervalisatypeofintervalestimate,thatmightcontainthetrue

valueofanunknownpopulationparameter. Mostcommonly,the95%con-

fidenceintervalisused,butalsootherscanbeused. Wecomputedthe95%

confidenceintervalandshowedtheresultsinFigure4.11
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Figure4.11:The95%confidenceintervalforL0-normSVD(red),L1-norm

SVD(green)andstandardSVD(blue).TheL1-normSVDhasthelargest

meanvaluein9outof10celltypes.
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From the confidence interval we see that for the most cell types L1-norm

SVD has the largest mean value (9 out of 10 cell types), while the mean

scores for standard SVD and L0-norm SVD are close. We can also notice

that even if L0-norm SVD and standard SVD have close values, we are more

confident about the mean value of L0-norm SVD algorithm than for standard

SVD algorithm.
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Conclusion

In the thesis, we have reviewed two algorithms of regularized SVD: L0-norm

SVD and L1-norm SVD [11]. Implementation was done in Python program-

ming language and code is available on Github repository 1. We tested the

methods on synthetic data and on real gene-expression dataset to answer the

following questions:

1. testing methods on the whole dataset and evaluating performance: how

well different methods differentiate between healthy and AML cells?

2. testing only on healthy cells and evaluation of performance using marker

genes: how different methods distribute mean marker scores?

We learned how to apply L0-norm and L1-norm on singular value decompo-

sition method and what is the theoretical background behind it. Depending

on the value of the parameters, both methods yielded different results, that

is, different visualizations. In order to achieve the best result, we varied reg-

ularization parameters and found that in the case of over-regularization, the

visualization is disturbed. In both tests, the best results were found with L1-

norm SVD. We showed that L0-norm SVD and L1-norm SVD better capture

the structure of data than standard SVD.

1https://github.com/Ejmric/L0-and-L1-Norm-SVD

51
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The continuation of this work can go in the way of relating this approach

and data fusion approach [23] where we combine multiple sources of knowl-

edge to get more accurate model. On each data source we can try to apply

regularization and see is the result after data fusion better.
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