
Low-rank matrix factorization in multiple kernel
learning

A dissertation presented
by

Martin Stražar

to
The Faculty of Computer and Information Science

in partial fulfilment of the requirements for the degree of
Doctor of Philosophy

in the subject of
Computer and Information Science

Ljubljana, 

APPROVAL

I hereby declare that this submission is my own work and that, to the best of my
knowledge and belief, it contains no material previously published or written by another
person nor material which to a substantial extent has been accepted for the award of any
other degree or diploma of the university or other institute of higher learning, except where

due acknowledgement has been made in the text.
— Martin Stražar, September 

The submission has been approved by

dr. Tomaž Curk
Assistant Professor of Computer and Information Science

advisor
University of Ljubljana, Faculty of Computer and Information Science

dr. Matej Kristan
Associate Professor of Computer and Information Science

examiner
University of Ljubljana, Faculty of Computer and Information Science

dr. Bor Plestenjak
Professor of Mathematics

examiner
University of Ljubljana, Faculty of Mathematics and Physics

dr. Dino Sejdinović
Associate Professor in Statistics

examiner
University of Oxford, Department of Statistics

PREVIOUS PUBLICATION

I hereby declare that the research reported herein was previously published/submitted
for publication in peer reviewed journals or publicly presented at the following occa-
sions:

[] M. Stražar, J. Ule, B. Zupan, M. Žitnik, and T. Curk. Orthogonal matrix factorization
enables integrative analysis of multiple RNA binding proteins. In Jonathan Wren,
editors, volume . of Bioinformatics, pages –, Oxford, . Oxford
University Press.

I certify that I have obtained a written permission from the copyright owner(s) to
include the above published material(s) in my thesis. I certify that the above material
describes work completed during my registration as graduate student at the University
of Ljubljana.

ABSTRACT

University of Ljubljana
Faculty of Computer and Information Science

Martin Stražar
Low-rank matrix factorization in multiple kernel learning

The increased rate of data collection, storage, and availability results in a correspond-
ing interest for data analyses and predictive models based on simultaneous inclusion
of multiple data sources. This tendency is ubiquitous in practical applications of ma-
chine learning, including recommender systems, social network analysis, finance and
computational biology. The heterogeneity and size of the typical datasets calls for si-
multaneous dimensionality reduction and inference from multiple data sources in a
single model. Matrix factorization and multiple kernel learning models are two gen-
eral approaches that satisfy this goal. This work focuses on two specific goals, namely
i) finding interpretable, non-overlapping (orthogonal) data representations through
matrix factorization and ii) regression with multiple kernels through the low-rank ap-
proximation of the corresponding kernel matrices, providing non-linear outputs and
interpretation of kernel selection.

The motivation for the models and algorithms designed in this work stems from
RNA biology and the rich complexity of protein-RNA interactions. Although the
regulation of RNA fate happens at many levels - bringing in various possible data
views - we show how different questions can be answered directly through constraints
in the model design. We have developed an integrative orthogonality nonnegative
matrix factorization (iONMF) to integrate multiple data sources and discover non-
overlapping, class-specific RNA binding patterns of varying strengths. We show that
the integration of multiple data sources improves the predictive accuracy of retrieval
of RNA binding sites and report on a number of inferred protein-specific patterns,
consistent with experimentally determined properties.

A principled way to extend the linear models to non-linear settings are kernel meth-
ods. Multiple kernel learning enables modelling with different data views, but are
limited by the 𝑂(𝑛􏷡) computation and storage complexity of the kernel matrix. Con-

i

ii Abstract M. Stražar

siderable savings in time and memory can be expected if kernel approximation and
multiple kernel learning are performed simultaneously. We present the Mklaren al-
gorithm, which achieves this goal via Incomplete Cholesky Decomposition, where
the selection of basis functions is based on Least-angle regression, resulting in linear
complexity both in the number of data points and kernels. Considerable savings in
approximation rank are observed when compared to general kernel matrix decompo-
sitions and comparable to methods specialized to particular kernel function families.
The principal advantages of Mklaren are independence of kernel function form, robust
inducing point selection and the ability to use different kernels in different regions of
both continuous and discrete input spaces, such as numeric vector spaces, strings or
trees, providing a platform for bioinformatics.

In summary, we design novel models and algorithms based on matrix factorization
and kernel learning, combining regression, insights into the domain of interest by
identifying relevant patterns, kernels and inducing points, while scaling to millions of
data points and data views.

Key words: Machine learning, bioinformatics, matrix factorization, kernel methods,
multiple kernel learning, linear regression, protein-RNA interactions.

POVZETEK

Univerza v Ljubljani
Fakulteta za računalništvo in informatiko

Martin Stražar
Faktorizacija matrik nizkega ranga pri učenju z večjedrnimi metodami

V času pospešenega zbiranja, organiziranja in dostopnosti podatkov se pojavlja potreba
po razvoju napovednih modelov na osnovi hkratnega učenja iz več podatkovnih virov.
Konkretni primeri uporabe obsegajo področja strojnega učenja, priporočilnih siste-
mov, socialnih omrežij, financ in računske biologije. Heterogenost in velikost tipičnih
podatkovnih zbirk vodi razvoj postopkov za hkratno zmanjšanje velikosti (zgoščevanje)
in sklepanje iz več virov podatkov v skupnem modelu. Matrična faktorizacija in jedrne
metode (ang. kernel methods) sta dve splošni orodji, ki omogočata dosego navedenega
cilja. Pričujoče delo se osredotoča na naslednja specifična cilja: i) iskanje interpretabil-
nih, neprekrivajočih predstavitev vzorcev v podatkih s pomočjo ortogonalne matrične
faktorizacije in ii) nadzorovano hkratno faktorizacijo več jedrnih matrik, ki omogoča
modeliranje nelinearnih odzivov in interpretacijo pomembnosti različnih podatkovnih
virov.

Motivacija za razvoj modelov in algoritmov v pričujočem delu izhaja iz RNA bio-
logije in bogate kompleksnosti interakcij med proteini in RNA molekulami v celici.
Čeprav se regulacija RNA dogaja na več različnih nivojih — kar vodi v več podatkov-
nih virov/pogledov — lahko veliko lastnosti regulacije odkrijemo s pomočjo omejitev
v fazi modeliranja. V delu predstavimo postopek hkratne matrične faktorizacije z ome-
jitvijo, da se posamezni vzorci v podatkih ne prekrivajo med seboj — so neodvisni oz.
ortogonalni. V praksi to pomeni, da lahko odkrijemo različne, neprekrivajoče nači-
ne regulacije RNA s strani različnih proteinov. Z vzključitvijo več podatkovnih virov
izboljšamo napovedno točnost pri napovedovanju potencialnih vezavnih mest posa-
meznega RNA-vezavnega proteina. Vzorci, odkriti iz podatkov so primerljivi z ekspe-
rimentalno določenimi lastnostmi proteinov in obsegajo kratka zaporedja nukleotidov
na RNA, kooperativno vezavo z drugimi proteini, RNA strukturnimi lastnostmi ter
funkcijsko anotacijo.

iii

iv Povzetek M. Stražar

Klasične metode matrične faktorizacije tipično temeljijo na linearnih modelih po-
datkov. Jedrne metode so eden od načinov za razširitev modelov matrične faktorizacije
za modeliranje nelinearnih odzivov. Učenje z več jedri (ang. Multiple kernel learning)
omogoča učenje iz več podatkovnih virov, a je omejeno s kvadratno računsko zahtev-
nostjo v odvisnosti od števila primerov v podatkih. To omejitev odpravimo z ustrezni-
mi približki pri izračunu jedrnih matrik (ang. kernel matrix). V ta namen izboljšamo
obstoječe metode na način, da hkrati izračunamo aproksimacijo jedrnih matrik ter nji-
hovo linearno kombinacijo, ki modelira podan tarčni odziv. To dosežemo z metodo
Mklaren (ang. Multiple kernel learning based on Least-angle regression), ki je sestavljena
iz Nepopolnega razcepa Choleskega in Regresije najmanjših kotov (ang. Least-angle
regression). Načrt algoritma vodi v linearno časovno in prostorsko odvisnost tako gle-
de na število primerov v podatkih kot tudi glede na število jedrnih funkcij. Osnovne
prednosti postopka so poleg računske odvisnosti tudi splošnost oz. neodvisnost od
uporabljenih jedrnih funkcij. Tako lahko uporabimo različne, splošne jedrne funkcije
za modeliranje različnih delov prostora vhodnih podatkov, ki so lahko zvezni ali dis-
kretni, npr. vektorski prostori, prostori nizov znakov in drugih podatkovnih struktur,
kar je prikladno za uporabo v bioinformatiki.

V delu tako razvijemo algoritme na osnovi hkratne matrične faktorizacije in jedr-
nih metod, obravnavnamo modele linearne in nelinearne regresije ter interpretacije
podatkovne domene - odkrijemo pomembna jedra in primere podatkov, pri čemer je
metode mogoče poganjati na milijonih podatkovnih primerov in virov.

Ključne besede: Strojno učenje, bioinformatika, matrična faktorizacije, jerdne metode,
učenje z več jedrnimi funkcijami, linearna regresija, interakcije proteini-RNA.

ACKNOWLEDGEMENTS

This book is a small piece of puzzle in the vast scientific world. On the other hand, it
constitutes a major part of what I have learned in the last couple of years, which has been
possible with the help of numerous persons, to whom I express my sincere gratitude.

My thesis advisor dr. Tomaž Curk, University of Ljubljana, and dr. Jernej Ule, The
Crick Institute, London, for introducing me to computational RNA biology, and providing
critical feedback on a regular basis. To be part of a dynamic, international team and a
fast-paced environment is the best a graduate student can wish for.

The head of Biolab at University of Ljubljana, dr. Blaž Zupan, for sharing impor-
tant lessons in science and beyond, and being a great example of perseverance and resisting
instances of higher power.

The coworkers at Biolab, fellow teachers and other staff members at the Faculty for a
pleasant working and social environment.

To Tina and my family — Olga, Božo and Eva — for supporting me, which I often did
not make any easier.

— Martin Stražar, Ljubljana, September .

v

CONTENTS

Abstract i

Povzetek iii

Acknowledgements v

 Introduction 
. Data integration by matrix factorization 
. Low-rank approximation of multiple kernel matrices 
. Summary of the scientific contributions 
. Availability . 
. Overview of thesis structure . 

 Low-rank matrix approximation 
. Notions of error . 
. Non-negative matrix factorization 
. Constrained matrix factorization 
. Simultaneous matrix factorization 

 Integrative orthogonal nonnegative matrix factorization 
. The iONMF model and algorithms 
. Derivation of the iONMF optimization algorithm 
. The prediction function . 
. Discovering relevant modules and features 

vii

viii Contents M. Stražar

 Experiments with iONMF 
. Sampling of genomic positions . 
. Data matrices . 
. Analysis overview . 
. Predictive performance . 
. Effect of orthogonality . 
. Overlap between modules . 
. Estimated importance of data sources 
. Identified factors associated with RBP binding 

.. iONMF identifies biologically relevant binding patterns . . 
.. Orthogonality constraints demultiplex binding patterns . . . 

. Summary on biological results . 
. Summary on orthogonal matrix factorization 

 Kernel methods 
. Kernel functions . 
. Output function spaces . 
. Multiple kernel learning . 

.. Making new kernels from old 
.. Multiple kernel learning algorithms 

. Gaussian processes . 
. Kernel matrix approximations . 
. Kernel-specific approximations . 

 Approximate multiple kernel learning 
. Initial definitions and overview 
. Simultaneous Incomplete Cholesky decompositions 
. Pivot selection based on Least-angle regression 
. Look-ahead decompositions . 
. The Mklaren algorithm . 
. Out-of-sample prediction . 
. Computing dual coefficients . 
. 𝐿􏷡 norm regularization . 
. Computational complexity . 

Low-rank kernel approximation ix

. A function space view . 

 Experiments with Mklaren 
. A note on compared methods . 
. Robust selection of inducing points 

.. Inducing points location distributions 
.. Matching pursuit versus Least-angle regression 

. Time series . 
. String kernels . 

.. Experiments on synthetic data 
.. Predicting RNA-binding protein binding affinities 

. Compactness of approximations 
. Comparison of MKL methods on rank-one kernels 
. Empirical execution times . 
. Summary of the results on approximate MKL 

 Conclusion 

A A brief introduction to RNA biology 

B Details on derivations and algorithms 
B. Low-rank matrix approximation 

B.. Notions of error . 
B.. Principal component analysis 

B. Linear regression . 
B.. The relation between dual and primal regression weights . . 
B.. Least-angle regression . 

B. Kernel methods . 
B.. Inner product spaces . 
B.. A simple example of (kernel) linear regression 
B.. Kernel-specific approximations 
B.. Translation-invariant kernels and explicit feature maps . . . 
B.. Optimization of differentiable kernels 

x Contents M. Stražar

C Supplementary Information on iONMF 
C. Detailed information on analyzed RBP experiments 
C. Details on models inferred from subsets of data sources 
C. Importance of different data sources 

C.. Prediction accuracy of data source subsets 
C.. Mutual information within individual data sources 
C.. Clustering of RBPs based on individual data sources 

D Razširjeni povzetek 

Bibliography 



Introduction



  Introduction M. Stražar

Data integration in machine learning refers to the exploitation of multiple data sources
to improve model interpretability and performance. With the increased rate of data
collection, storage, and availability, there exist a corresponding interest for data anal-
yses and predictive models based on simultaneous inclusion of multiple data sources.

This tendency is ubiquitous in practical applications of machine learning; in recom-
mender systems, side information collected on the customers along with their prefer-
ences and purchase history improves future recommendations []; similarly, social
network analysis and prediction is improved by modelling explicit dependencies be-
tween users []; bioinformatics and precision medicine are often based on modelling
a biological system behavior spanning multiple, inter-dependent regulatory levels, for
example: gene expression, metabolic pathways, or macromolecule interactions [, ].

The heterogeneity and sheer size of the data sets in these domains must be addressed
by tailored models and algorithms, providing scalable inference and interpretable de-
cisions. The scalability problem can be solved with an appropriate dimensionality
reduction scheme that results in model or data approximation. In a technical sense,
the heterogeneity of data sets might present itself as features-of-features [, ], fixed
relations between multiple object types [], class labels [], or multiple possible ways
to measure object similarity, e.g. in kernel-based learning []. Hence, the two seem-
ingly limiting properties within mentioned domains should be encoded within a single
model.

Colloquially, the term data integration or data fusion has first arisen as the problem
of combining different sensory information coming from one or more sensors [, ].
The methods forming this field can be broadly split into three major categories [];
early integration comprises problems of merging the input data into a single data struc-
ture to be used with standard machine learning models. In late integration, an inde-
pendent model is inferred for each data source, and the corresponding multiple predic-
tions are combined at a later stage by a form of averaging. Both of the aforementioned
strategies disregard the modular structure of the data. Finally, in intermediate integra-
tion, a single model is inferred by selecting information from multiple data sources,
exploiting the information of the implicit structure assumed by multiple data sources.

This work focuses on two specific goals within intermediate data integration model,
with the goal of finding:

. non-overlapping data representations through the lens of different data sources

Low-rank kernel approximation 

- orthogonal matrix factorization, and

. complementary information within multiple similarity measures in order to
model the target response - multiple kernel regression.

The proposed algorithms are rigorously evaluated using general benchmark, as well
as domain specific data sets. Additionally, we provide extensive experiments on re-
alistic data sets in the bioinformatics domain. The motivations, challenges and brief
descriptions of the solutions are presented below.

. Data integration by matrix factorization

A data matrix can be seen a relation between two types of objects encoded as corre-
sponding rows and columns. Multiple data sources are thus represented as matrices
relating different types of objects (entities). The principal assumption when matrix
factorization is used in machine learning is that a data matrix is generated by a pro-
cess depending on a small number of latent variables. Most commonly, this results
in a large data matrix being approximated with two or more low-rank matrices which
define the model []. Extensions to settings with multiple, dependent data matrices
naturally follow [, , ].

The low-rank matrices are interpreted as projections to spaces of lower dimension-
ality, preserving the similarities between object in the original data space. Optimal
projections are found by minimizing a divergence measure between the original data
and its approximation [–]. Considering only the divergence criterion can lead
to suboptimal results if the projections are later used for prediction []. Hence, im-
provements to the models focus on additional constraints such as sparseness, locality,
margin and initialization methods [–].

Various improvements of the canonical NMF model have been suggested to ob-
tain comprehensive models. Sparseness constraints can improve the interpretability
and modularity of projections, and is achieved by including 𝐿􏷠 norm constraints on
the model coefficients. Alternatively, the 𝐿􏷠/𝐿􏷡 norm ratio of the resulting projection
can be explicitly tuned []. Other methods constrain the basis vectors to convex
sets [, ]. The mentioned methods, however, do not focus on modular decompo-
sitions where samples and features do not overlap within clusters. This is a substantial
drawback when classes are discriminated by multiple patterns of varying strengths.

  Introduction M. Stražar

This phenomenon is common in the domain of protein-RNA interactions, as strong
patterns common to many proteins may occlude weaker signals characteristic for spe-
cific proteins.

We design a novel matrix factorization model based on orthogonality in multiple
data sources, to identify combinations of features that reflect cluster and class sep-
aration. For example, in modeling protein-RNA interactions, we are interested in
discovering non-overlapping features in multiple data sources on sequence, function,
conservation, structure and other genome annotation that describe the binding prop-
erties of a particular protein.

. Low-rank approximation of multiple kernel matrices

The matrix factorization algorithms discussed so far are linear models for multi-variate,
multi-output linear regression. Non-linear response can be modelled by transforming
the input space which affects subsequent model inference. Such a transformation can
be specified manually, e.g. by specifying higher order dependencies between the in-
put features, or, more generally, with kernel functions []. Kernel methods define
the covariance structure between the input data points, thus confining the space of
allowed output functions (supervised learning) or probability densities (unsupervised
learning) []. Kernel functions are inner products in Hilbert spaces, typically encod-
ing higher-order feature expansions. Consequently, any algorithm that depends on the
inner products between data points can be kernelized - replacing the inner products
with the evaluation of the kernel.

The choice of a kernel function constrains the space of output functions in the
sense of variance, smoothness, differentiability and more. If this choice is not known
a priori, kernels can be combined due to the properties of sums of inner products.
This is referred to as multiple kernel learning (MKL); in the context of data integration,
different data sources may be used to construct multiple kernel matrices encoding
similarities between the same set of data points [, ]. The MKL algorithms are
broadly categorized as fixed rules, risk minimization or optimization of a similarity
measure with respect to the ideal kernel []. The solutions are often defined by a
constrained optimization problem to learn a linear or convex combination of scalar
kernel weights. This is solvable by off-the-shelf optimizers, which assume polynomial
storage and time complexity in the number of data point or kernels.

A principal limitation of kernel methods is the computational complexity 𝑂(𝑛􏷡)

Low-rank kernel approximation 

associated with storage and evaluation of the kernel matrix — evaluation of the kernel
between all pairs of 𝑛 data points — and further increasing to 𝑂(𝑛􏷢) when solving the
associated linear systems. Various kernel approximation schemes are thus designed to
enable kernel learning with large data sets. The approximations are broadly divided in
factorization of the kernel matrix — by using a small number of inducing inputs [],
or approximation of the kernel function — using a number of basis functions []. The
approaches within the two paradigms are different in terms of computational complex-
ity, and applicability to different types of both input spaces and kernels. Both sets of
approaches avoid evaluating the full kernel matrix while simultaneously optimizing a
downstream modeling task [, ].

In this work, we present simultaneous low-rank approximation of multiple kernel
matrices. Contemporary matrix factorization methods do not consider non-overlapping
low-dimensional projections of objects in context of side information (e.g., class la-
bels or other circumstantial data sources). These prove particularly important when
seeking efficient, low-dimensional projections for supervised learning. We present the
Mklaren algorithm, based on supervised Incomplete Cholesky Decomposition to si-
multaneously learn multiple low-rank kernel approximations and a regression model.
In regression, the inducing points define the basis functions spanning the space of pos-
sible output functions. Our basis function selection is based on a heuristic used in
least-angle regression []. In comparison to existing methods, it has the following
advantages.

We show how sampling of basis functions from multiple kernels is not equiva-
lent to approximation of an uniform kernel matrix sum. It is well-known that
summing the kernel functions is equivalent to the concatenation of the respec-
tive implicit feature mappings in terms of solving for the optimal regression
estimate []. However, approximating the uniform kernel matrix sum with
inducing point-based methods causes the basis function to include all kernels
in equal proportions. Thus, some included kernels may not be relevant to the
targets, or even causing unwanted distortions in the output functions. This
limitation motivates more careful basis function selection.

Our selection criterion only considers the gain with respect to the current re-
gression residual without considering approximation accuracy of the original
kernel matrices. Increasing the accuracy of the kernel matrix approximation

  Introduction M. Stražar

causes the regression estimates to be increasingly more similar to the estimates
obtained with the full kernel matrix []. However, the expected generaliza-
tion error is largely affected by the alignment of the regression targets and the
low-dimensional space spanned by the kernel matrix approximation []. Thus,
constructing the kernel matrix approximation in a supervised manner promises
a rapid drop in generalization error.

The importance of a kernel is estimated at the time of its approximation, without
assuming knowledge of the full kernel matrix. Further benefits are memory
efficiency — irrelevant kernels are discarded early — and data interpretation,
based on selected inducing points and kernels.

Further technical derivations are provided related to out-of-sample prediction, reg-
ularization and interpretability. In contrast to MKL algorithms based on convex op-
timization or sampling methods, our approach relies solely on geometrical principles,
enabling efficient implementation with proven linear complexity in both the number
of data points and kernels.

Even though the currently most efficient kernel approximations are based on op-
timization of the kernel function, our approach favours general applicability and is
independent of a particular kernels and types of input spaces, which could also be
arbitrarily combined. Nevertheless, the performance on benchmark data sets is sta-
tistically indistinguishable. As the majority of kernel matrix approximations assume a
single kernel, we show how the notion of multiple kernels within low-rank approxima-
tion can lead to better compression and more flexible output function spaces. Namely,
the covariance structure can vary between different regions of the input space. This ca-
pability proves beneficial for a wide range of realistic regression problems and provides
insights into the domain of interest.

. Summary of the scientific contributions

Finally, we summarize the scientific contributions proposed in this work, with refer-
ences to the relevant sections of the thesis.

C Integrative orthogonal matrix factorization (iONMF, Chapters -):

formal definition of the orthogonal matrix factorization model on multi-
ple data sources,

Low-rank kernel approximation 

derivation and mathematical analysis of the optimization algorithm,

inference of latent factors for unseen instances given a subset of data sources
(prediction function),

analysis of a RNA-protein interaction data set with iONMF, discovering
novel patterns characterizing RNA-RBP interactions.

C A general approach to approximate multiple kernel learning (Chapters -):

algorithm for supervised low-rank matrix approximations of multiple ker-
nel matrices based on least-angle regression (Mklaren),

functional analysis of multiple kernel learning with low-rank approxima-
tions,

methods for interpretability of approximate multiple kernel regression
model for vector and string input data,

kernel approximation and multiple kernel learning library for Python pro-
gramming language.

. Availability

We provide the following open source software packages, providing the implementa-
tion of the proposed methods in the Python programming language, as well as scripts
to reproduce the included experiments.

Integrative orthogonal non-negative matrix factorization
https://github.com/mstrazar/iONMF

A Multiple kernel learning Python library
https://github.com/mstrazar/mklaren

https://github.com/mstrazar/iONMF
https://github.com/mstrazar/mklaren

  Introduction M. Stražar

. Overview of thesis structure

On a general level, the thesis is split in two major parts, describing different, but related
views on learning with multiple data sources: the first part treats matrix factorization
(Chapters -; linear data models) and the second part extends ideas to kernel matrix
factorization (Chapters -; non-linear models). The general trajectory is the design of
models and algorithms that perform dimensionality reduction in context of multiple
data sources. Optionally, the reader can start with a short introduction to the biological
domain, which provides context and motivation to many of the proposed methods
(Appendix A).

The first part starts by introducing matrix factorization techniques, which mainly
differ in constraints to the optimization problems. Here, we extend the state in the field
by designing a model for treating multiple data sources, focusing on interpretability
and discovery of multiple, non-overlapping patterns in the data. The experiments
are based on modeling interactions between proteins and RNA (supervised machine
learning problem), but nevertheless focusing on modeling and computational aspects
of the work. This chapter can be read wearing a computational biologist hat, a machine
learning hat, or both.

In the second part, the ideas of learning with multiple data sources are extended to
non-linear output functions via kernel methods. After presenting the basic concepts,
we present the related work in approximate kernel learning. We then present the main
contribution of the work — the Mklaren algorithm — which selectively approximates
multiple kernel matrices, that might present different data views. A thorough experi-
mental evaluation compares our method to state-of-the-art kernel approximations and
multiple kernel learning algorithms on different kinds of input spaces.

A graphical representation of the dependencies between the chapters is shown in
Figure .. The used mathematical notation is listed in Table B., p. .

Low-rank kernel approximation 

Appendix A:

Introduction to RNA

biology

Ch. 3: Integrative

orthogonal NMF
Ch. 5: Kernel

methods

Ch. 7: Experiments

with Mklaren

Ch 6: Approximate

multiple kernel

learning

Ch. 1: Introduction

Ch. 2: Low-rank

matrix approximation

Appendix B: Details

on derivations and

algorithms

Appendix C:

Supplementary

info. on iONMF

Ch. 4: Experiments

with iONMF

Figure .
A roadmap of the thesis.
Chapters are displayed as
nodes and dependencies
are denoted as arrows. The
appendix chapters contain-
ing additional information
and/or further technical
details are marked with
dashed borders.



Low-rank matrix
approximation



  Low-rank matrix approximation M. Stražar

Matrix approximation is a core task in numerical mathematics and linear algebra. In
machine learning, it plays an essential role in enabling tractable computation for prob-
lems with large datasets. In this section, we will discuss various matrix approximation
algorithms underpinning this work, with particular focus on the interpretation of so-
lutions.

The general problem is stated as follows. Given a matrix XXX ∈ ℝ𝑛×𝑑, find the matrices
AAA ∈ ℝ𝑛×𝑟 and BBB ∈ ℝ𝑑×𝑟, where 𝑟 ≤ min(𝑛, 𝑑), such that:

XXX ≈ AAABBB𝑇 .

The notion of approximation as well as additional constraints on AAA and BBB depend on
the task at hand. Often, XXX is a data matrix encoding a numerical relation between two
sets of objects, represented as rows and columns. The rank 𝑟 is a typically much smaller
than 𝑛 and 𝑑. Optimization constraints are posed on AAA and BBB to preserve certain
properties of XXX, enabling machine learning with substantial savings in computational
resources.

. Notions of error

It makes sense to first define what it means for XXX to be approximately equal to the
product AAABBB𝑇 . The error (loss) functions are used as explicit optimization objectives
and provide a blueprint on which the solving algorithms are based.

Sum of squared errors / explained variance. The sum of squared errors is the variance
of errors in corresponding elements of XXX and AAABBB𝑇 , also known as matrix Frobenius
norm. The underlying assumption is that each value in XXX should be approximated
as accurately as possible. This error function is most often used due to its favourable
optimization properties (to be discussed further):

var(XXX − AAABBB𝑇) = ‖XXX − AAABBB𝑇 ‖􏷡
𝐹

=
𝑛

􏾜
𝑖=􏷠

𝑑
􏾜
𝑗=􏷠

(𝑥𝑖𝑗 − ⟨aaa𝑖, bbb𝑗⟩)􏷡

=
𝑛

􏾜
𝑖=􏷠

𝑑
􏾜
𝑗=􏷠

(𝑥𝑖𝑗 − aaa𝑇
𝑖 bbb𝑗)􏷡.

(.)

Low-rank kernel approximation 

The value of the error can be made interpretable if written as a fraction of explained
variance, a simple ratio of remaining and initial variances,

explained variance = var(XXX) − var(XXX − AAABBB𝑇)
var(XXX) ,

with values in (−∞, 1) where the value  is natural threshold above which AAA and BBB
contain meaningful information on XXX. A traditional way to solve the unconstrained,
explained variance optimization for low-rank matrices AAA and BBB is the Principal com-
ponent analysis (PCA, Appendix B..). Alternative optimization objectives and the
corresponding algorithms are reviewed in the Appendix B..

. Non-negative matrix factorization

Non-negative matrix factorization (NMF) is a special case where XXX, AAA and BBB are con-
strained to be non-negative element-wise, i.e. 𝑥𝑖𝑗 ≥ 0 for all values in XXX and similarly
for AAA, BBB. The modelling assumption encoded by the constraint is that data is ex-
pressed as a sum of parts, as values in XXX are approximated only with addition []. The
underlying motivation stems from practical applications; if 𝑟 is a predefined rank of
the solution, then AAA and BBB contain 𝑟 prototype rows and columns, respectively. The
solution thus encodes commonly occurring patterns present in XXX. The non-negativity
constraint appears to provide interpretable solutions, as the summing the parts suit
human interpretation. This is of particular interest in signal processing, image decom-
position and other pattern recognition tasks.

Optimizing explained variance. The solution optimized with respect to the explained
variance can be obtained via gradient descent. In order to do so, partial derivatives of
all the parameters in AAA,BBB with respect to the cost function are required:

𝐽 = ‖XXX − AAABBB𝑇 ‖􏷡
𝐹

𝛿𝐽
𝛿𝑎𝑖𝑡

= 2
𝑑

􏾜
𝑗=􏷠

(𝑥𝑖𝑗 − aaa𝑇
𝑖 bbb𝑗)(−𝑏𝑗𝑡),

𝛿𝐽
𝛿𝑏𝑗𝑡

= 2
𝑛

􏾜
𝑖=􏷠

(𝑥𝑖𝑗 − aaa𝑇
𝑖 bbb𝑗)(−𝑎𝑖𝑡),

  Low-rank matrix approximation M. Stražar

or in matrix form:

𝛿𝐽
𝛿AAA = −2(XXX − AAABBB𝑇)BBB,

𝛿𝐽
𝛿BBB = −2(XXX − AAABBB𝑇)𝑇AAA.

A gradient descent-type algorithm would update all of the parameters multiple times
by moving in the direction of derivatives using a fixed learning rate 𝜂, e.g.:

AAAnew = AAA − 𝜂 𝛿𝐽
𝛿AAA ,

BBBnew = BBB − 𝜂 𝛿𝐽
𝛿BBB .

The element-wise non-negativity constraint must be guaranteed manually in this case.
A suitable option is the projected gradient descent, where parameters in AAA or BBB less
than zero are set to zero in each iteration.

Another option are the multiplicative update rules, obtained by allowing learning
rates 𝜂𝜂𝜂𝐴 ∈ ℝ𝑛×𝑟 and 𝜂𝜂𝜂𝐵 ∈ ℝ𝑑×𝑟, which are specific to each element in AAA, BBB and are
variable between iterations. The update rules are derived from the gradient descent
updates:

AAA = AAA − 𝜂𝜂𝜂𝐴(XXXBBB − AAABBB𝑇BBB),

BBB = BBB − 𝜂𝜂𝜂𝐵(XXX𝑇AAA − BBBAAA𝑇AAA),

if the learning rates 𝜂𝜂𝜂𝐴 and 𝜂𝜂𝜂𝐵 are set

𝜂𝜂𝜂𝐴 = AAA
AAABBB𝑇BBB ,

𝜂𝜂𝜂𝐵 = BBB
BBBAAA𝑇AAA ,

we obtain the update rules

Low-rank kernel approximation 

AAAnew = AAA ∘ XXXBBB
AAABBB𝑇BBB ,

BBBnew = BBB ∘ XXX𝑇AAA
BBBAAA𝑇AAA ,

(.)

where ∘ and ⋅
⋅ denote the element-wise (Hadamard) product and element-wise divi-

sion, respectively. As the multiplicative updates effectively perform gradient descent
on each element individually (although with different learning rates), the same con-
vergence properties of gradient descent apply.

Note that if AAA and BBB are initialized to have all strictly positive values, division by
zero is avoided by definition. In practice, the limited machine precision can cause
numerical instabilities in evaluating Eq. .. This can happen if the denominators are
either too small, or too large. The recommended solutions are to add a small amount
of noise 𝜖 to the parameters, AAA + 𝜖, BBB + 𝜖 []. Alternatively, one can (Hadamard)
multiply the parameters with a binary mask matrices MMM𝐴, MMM𝐵 indicating the valid
elements in AAA and BBB, respectively. In the latter solution, whenever a parameter reaches
an invalid value (i.e. a NaN), it is set to zero for the remaining iterations. This strategy
is somewhat similar to NMF with missing values [].

. Constrained matrix factorization

The NMF models presented above typically approximate the data up to error, which
typically decreases with increasing rank 𝑟. However, there exist a substantial possibility
that the found patterns are due to chance and give deceivingly low approximation er-
rors due to high model capacity. This phenomenon is colloquially known as overfitting
and arises in many other contexts as a consequence of the known bias-variance trade-
off []. A typical antidote is to include different constraints in the optimization of
model parameters (regularization, preconditioning) or include explicit prior assump-
tions about the model parameters (prior distributions). Below, we present some com-
mon types of constraints that are added to error functions presented in Section ..

Matrix norm-based constraints. An increase in the bias of model approximation is
achieved by including 𝐿􏷠 or 𝐿􏷡 norm constrains on the vectors of model parameters.
The vector 𝐿􏷡 norm corresponding to matrices is the Frobenius norm (Eq. .).

  Low-rank matrix approximation M. Stražar

Sparseness. A measure of sparseness can also be constrained in attempt to find in-
terpretable solutions. Hoyer [] defines sparseness as a function of the ratio between
the 𝐿􏷠 (sum of the absolute values) and the 𝐿􏷡 norm (the Euclidean norm). Thus, for
a vector xxx, the sparseness value is defined as

sparseness(xxx) =
√𝑛 − ‖􏸗􏸗􏸗‖􏷪

‖􏸗􏸗􏸗‖􏷫

√𝑛 − 1
. (.)

Sparseness is equal to  if all elements are equal up to signs and increases towards 
as increasingly small subsets of values take up significantly high values compared to
the remaining elements. Note that sparseness can be applied to a matrix if the latter
is treated as a vector - the 𝐿􏷡 vector norm is replaced by the matrix Frobenius norm.
The measure of sparseness is used in the Sparse NMF (SNMF) model and algorithms.

Orthogonality. In certain cases, presented in later chapters, the vectors of AAA that
make up the model can be constrained to be orthogonal (non-overlapping). This is
useful in practice if non-overlapping patterns in the data are expected. By definition,
the matrix AAA is orthonormal if AAA𝑇AAA = III. With the algorithms to compute the matrix
QR decomposition or the SVD, this hard constraint is satisfied by iterative construc-
tion of the subspace []. These methods however are not constrained to non-negative
solutions. A matrix decomposition-based approach of non-negative PCA can be em-
ployed to solve to orthogonal NMF problem for one matrix [].

Alternatively, a measure of how close a matrix AAA is to an orthogonal matrix can also
be defined (up to magnitude) as the distance to an identity matrix:

orthogonality(AAA) = ‖AAA𝑇AAA − III‖𝐹 . (.)

It is important to note that this definition is clearly affected by the scale of AAA. However,
in our application, we find this definition appropriate since it has favourable optimiza-
tion properties for gradient-based optimization (smoothness, differentiability) and the
magnitude of AAA can be compensated for by other matrices in the model.

In the subsequent chapter, we show that sparseness can be achieved with a combina-
tion of orthogonality and non-negativity constraints. This stems from the fact that if
the relevant vectors are non-nonnegative, orthogonality implies that at least 𝑛/2 values
must equal zero for two vectors of size 𝑛 to be orthogonal, with the number decreasing
accordingly with the increasing number of columns of AAA.

Low-rank kernel approximation 

. Simultaneous matrix factorization

Factorization of a single matrix can be extended to multiple matrices. Multiple ma-
trices may describe a set of objects with different data views, or data sources. Objects
might be represented as rows of 𝑝 matrices XXX􏷠,XXX􏷡, ...,XXX𝑝 of respective sizes 𝑛 × 𝑑􏷠,
𝑛 × 𝑑􏷡, ...𝑛 × 𝑑𝑝. The goal is then to find matrices AAA and BBB􏷠,BBB􏷡, ...,BBB𝑝, each with 𝑟
columns, such that:

XXX􏷠,XXX􏷡, ...,XXX𝑝 ≈ AAABBB𝑇
􏷠 ,AAABBB𝑇

􏷡 , ...,AAABBB𝑇
𝑝 .

Here, AAA represents a set of parameters that are shared between data views and matrices
BBB𝐼 are data-type specific loadings. In practice, AAA can be interpreted as a (soft) clustering
of objects, while the BBB𝐼 can be seen as typical patterns (profiles) of a cluster in each of
the data views. The non-negativity constraint is again favoured to interpret the data as
a sum of non-negative parts.

With no additional constraints, this problem is equivalent to the (non-negative)
matrix factorization problems stated above if XXX􏷠,XXX􏷡, ...,XXX𝑝 are concatenated into a
single matrix. Constraints that make this setting different to single matrix factorization
are discussed further in the forthcoming sections and present the basis of the proposed
integrative, orthogonal NMF.



Integrative orthogonal
nonnegative matrix

factorization



  Integrative orthogonal nonnegative matrix factorization M. Stražar

In this part, we present an algorithm based on orthogonal decomposition of multiple
data sources/matrices; our model is referred to as Integrative orthogonal nonnegative
matrix factorization (iONMF) . This is achieved with gradient-based optimization by
a joint minimization of the distance of a) data and its approximations, and b) the data-
source specific parameter matrices to an orthogonal matrix. A principal contribution
of this part of the work is the exploration of how the design of the low-rank matrix ap-
proximation algorithm influences the performance and interpretability of the resulting
models.

. The iONMF model and algorithms

Data sources are represented as matrices XXX𝑞, 𝑞 = 1, ..., 𝑝, with 𝑛 rows representing
data points and 𝑑𝑞 the dimensionality of each data source. The 𝑑𝑞 dimensions in
each data source are hereby referred to as features. Non-negative matrix factorization
(NMF) approximates each XXX𝑞 ∈ ℝ𝑛×𝑑𝑞 with the following parameters, making up a
factor model: a product of a common coefficient matrix WWW ∈ ℝ𝑛×𝑟 and data source-
specific basis matrices HHH𝑞 ∈ ℝ𝑑𝑞×𝑟, where the rank 𝑟 < min(𝑛, ∑𝑞 𝑑𝑞). This scenario
is depicted on Fig. .a-b.

The model parameters are interpreted as follows. Each sample is projected to 𝑟 la-
tent factors, which is reflected by the coefficients WWW. The features of each data source
HHH𝑞 are projected to the same 𝑟 latent factors. The projection to the 𝑟 latent factors can
be interpreted as soft-clustering, resembling the well-known k-means clustering algo-
rithm [], with the crucial difference of a sample being assigned to multiple clusters.
For brevity, we refer to the 𝑟 latent factors and the corresponding assigned samples
and features as modules. This model assumes that highly correlated samples and fea-
tures are assigned to common modules, depending on their similarity within all data
sources XXX𝑞. Hence, a set of highly correlated features will emerge as patterns in the
corresponding vectors in HHH𝑞. One can identify both the correlated features within a
single data source, as well as correlated patterns between different data sources.

The patterns can be of varying magnitudes (in the sense of the vector norm). If the
optimization is based on the error-norm, as with the explained variance / Frobenius
norm (Chapter , Eq. .) the patterns of larger magnitudes will be preferentially iden-
tified, occluding the remaining patterns of smaller magnitudes. One goal of a pattern
discovery model is to identify a number of patterns that both maximize the explained
variance as well as having little or no overlap among themselves. The phenomenon

Low-rank kernel approximation 

a) Data matrices

c) Prediction function

b) iONMF model

HT
2

HT
1 rW

 r

n HT
p

HT
2

HT
p

HT
1

X
⁕1

Algorithm 1modules

d) Discovering relevant modules and features

j

j

W HT
q

sample membership to module j

feature values of module j

n X
1

d
1

X
2

d
2

X
3

d
3

X
p

d
p

...

HT
3

...

HT
3

X
⁕3

X
⁕1

X
⁕2

X
⁕pX

⁕3

Algorithm 2

W
⁕
 HT

2
! X

⁕2

W
⁕

 r
W

⁕
 HT

N
! X

p

...

...

...

W
⁕

= f(X
⁕1

, X
⁕3

, ...

 H
1
, H

3
, ...)

 r
 n

⁕

 n
⁕

Figure .
Graphical representation of
the iONMF model. a) The
data matrices 􏺃􏺃􏺃􏷪 ,􏺃􏺃􏺃􏷫 , ...􏺃􏺃􏺃𝑝
are decomposed by or-
thogonal, non-negative
matrix factorization (Algo-
rithm ). b) The iONMF
model is composed of
the 𝑝 approximately or-
thogonal basis matrices
􏹳􏹳􏹳􏷪 ,􏹳􏹳􏹳􏷫 , ...􏹳􏹳􏹳𝑝 and a com-
mon coefficient matrix 􏺂􏺂􏺂.
c) The prediction function
(Algorithm ) is used to
estimate the coefficient
matrix 􏺂􏺂􏺂∗ for an arbitrary
number of test samples,
given a subset of the data
sources. A potentially un-
known data matrix 􏺃􏺃􏺃𝑞 for
test samples can then be
predicted by 􏺃􏺃􏺃∗𝑞 = 􏺂􏺂􏺂∗􏹳􏹳􏹳𝑇

𝑞 .
Given test data is shown
in blue and the predicted
variables are shown in
orange. d) Discovering
relevant features for differ-
ent modules in the data.
Samples are assigned to
modules based on rows in
􏺂􏺂􏺂. Row 𝑗 in 􏹳􏹳􏹳𝑇

𝑞 describes
the common patterns of
each module (𝑗).

  Integrative orthogonal nonnegative matrix factorization M. Stražar

where a number of patterns of varying magnitudes appear in the data in a practical
domain is discussed in the Chapter , Section ..

Non-overlapping features relevant to each module are obtained by imposing orthog-
onality on the vectors in HHH (Eq. .). The iONMF algorithm implements orthogo-
nality regularization in the following cost function, given the data matrices XXX𝑞:

𝐽(WWW,HHH𝑞) =
𝑝

􏾜
𝑞=􏷠

(‖XXX𝑞 − WWWHHH𝑇
𝑞 ‖􏷡

𝐹 + 𝛼‖HHH𝑇
𝑞 HHH𝑞 − III‖􏷡

𝐹), (.)

subject to WWW,HHH𝑞 ⪰ 000, with ⪰ referring to element-wise inequality and III the identity
matrix. The first term represents the approximation error and second term the orthog-
onality regularizer of column vectors in HHH𝑞, where the trade-off is controlled by the
hyperparameter 𝛼. Note that the optimization problem would be equivalent if the
matrices XXX𝑞 are concatenated to a single matrix had the orthogonality constraints not
been included. The orthogonality between the vectors is thus limited to a single data
source, so the parameters of the model are dependent on the assignment of features to
data sources. The orthogonality constraint introduces an additional property related
to limiting the model capacity; namely, as the vectors in HHH are strictly non-negative,
the orthogonality constraints will force a number of terms to zero. This could be ex-
plained intuitively as two non-zero, non-negative vectors are orthogonal if and only if
a non-zero value in one vector implies a corresponding value in the second vector to
be zero. Additionally, assuming the same parameter 𝛼 for all data sources, lengths of
vectors in HHH𝑞 will tend to one regardless of size.

The optimization problem is non-convex and can be solved by projected gradient
descent, alternating non-negative least squares [], multiplicative update rules []
or second order gradient methods []. We propose a multiplicative update-based al-
gorithm (Algorithm ), which is an instance of gradient descent with variable learning
rate and implicitly constraints the parameters to non-negative values. The optimiza-
tion algorithm samples the initial values of WWW and HHH𝑞 uniformly from (0, 1), and
updates them with the following rules until convergence:

WWW = WWW ∘
􏽭
⃓
⃓
⎷

∑𝑞 XXX𝑞HHH𝑞

∑𝑞 WWWHHH𝑇𝑞 HHH𝑞
, (.)

Low-rank kernel approximation 

HHH𝑞 = HHH𝑞 ∘
􏽱

XXX𝑇𝑞 WWW + 𝛼HHH𝑞

HHH𝑞WWW𝑇WWW + 2𝛼HHH𝑞HHH𝑇𝑞 HHH𝑞
, (.)

where ∘ represents the element-wise (Hadamard) product. The derivation of the update
rules is presented in Section ., below.

A special case arises when one or more data matrices consist of a single column —
a common example where the data samples are related to regression targets, referred
to as YYY. In this case, the corresponding orthogonality constraints are omitted since
HHH𝑌 consists only of a single column. The stopping criterion can be set by e.g. thresh-
olding the fraction of change in the cost function or explained variance in subsequent
iterations. Further discussion on the choice of algorithm, derivation of update rules,
relation to gradient descent are shown in Section ., below.

In practice, due to non-convexity, the algorithm is run for multiple random initial-
izations and the model with the lowest approximation error is selected. Alternatively,
one could use an independent validation set for model selection. The numerically un-
stable evaluations of the denominators in Eqs. .-. are alleviated by masking out
the invalid values, as outlined in Section ..

. Derivation of the iONMF optimization algorithm

In this section, we present derivations that are part of the algorithm to find the param-
eters of the iONMF model (Algorithm -).

To learn the parameters of the iONMF model, we solve the following constrained
minimization problem with respect to WWW and HHH𝑞 for 𝑞 = 1, ..., 𝑝:

𝐽 =
𝑝

􏾜
𝑞=􏷠

(‖XXX𝑞 − WWWHHH𝑇
𝑞 ‖􏷡

𝐹 + 𝛼‖HHH𝑇
𝑞 HHH𝑞 − III‖􏷡

𝐹).

The parameter 𝛼 determines the trade-off between explained variance (the data fit
term) and orthogonality of vectors in HHH𝑞 (model capacity term). Since the optimiza-
tion problem is non-convex in all WWW, HHH𝑞, a local minimum can be found by fixing
all but one matrix and applying multiplicative update rules. The cost function can be
rewritten as

  Integrative orthogonal nonnegative matrix factorization M. Stražar

Algorithm : The iONMF model inference algorithm pseudocode.
Input:

XXX􏷠,XXX􏷡, ...,XXX𝑝 set of ℝ𝑛×𝑑𝑞 matrices,
YYY ∈ ℝ𝑛×􏷠 target matrix,
𝑟 factorization rank
𝛼 orthogonality regularization parameter.

Result:
WWW ∈ ℝ𝑛×𝑟 coefficient matrix,
HHH􏷠,HHH􏷡, ...,HHH𝑝 set of ℝ𝑑𝑞×𝑟 basis matrices,
HHH𝑌 ∈ ℝ𝑛×􏷠 target basis matrix.

 Initialize:
 WWW ∼ 𝒰(0, 1)𝑛×𝑟

 HHH𝑞 ∼ 𝒰(0, 1)𝑑𝑞×𝑟 (for each 𝑞)
 HHH𝑌 ∼ 𝒰(0, 1)𝑟×􏷠

 while not converged do

 WWW = WWW ∘
􏽰

∑𝑞 􏹩􏹩􏹩𝑞􏹙􏹙􏹙𝑞+􏹪􏹪􏹪􏹙􏹙􏹙𝑌

∑𝑞 􏹨􏹨􏹨􏹙􏹙􏹙𝑇𝑞 􏹙􏹙􏹙𝑞+􏹨􏹨􏹨􏹙􏹙􏹙𝑇
𝑌􏹙􏹙􏹙𝑌

 HHH𝑞 = HHH𝑞 ∘
􏽰

􏹩􏹩􏹩𝑇𝑞 􏹨􏹨􏹨+𝛼􏹙􏹙􏹙𝑞
􏹙􏹙􏹙𝑞􏹨􏹨􏹨𝑇􏹨􏹨􏹨+􏷡𝛼􏹙􏹙􏹙𝑞􏹙􏹙􏹙𝑇𝑞 􏹙􏹙􏹙𝑞

(for each 𝑞)

 HHH𝑌 = HHH𝑌 ∘
􏽰

􏹪􏹪􏹪𝑇􏹨􏹨􏹨
􏹙􏹙􏹙𝑌􏹨􏹨􏹨𝑇􏹨􏹨􏹨

Low-rank kernel approximation 

𝐽 =
𝑝

􏾜
𝑞=􏷠

tr(XXX𝑇
𝑞 XXX𝑞 − 2XXX𝑇

𝑞 WHWHWH𝑞 + HHH𝑞WWW𝑇WWWHHH𝑇
𝑞)

+ 𝛼 tr(HHH𝑇
𝑞 HHH𝑞HHH𝑇

𝑞 HHH𝑞 − 2HHH𝑇
𝑞 HHH𝑞 + III𝑇III).

Following standard theory of constrained multivariate optimization [], the Lan-
grangian equals

𝐿(WWW,HHH􏷠, ...,HHH𝑝, 𝜆􏷟, 𝜆􏷠, ..., 𝜆𝑝) = 𝐽 − tr(𝜆􏷟WWW) −
𝑝

􏾜
𝑞=􏷠

𝑡𝑟(𝜆𝑞HHH𝑞),

where 𝜆􏷟, 𝜆􏷠, ..., 𝜆𝑝 denote the slack variables. By fixing all the HHH𝑞, the derivative of
the Lagrangian with respect to WWW is

𝛿𝐿
𝛿WWW =

𝑝
􏾜
𝑞=􏷠

−2XXX𝑞HHH𝑇
𝑞 + 2WWWHHH𝑇

𝑞 HHH𝑞 − 𝜆􏷟.

To satisfy the Karush-Kuhn-Tucker optimality conditions at a stationary point, it must
be that case that

WWW ∘ 𝜆􏷟 = 000.

Writing 𝜆􏷟 = (𝜆+
􏷟 − 𝜆−

􏷟) we have:

WWW􏷡 ∘ (𝜆+
􏷟 − 𝜆−

􏷟) = 000. (.)

The exponent in WWW􏷡 is assumed to act element-wise and is used to specify the relation
between parameters WWW in two subsequent iterations. The operator AAA+ on matrix (or
scalar) AAA retains only positive elements of AAA and replaces negative elements with zeros.
The operator AAA− retains the absolute values of the negative elements in AAA and places
zeros everywhere else. The Eq. . is a fixed point equation, which can be solved by
iteratively applying the update rule

WWW = WWW ∘
􏽱

𝜆−
􏷟

𝜆+
􏷟

= WWW ∘
􏽭
⃓
⃓
⎷

∑𝑝
𝑞=􏷠(XXX𝑞HHH𝑇𝑞)+ + (WWWHHH𝑇𝑞 HHH𝑞)−

∑𝑝
𝑞=􏷠(XXX𝑞HHH𝑇𝑞)− + (WWWHHH𝑇𝑞 HHH𝑞)+ .

  Integrative orthogonal nonnegative matrix factorization M. Stražar

Since XXX𝑞, HHH𝑞, WWW are non-negative for all 𝑞 = 1, ..., 𝑝, the update rule equals:

WWW = WWW ∘
􏽭
⃓
⃓
⎷

∑𝑝
𝑞=􏷠(XXX𝑞HHH𝑇𝑞)+

∑𝑝
𝑞=􏷠(WWWHHH𝑇𝑞 HHH𝑞)+ ,

which is the update rule given in Eq. .. All matrices vanish to 000 after applying the
operator − following the strictly positive initialization defined in Algorithm . Follow-
ing a similar argument, the update rules for coefficient matrices HHH𝑞 can be derived.
Fixing WWW and all HHH𝑗, 𝑗 ≠ 𝑞, the derivative of the Lagrangian with respect to HHH𝑞 is
equal to:

𝛿𝐿
𝛿HHH𝑞

= −2XXX𝑇
𝑞 WWW + 2HHH𝑞WWW𝑇WWW + 𝛼(4HHH𝑞HHH𝑇

𝑞 HHH𝑞 − 2HHH𝑞) − 𝜆𝑞 = 0,

so that

𝜆𝑞 = −XXX𝑇
𝑞 WWW + HHH𝑞WWW𝑇WWW + 𝛼(2HHH𝑞HHH𝑇

𝑞 HHH𝑞 − HHH𝑞).

To satisfy the Karush-Kuhn-Tucker optimality conditions at a stationary point we must
have:

HHH𝑞 ∘ 𝜆𝑞 = 000,

HHH􏷡
𝑞 ∘ (𝜆+

𝑞 − 𝜆−
𝑞) = 000,

which leads to the following update rules:

HHH𝑞 = HHH𝑞 ∘
􏽱

𝜆−
􏷟

𝜆+
􏷟

=

= HHH𝑞 ∘
􏽱

(HHH𝑞WWW𝑇WWW)− + 2𝛼(HHH𝑞HHH𝑇𝑞 HHH𝑞)− + (XXX𝑇𝑞 WWW)+ + 𝛼(HHH𝑞)+

(HHH𝑞WWW𝑇WWW)+ + 2𝛼(HHH𝑞HHH𝑇𝑞 HHH𝑞)+ + (XXX𝑇𝑞 WWW)− + 𝛼(HHH𝑞)− ,

HHH𝑞 = HHH𝑞 ∘
􏽱

(XXX𝑇𝑞 WWW)+ + 𝛼(HHH𝑞)+

(HHH𝑞WWW𝑇WWW)+ + 2𝛼(HHH𝑞HHH𝑇𝑞 HHH𝑞)+ .

Again, this is exactly the update rule in Eq. . (Section .).
∎

Low-rank kernel approximation 

. The prediction function

A common assumption when applying NMF for prediction is that all objects in the
domain, including the test samples, are available in the learning phase []. Cold-
start approaches [] or regression on the obtained factors [] can be used to predict
values for test samples. Alternatively, non-negative least-squares optimization is used
to approximate the coefficient matrix values from available matrices describing new
samples [].

We reuse the inferred low-rank matrices to predict the values for any number of test
samples, given the values of at least one data source. This is achieved by projecting
new data to existing latent factors, using the available data sources. Algorithm  is a
special case of Algorithm ; given fixed basis matrices HHH𝑞, and 𝑛∗ test data points with
a subset of known XXX∗𝑞, we use the update rule . to first solve for WWW∗ and then predict
using

XXX∗𝑞 = WWW∗HHH𝑇
𝑞 .

Note that this approach preserves non-negativity of WWW∗ and can be used even if only a
subset of data sources is available for test data. The scenario is presented in Fig. .c.

. Discovering relevant modules and features

The obtained coefficient matrix WWW is used to assign data samples (in rows) to specific
modules (in columns). The values of WWW are determined based on all XXX𝑞 and define the
modules, while individual HHH𝑞 are determined based only on the corresponding data
sources XXX𝑞.

Proposed methods include assigning the sample to the module with maximum row
value or restricting the assignment to only one module []. Alternatively, the ability
to assign samples to multiple modules may be desired. One such approach, developed
by Zhang et al. [], converts each entry in the coefficient matrix to the corresponding
column-wise z-score. Samples are assigned to modules where the corresponding z-score
exceeds a predefined threshold. For each of the 𝑗 = 1...𝑟 modules, we obtain a count
𝐶𝑗 of how many positive samples (e.g. according to YYY) are related to the module 𝑗.

Our approach is depicted on Fig. .d. The modules are sorted on descending value
of 𝐶𝑗 and the corresponding (column) vectors of matrices HHH𝑞 were then examined to
discover the relevant features of each data source.

  Integrative orthogonal nonnegative matrix factorization M. Stražar

Algorithm : The iONMF prediction algorithm pseudocode.
Input:

XXX𝑞 ⊂ {XXX∗􏷠,XXX∗􏷡, ...,XXX∗𝑝 } subset of known ℝ𝑛∗×𝑑𝑞 test data matrices,
HHH􏷠,HHH􏷡, ...,HHH𝑝 set of ℝ𝑑𝑞×𝑟 basis matrices.

Result:
WWW∗ ∈ ℝ𝑛∗×𝑟 coefficient matrix for test data,
XXX∗𝑡 ∈ ℝ𝑛∗×𝑑𝑡 predicted values for unknown test data matrices (𝑡 ≠ 𝑞).

 Initialize:
 WWW∗ ∼ 𝒰(0, 1)𝑛∗×𝑟

 while not converged do

 WWW∗ = WWW∗ ∘
􏽰

∑𝑞 􏹩􏹩􏹩∗𝑞􏹙􏹙􏹙𝑞

∑𝑞 􏹨􏹨􏹨∗􏹙􏹙􏹙𝑇𝑞 􏹙􏹙􏹙𝑞

 XXX∗𝑡 = WWW∗HHH𝑇
𝑡



Experiments with iONMF



  Experiments with iONMF M. Stražar

In this chapter, we describe extensive experiments with iONMF on a problem in pre-
dicting RNA-protein interactions using experimental data on  RNA-binding pro-
teins. An introduction to protein-RNA interactions, the underlying modeling moti-
vations are described in Appendix A.. Regardless of the very domain-specific nature
of this chapter, we demonstrate some general properties of the iONMF algorithm in
relation to other matrix factorization models, such as predictive performance, over-
lap in the discovered patterns and sparseness. Computationally-oriented reader will
nevertheless recognize the basic elements of a supervised machine learning task.

. Sampling of genomic positions

In this chapter, we refer to a sample as a genomic location with a length of  nu-
cleotides. A CLIP experiment refers to one measurement of an RNA-binding protein
(RBP) interactions across the whole genome of an organism. The interaction affinity
is measured by cDNA counts - a continuous value quantifying affinity of an RBP to in-
teract with the RNA of interest. A position where an RBP is found to interact with the
RNA is termed a crosslink. The selection of positive samples (harbouring crosslinks)
and negative samples (with no proteins interacting) is further explained below.

We inferred a model for each of the available  CLIP experiments (Suppl. Ta-
ble C.). In each CLIP experiment, we first identified up to , positions with
the highest cDNA count. These were used as a pool of positive examples of protein-
RNA interacting nucleotides. Among positions which were less than  nucleotides
apart, we devised a simple peak calling strategy by considering only the positions with
the highest cDNA count and ignored all others within a  nucleotide distance, as
suggested in the original iCLIP publication []. With this step we prevented the
duplication of practically consecutive genomic positions, which are very similar in
composition.

To reduce processing time we sampled up to , positions per CLIP experiment.
For proteins with less than , identified crosslinking sites, we randomly split the
sites into training and test sets. Including more than , positive examples did not
significantly improve the predictive performance of our models (Fig. ., see below).
Negative examples of protein-RNA interaction sites were sites within genes that were
not detected as interacting in any experiment. Among them we sampled at least ,

We use the term CLIP to refer to multiple crosslinking and immunoprecipitation based protocols:
CLIPSeq, iCLIP, PARCLIP, HITSCLIP.

Low-rank kernel approximation 

positions and used them as negative examples of crosslinking nucleotides. In total,
the training set included , positions (Fig. .a,b). The test set (Fig. .c) was
constructed similarly. To ensure a clear separation between the two sets, positions for
the test set were sampled only from the genes not used for training. The total number
of detected crosslink sites per CLIP experiment are listed in Suppl. Table C..

. Data matrices

Each training data matrix included up to , rows (genomic positions). For exper-
iments performed on a smaller number of positions, the number is explicitly stated.
Each row represents a nucleotide position described with the following data sources,
providing a number of features (columns):

YYY: selected RBP experiment CLIP cDNA count, 50,000×1 binary vector. Protein-RNA
cDNA counts are reported for a selected RBP experiment for the selected crosslink,
resulting in 1 column. This column was used as a target and is the basis for predictive
performance evaluation.

XXXCLIP: other proteins CLIP cDNA counts, 50,000 × 3,030 binary matrix. For each
of the remaining (up to ) RBP experiments that were not from the same group as
the selected RBP experiment, the cDNA counts at positions [−50..50] relative to the
crosslink were reported as  for nonzero cDNA counts or  otherwise, resulting in up
to 30 × 101 = 3,030 columns. By explicitly ignoring experiments within the same
biological group (shown in Suppl. Table C.), we assured that replicate information
was not used in evaluation.

XXXRG: Region type, 50,000 × 505 binary matrix. Each position [−50..50] relative to
the crosslink was assigned to five types of gene regions, as determined by the Ensembl
annotation for human genome assembly hg []: exon, intron, ’UTR, ’UTR,
CDS, resulting in 5×101 = 505 columns. Precise boundaries of regions near crosslink
sites could thus be captured.

XXXRNA: RNA secondary structure, 50,000 × 101 real valued matrix. Sequences at posi-
tions [−50..50] relative to the crosslink were processed with RNAfold software [],
resulting in probabilities of double-stranded RNA secondary structure at each of 
relative positions.

  Experiments with iONMF M. Stražar

XXXKMER: RNA k-mers, 50,000 × 25,856 binary matrix. Positions [−50..50] relative
to the crosslink were scanned for the presence of RNA k-mers, with 𝑘 = 4 in all
experiments. The presence of a k-mer at a relative position was indicated with a binary
value.

XXXGO: Gene annotation, 50,000 × 39,560 binary matrix. Genomic positions within
known genes were annotated with Gene Ontology [] terms for goa_human, 39,560
terms (revision ).

Test data matrices (YYY∗, XXX*CLIP, XXX*RG, XXX*RNA, XXX*KMER, XXX*GO) have the same structure,
but they described a different subset of positions not included in the training set.

. Analysis overview

A factor model of the training set was inferred with iONMF (Fig. .a). The result-
ing coefficient matrix WWW determined the grouping of samples into 𝑟 modules, based
on similarity across all data sources. A module reveals characteristic features in each
data source and is represented as a column vector in matrices HHH𝑞, corresponding to:
co-binding to the same targets as other RBPs (HHHCLIP), RNA k-mers (HHHKMER), sur-
rounding region types (HHHRG), RNA secondary structure (XXXRNA) and Gene Ontology
terms (XXXGO) (Fig. .b).

Having learned the coefficient and basis matrices with iONMF, we estimated the
crosslinking affinity of the samples in the test set for all RBP experiments (columns) in
the target YYY column (Fig. .c). The test samples were projected into the inferred low
dimensional space spanned by WWW, using all additional data sources (YYY∗, XXX*CLIP, XXX*RG,
XXX*RNA, XXX*KMER, XXX*GO) that describe the test set. Each step is described in detail in
the following.

. Predictive performance

We compared iONMF against various matrix factorization models: NMF with multi-
plicative updates []; Sparse NMF (SNMF, Eq. .) using alternating non-negative
least-squares with 𝐿􏷠 regularization []; NMF-QNO using quasi-newton optimiza-
tion (Section .).

For each RBP experiment, the methods were run on the training set for three differ-
ent random initializations. The model with the lowest value of the corresponding cost
function was used for prediction of the test set with Algorithm  (adapted for NMF,

Low-rank kernel approximation 

a) Data matrices (training set)

tr
a

in
in

g
 s

a
m

p
le

s

5
0

0
0

0

X
CLIP

3030

X
RG

505

X
RNA

101

X
KMER

25856

X
GO

39560

Y

1

c) Prediction (test set)

b) Factor matrices (model)

te
s
t
s
a

m
p

le
s

HT
RG

HT
RNA

HT
KMER

HT
GO

HT
CLIP rW

 r

5
0

0
0

0

X
⁕CLIP

X
⁕RG

X
⁕RNA

X
⁕KMER

HT
RG

HT
RNA

HT
KMER

HT
GO

HT
CLIP

HT
Y Y

⁕
W

⁕
 HT

Y
! Y

⁕

Algorithm 1

HT
Y

modules

W
⁕

 r

X
⁕GO

HT
Y

Algorithm 2

Figure .
Overview of the analysis.
a) The target vector 􏺄􏺄􏺄
and other data sources
􏺃􏺃􏺃𝑞 are used for model
inference. b) iONMF
factorization (Algorithm )
approximates the data
sources with a factor model
(common coefficient
matrix 􏺂􏺂􏺂 and a basis
matrix 􏹳􏹳􏹳𝑞 for each data
source). c) Prediction of
test samples (Algorithm )
uses the basis matrices
􏹳􏹳􏹳𝑞 , 􏹳􏹳􏹳𝑌 and test sample
data 􏺃􏺃􏺃∗𝑞 to estimate the
coefficient matrix 􏺂􏺂􏺂∗ and
predict 􏺄􏺄􏺄. Given test data
is shown in blue and the
predicted variables are
shown in orange.

SNMF and NMF-QNO to assume fixed HHH𝑞). Samples were projected into the low
dimensional space WWW∗ to predict YYY∗. Empirically, algorithms converged in less than
 iterations (change in cost function value < 10−􏷥). The factorization rank was set
to 𝑟 = 10 for all methods. Larger ranks did not significantly improve the predictive
performance for the price of a higher running time (data not shown).

We used cross-validation (80%/20% sampling, repeated three times) to choose hy-
perparameters: orthogonality regularization 𝛼 (iONMF), 𝐿􏷠 regularization (SNMF,

  Experiments with iONMF M. Stražar

NMF-QNO). Hyperparameters were sampled from the set {10−􏷢, 10−􏷡, ...10􏷢}. The
reported predictive performances are measured with the Area under ROC curve (AUC)
on the prediction on the independent hold-out test set of size ,. Prediction us-
ing iONMF resulted in highest AUC in  out of  cases. The iONMF, NMF and
NMF-QNO methods consistently outperformed SNMF. The critical distance diagram
shown in Table  confirms the statistical significance (𝑃 < 0.05) of the observed dif-
ferences in ranks of predictive models over multiple data sets []. This confirms the
feasibility of orthogonality as a way to induce discriminative and parsimonious factor
models.

The number of training examples critically affects the performance of most statistical
models. In Fig. ., we show how the performance of iONMF and NMF changes
with increasing training set size. As the number of training examples increases, the
gap between predictive performance of iONMF vs. NMF increases as well.

Figure .
Average performance of
iONMF and NMF over
 RBP experiments,
depending on the size of
the training set. The test
set contains  samples
with 􏷫􏷩% positives.

100 500 2000 5000 10000 20000 30000
Dataset size

0.80

0.81

0.82

0.83

0.84

0.85

0.86

A
U

C

iONMF
NMF

. Effect of orthogonality

Next, we investigated the influence of orthogonality hyperparameter 𝛼 on sparseness
(Eq. .) and angle between vectors in HHH𝑞. Higher values of angle indicate greater
degree of independence between the respective vectors (patterns in HHH𝑞). Fig. . shows
the average AUC across all  experiments with varying 𝛼. As 𝛼 is increased, sparseness
(Eq. .) increases from . to ., effectively halving the number of non-zero model

Low-rank kernel approximation 

Table .
Predictive performance as measured by the Area under ROC curve (AUC) on the hold-out test sets for the evaluated matrix
factorization methods. A critical distance diagram of average rankings at significance level 𝑃 < 􏷩.􏷩􏷮 is shown below.

Protein iONMF NMF SNMF QNO Protein iONMF NMF SNMF QNO
 Ago/EIF. . . . .  hnRNPC . . . .
 AgoM. . . . .  hnRNPL . . . .
 Ago . . . .  hnRNPL . . . .
 Ago . . . .  hnRNPLl. . . . .
 Ago . . . .  MOV . . . .
 eIFAIII . . . .  Nsun . . . .
 eIFAIII . . . .  PUM . . . .
 ELAVL . . . .  QKI . . . .
 ELAVLM. . . . .  SRSF . . . .
 ELAVLA . . . .  TAF . . . .
 ELAVL . . . .  TDP- . . . .
 ESWR . . . .  TIA . . . .
 FUS . . . .  TIAL . . . .
 Mut FUS . . . .  UAF . . . .
 IGF.- . . . .  UAF . . . .
 hnRNPC . . . .

parameters. Also, the average pairwise angle between vectors in HHH𝑞 increases from 65∘

to 90∘. Even for extreme values of 𝛼, AUC changes only slighthly, from . to ..
We compared the feature vectors found by all factorization methods in more detail,
see Section ..

  Experiments with iONMF M. Stražar

Figure .
Effect of parameter 𝛼 on
performance (y axis) versus
a) sparseness and b) angle
of basis vectors 􏹳􏹳􏹳𝑞 (right)
of model obtained with
iONMF.

a) b)

. Overlap between modules

To illustrate the advantage of orthogonal factorization, we examine the differences in
feature vectors discovered by each matrix factorization method in more detail. Or-
thogonality is related to the phenomenon of multicollinearity in the context of linear
regression, where multiple feature vectors in a model are highly correlated []. This
may lead to suboptimal prediction performance and can have an effect on the mag-
nitude of particular regression coefficients. Our framework can be seen as learning
multiple regression models, where each row xxx𝑗 ∈ XXX is predicted by a (non-negative)
linear combination of feature vectors in HHH given by coefficients in row www𝑗.

For each RBP experiment and model, we examine the feature vectors in each HHH𝑞.
Let 𝜌𝑗 be the maximal Pearson correlation of each feature vector hhh𝑗 ∈ HHH𝑞 with any
other feature vector in hhh𝑘 ∈ HHH𝑞, 𝑘 ≠ 𝑗. The Fig. . shows the average maximal
correlation 𝜌̄ computed over all feature vectors in a particular model.

The models inferred with iONMF show the smallest average correlation in  out of
 experiments. Also, the feature vectors are on average the least correlated in models
found by iONMF when averaged over all  experiments (shown by horizontal lines
in Fig. .). This results support the claim that redundancy is alleviated and supports
the improved predictive performance.

. Estimated importance of data sources

We evaluated the predictive performance for each possible subset of data sources and
each RBP experiment (Suppl. Tables C.–C. for AUC of individual experiments).
We then calculated the average AUC and standard error obtained with each data source
subset across all selected RBP experiments, shown in Fig. . and Suppl. Table C..

Low-rank kernel approximation 

Figure .
Comparison of average
maximal pairwise corre-
lation between low-rank
components (rows in 􏹳􏹳􏹳).
The feature vectors ob-
tained by SNMF report
an 𝜌̄ = 􏷩.􏷩􏷪 and were not
included into the figure
due to inferior predictive
performance resulting from
overly sparse vectors.

To ensure fair comparison, the factorization rank 𝑟 was selected such that the total
number of model parameters (number of values in WWW and HHH𝑞) was approximately
equal for each subset of data sources (Suppl. Table C.).

First, we discuss the importance of each single data source. According to AUC,
the most informative data source is RNA structure (col. R, average AUC=0.744 ±
0.024, Fig. ., Suppl. Table C.). This agrees with previous observations about the
importance of particular RNA structure interaction interfaces [, ], but may also
reflect the need for RNA bases to be single stranded to allow UV crosslinking [].
The second most informative data source is interaction with other proteins within the
same region (col. C, average AUC=0.732 ± 0.018, Fig. ., Suppl. Table C.). This
agrees with combinatorial protein-RNA interactions that compete or cooperate for
RNA binding [, ], but may also indicate that many RNA nucleotides may have
generally increased accessibility and crosslinking efficiency, that might be affected by
variance in gene expression.

The most informative pair of data sources are RNA k-mers (K) and type of ge-
nomic region (T) with average AUC=0.860 ± 0.017 (col. KT Fig. ., Suppl. Ta-
ble C.). These features describe the genomic organization and sequence content biases
of functional subunits, e.g. exon, intron, untranslated regions (UTR), and exon-intron
boundaries.

  Experiments with iONMF M. Stražar

The poor performance when usingXXXGO alone (col. G, AUC=0.492±0.008, Fig. .,
Suppl. Table C.) is likely due to sparse and incomplete gene function annotation,
which is in great contrast to other data sources that are two orders of magnitude
denser (density of XXXGO is 0.01%, while density of XXXRG is 16%). Inclusion of
XXXGO into the most informative subset (col. CKRT, AUC=0.920 ± 0.006, Fig. .,
Suppl. Table C.) does not change the predictive accuracy significantly (col. CGKRT,
AUC=0.886 ± 0.011, Fig. ., Suppl. Table C.). As XXXGO is larger than all other data
sources combined together, this result supports the claim that orthogonality regular-
ization in the iONMF cost function acts as a subtle normalization with respect to data
source size.

The average AUC correlates with the number of included data sources. The best
accuracy was achieved on {XXXCLIP,XXXKMER,XXXRNA,XXXRG}, col. CKRT. Except for XXXGO,
combining two or more data sources resulted in better accuracy than in models ob-
tained on individual data sources, supporting the benefit of data integration. A more
detailed, Spearman correlation-based comparison of all data source combinations con-
firms several binding preferences supported by the literature (Suppl. Section C.. and
Suppl. Fig. C.).

Figure .
Average AUC for 
experiments, using all
possible subsets of data
sources: CLIP experiments
(C; 􏺃􏺃􏺃CLIP), RNA k-
mers (K; 􏺃􏺃􏺃KMER), region
type (T; 􏺃􏺃􏺃RG), Gene
Ontology terms (G; 􏺃􏺃􏺃GO)
and RNAfold structure
prediction (R; 􏺃􏺃􏺃RNA).

CK
RT CK
R

CK
T

CG
KR

CG
KR

T
GK

T
CG

KT
GK

RT KR
T

CG
RT KT CG
T

CG
K

GR
T

GK
R CK GT CR
T CT CR GK CG
R KR R RT C T CG GR
K G

0.5
0.6
0.7
0.8
0.9
1.0

AU
C

. Identified factors associated with RBP binding

A principal motivation for development of iONMF was to to identify the characteristic
features associated with each discovered module. As explained in Section . and
shown in Fig. .d, each module reveals common feature values of crosslinked sites
(samples) assigned to the module. These values are reflected in HHH𝑞, one row for each
of the 𝑟 modules. The identified modules of crosslinked sites with common features
were visualized and used to predict functionally relevant protein-RNA interactions.

Low-rank kernel approximation 

Visualization of a complete set of RBP experiments is excluded from this book in
favour of brevity, but can nevertheless be found in [].

.. iONMF identifies biologically relevant binding patterns

We present the results and provide an explanation for an example RNA-binding pro-
tein UAF, a known splicing factor, where the most informative single data sources
are ordered by predictive performance as follows: XXXKMER (AUC=.), XXXRG (AUC=.),
XXXCLIP (AUC=.), XXXRNA (AUC=.), XXXGO (AUC=.); see Suppl. Table C..
The most informative data subset is {XXXCLIP,XXXKMER,XXXRG} (AUC=.).

RNA secondary structure. In agreement with UAF being a single-stranded RNA
binding protein, the probability of double stranded RNA decreases around its crosslinked
sites. Features in HHHRNA are shown in Fig. .. Hierarchical clustering of feature vectors
in HHHKMER are shown in Suppl. Fig. C., C..

RBP co-binding and k-mer composition. Examining features in HHHCLIP, one is able to
discover factors associated with binding of individual or groups of RBPs. The features
that are common to each module allow us to define hypotheses on cooperative or
competitive binding of multiple proteins, which can then be experimentally tested. A
global picture of RNA motifs associated to all proteins is shown on ..

Fig. . shows results for UAF. It also shows that splicing factor hnRNPC inter-
acts with the same RNA positions as UAF. Competition between the two is reported
by []. The two factors also share similar binding motifs (Fig. .). The relationship
is further confirmed by recognition of U-rich motifs, appearing in the corresponding
module in XXXKMER.

Region type. Fig. . shows HHHRG features for UAF. The intron-exon boundary can
be seen at ∼ nucleotides upstream from the crosslinked site. This is expected since
UAF is a splicing factor that generally crosslinks to a ’ splice site []. Protein
similarity based on region types is shown in Fig. ., confirming the ability of iONMF
feature vectors to cluster the proteins into functionally related groups. Detailed data
is shown in Suppl. Fig. C. and individual feature vectors.

Sequence motif content and positioning. Fig. . shows the sequence content and posi-
tions of RNA sequence k-mers (features in HHHKMER) for UAF. The most associated
k-mers are U-rich and are similar to recognition sites of hnRNPC, an experimentally
confirmed competitor for the same binding sites []. Co-binding of the two can be

  Experiments with iONMF M. Stražar

seen in HHHCLIP matrices.

Gene annotation. Due to extensive length of the Gene Ontology associations, and in
favour of brevity, the relevant results can be found in [].

Figure .
Three modules most associ-
ated with positions bound
by UAF are shown, top
to bottom: 􏹳􏹳􏹳KMER , 􏹳􏹳􏹳RG ,
􏹳􏹳􏹳CLIP , 􏹳􏹳􏹳RNA . Top bars
show the percentage of
samples described by the
corresponding module.

UUUU

AUUU

UUUA

UUUC

UAUU

UGUG

UUCA

CUCU

UCUG

CUUU

UUCU

-50 -25 0 25 50
0

3

z-
sc
or
e

-50 -25 0 25 50
0

3

-50 -25 0 25 50
-1

2

Exon
Intron

5'UTR
3'UTR

CDS

-50 -25 0 25 50
0

6

z-
sc
or
e

-50 -25 0 25 50
-5

20

-50 -25 0 25 50
-2

10

[9] ELAVL1-MNase
[29] TIAL1
[16] hnRNPC

[12] ESWR1
[22] Nsun2
[24] QKI

[15] IGF2BP1-3
[2] Ago2-MNase

-50 -25 0 25 50
0

2

z-
sc

or
e

-50 -25 0 25 50

Position relative to crosslink site

0

2

-50 -25 0 25 50
-1

2

Low-rank kernel approximation 

Figure .
Hierarchical clustering
(Ward’s linkage) of pro-
teins and  most common
complex motifs, estimated
from row vectors 􏹳􏹳􏹳KMER
obtained with iONMF.
Heatmap shows log odds
ratios of observed motif
probability in sites prox-
imal to crosslinked sites
divided by the expected
probability (at random
positions).

.. Orthogonality constraints demultiplex binding patterns

Orthogonality regularization provides an advantage in model interpretation over NMF.
CLIP-based protocols are subject to a U-rich sequence preference due to UV-C crosslink-
ing. As reported previously [], the detection of U-rich motifs may occur at crosslinks
for RBPs not associated with U-rich tracts, such as TDP- (Fig. .). The NMF
method discovers both U-rich motif and known tandem UG repeats in a single mod-
ule (column vector in HHHKMER), while iONMF successfully distinguishes the two. As-
signing the data samples to corresponding modules (Section .), . of positive
samples are related to UG-rich component, while . are related to U-tracts. In
summary, orthogonality regularization can disambiguate between different modalities
of RBP binding.

  Experiments with iONMF M. Stražar

Figure .
Protein similarity based
on gene region types row
vectors in 􏹳􏹳􏹳RG . For each
region type, the interval
[-..] relative to the
crosslinked sites is shown.

. Summary on biological results

Computational approaches already play a crucial role in protein-RNA interaction pre-
diction by aiding experiment planning and interpretation of results. Genome-wide
assays of protein-RNA interaction mapping [] has identified close to a thousand
human RNA-binding proteins. Data on RNA binding proteins is growing rapidly,
emphasizing the need for integrative methods which jointly consider all available data
sources.

An interesting finding of our study is that in addition to RNA structure and se-
quence, the position relative to genomic features (exons, etc.) and CLIP data of other
RBPs is informative for predicting binding sites of a specific RBP. Genomic regions
are informative as many proteins bind at specific positions relative to these features,
e.g. UAF generally binds upstream of exons (Fig. .). We show that CLIP data
are predictive, as subsets of examined RBPs exhibit similar binding patterns (Suppl.
Fig. C.). Importantly, overlap is only seen between a subset of RBPs, but we find
no evidence that some sites or features are generally shared across all RBPs. While

Low-rank kernel approximation 

UUUU

UGUG

GUGU

UGUU

UUUG

UUUU

UGUU

UUGU

UUUG

AUGU

UGUG

GUGU

AUGU

UGUA

GUGC

a) NMF (main module)

b) iONMF (module 1) c) iONMF (module 2)

Figure .
Comparison of modules
in 􏹳􏹳􏹳KMER related to
crosslinks of TDP-. a)
Canonical NMF. b, c) Top
two relevant components
found by iONMF.

contribution of non-specific background should be considered, we find it most likely
that co-binding profiles result from biologically relevant features. For example, many
RBPs bind to similar RNA sequences or structures (Suppl. Fig. C.-C.).

An important consideration when analyzing CLIP-based data is the experimental
bias, causing certain sequences to be non-specifically detected. One such example
are the U-rich sequences that appear to be especially susceptible to crosslinking [].
Orthogonal matrix factorization can be useful in this cases, disambiguating between
multiple different patterns of varying strengths ..

Several of the examined RBPs are known to bind similar motifs, such as the U-
rich motifs bound by ELAVL, TIA, hnRNPC and UAF, which are also detected
in our analyses (Fig. .). Moreover, RBPs may interact at the protein level, either
directly or indirectly via co-factors, which could stabilize their binding to proximal
RNA sites. Few experimental studies have explored the impact of protein-protein
interactions on coordinated RNA binding, but our analyses could be used to explore

  Experiments with iONMF M. Stražar

such potential interactions in the future. Few experimental studies have explored the
impact of protein-protein interactions on coordinated RNA binding, but our analyses
could be used to explore such potential interactions in the future.

. Summary on orthogonal matrix factorization

One of the challenges in the application of the matrix factorization-based models is
the presence of multiple patterns of varying magnitude within multiple data sources,
that are failed to be detected by the unconstrained NMF. We design a model based
on orthogonal non-negative matrix factorization and the corresponding optimization
algorithm.

Orthogonality regularization favors both non-overlapping and sparse solutions, pro-
viding class-specific descriptions and model interpretation. It favours independent
patterns providing competent predictive performance. By evaluating the pairwise de-
pendence of feature vectors and sparseness, we empirically show there exist predictive
models with equivalent predictive performance but higher sparseness and degree of
independence between feature vectors. In practice, it enables to disambiguate the pat-
terns, hardly detectable by the canonical NMF.

Data integration in iONMF yields improvements in accuracy when compared to
state-of-the-art approaches. The resulting predictions are in strong accordance with a
published in vitro studies and identified a number of promising candidates for further
investigation. Despite a highly specific aim of the presented experiments it is impor-
tant to note that iONMF can be used for general purpose machine learning. Our
experimental findings establish iONMF as the data integration technique of choice
where sparse, modular models are desired.



Kernel methods



  Kernel methods M. Stražar

A principal assumption underlying the matrix factorization algorithms designed so far
is that the data can be approximated as a combination of one or more linear models.
Modeling output functions that can be defined by non-linear functions of the input
variables can be achieved by kernel methods. In this second part of the work, we use
kernel methods to design a similar model based on multiple data sources, represented
as kernel matrices. In this chapter, we present the basic theory and related work in
kernel regression, approximation and multiple kernel learning.

A central premise in machine learning is the trade-off between model complexity
and pattern stability. Many scenarios include a set of output (target) variables related to
the input variables through non-linear functions. The increase in allowed model com-
plexity translates to increasing the space of candidate functions and enables modelling
of a larger set of problems, but increases the probability of finding a good matching
between the inputs and the outputs simply by chance. Kernel methods leverage the
data representation into higher dimensional (possibly infinite) input spaces while en-
abling the inference using the existing algorithms. The central idea consists of thinking
about input data as pair-wise similarities between data points, obtained through a ker-
nel function, which is an inner product corresponding to a feature representation in a
higher dimensional space. This allows one to have control over the both the class of
output functions.

This chapter introduces a minimal set of necessary mathematical and modelling
formalisms used to derive further results related to kernel methods. A short basic
section on inner product spaces is provided in the Appendix B...

. Kernel functions

Assume the existence of an arbitrary input space 𝒳 and a map 𝜙 to a Hilbert space,
𝜙 ∶ 𝒳 ↦ ℋ . In the space ℋ , the inner product ⟨⋅, ⋅⟩ℋ corresponds to the inner
product between feature mappings ⟨𝜙(xxx), 𝜙(x ′x ′x ′)⟩ℋ for any two xxx,x ′x ′x ′ ∈ 𝒳 . In prac-
tice, the knowledge of 𝜙 is seldom required if we are able to define a kernel function 𝑘
that corresponds to the evaluation of the inner product between two feature mappings

𝑘(xxx,x ′x ′x ′) = ⟨𝜙(xxx), 𝜙(x ′x ′x ′)⟩ℋ .
A Hilbert space is an inner product space which is separable and complete. It allows for the computations

of angles and length. Additionally, completeness implies that any Cauchy sequence in ℋ converges to an
element of ℋ . For an introduction to Hilbert spaces, see Kreyszig [].

Low-rank kernel approximation 

Let xxx,x ′x ′x ′ be two elements of the space 𝒳 . Valid kernel functions are characterized
by the positive-semidefiniteness property, defined as follows.

Positive semi-definite functions. Let {xxx􏷠, xxx􏷡, ..., xxx𝑛} be a collection of 𝑛 arbitrary ele-
ments. A symmetric matrix KKK ∈ ℝ𝑛×𝑛 (or ℂ𝑛×𝑛) resulting from the pairwise evalua-
tions of a kernel function KKK(𝑖, 𝑗) = 𝑘(xxx𝑖, xxx𝑗), is positive semi-definite if

for any vector aaa ∈ ℝ𝑛 (or ℂ𝑛), we have aaa𝑇KKKaaa ≥ 0.

Any function 𝑘(⋅, ⋅) satisfying this property is a positive semi-definite function and
can be proven to correspond to an inner product in a Hilbert space ℋ []. Note
that with this definition, we need not explicitly construct a mapping 𝜙(xxx) that would
correspond to the kernel of interest. A general mapping that corresponds to any valid
kernel is discussed in more detail in Section . below. Furthermore, the definition
does not put any restrictions on the original space 𝒳 .

The practical consequence is the following. Let XXX ∈ ℝ𝑛×𝑑 be a matrix of 𝑛 data
points in a feature space of dimension 𝑑. In the context of linear regression, the Gram
matrixXXXXXX𝑇 in Eq. B. can be replaced with a kernel matrixKKK whereKKK(𝑖, 𝑗) = 𝑘(xxx𝑖, xxx𝑗)
corresponds to the evaluation of the kernel function 𝑘. Thus, linear regression (and
many other models) can be defined in the feature space induced by 𝜙 only using the
knowledge on inner products by replacing XXXXXX𝑇 in Eq. B.. with the kernel matrix
KKK. This substitution is colloquially referred to as the kernel trick. It enables learning
non-linear output functions (with respect to the original input space XXX) using linear
systems of equations.

Polynomial kernel. We give a concrete example of a kernel where a feature mapping
𝜙 can be written and evaluated explicitly. Let the 𝒳 = ℝ􏷡 and feature map 𝜙(xxx) =
(𝑥􏷡

􏷠, √2𝑥􏷠𝑥􏷡, 𝑥􏷡
􏷡). Then, the polynomial kernel between xxx,zzz ∈ 𝒳 can be evaluated as

⟨xxx,zzz⟩ℋ = ⟨𝜙(xxx), 𝜙(zzz)⟩ = (𝑥􏷡
􏷠, √2𝑥􏷠𝑥􏷡, 𝑥􏷡

􏷡)𝑇 (𝑧􏷡
􏷠, √2𝑧􏷠𝑧􏷡, 𝑧􏷡

􏷡) =
= 𝑥􏷡

􏷠𝑧􏷡
􏷠 + 2𝑥􏷠𝑥􏷡𝑧􏷠𝑧􏷡 + 𝑥􏷡

􏷡𝑧􏷡
􏷡 = ((𝑥􏷠, 𝑥􏷡)𝑇 (𝑧􏷠, 𝑧􏷡))􏷡 =

= ⟨xxx,zzz⟩􏷡 = 𝑘poly(xxx,zzz).

Hence, the evaluation of the polynomial kernel 𝑘poly(xxx,zzz) = ⟨xxx,zzz⟩􏷡 is equivalent to
the evaluation of inner products between feature maps 𝜙(xxx) and 𝜙(zzz). Importantly,

  Kernel methods M. Stražar

the feature mappings need never be evaluated explicitly to efficiently compute inner
products.

More examples of common kernels are listed in Table .. While linear regression
was chosen as a worked example in Appendix B.., the kernel trick can be used to
kernelize many linear models used in machine learning, such as principal component
analysis (PCA), linear discriminant analysis (LDA), support vector machines (SVM)
and more. Choosing a kernel function represents the prior assumptions on the rela-
tions between the original input space and the target output functions. The kernel
functions provide different ways of measuring similarities between data points, which
is illustrated with images of kernels in Figure . on a subset of ℝ􏷠. More examples
of kernels and the intuition on the resulting output functions are discussed in the
following paragraphs.

Exponentiated-quadratic kernel. The exponentiated-quadratic kernel is one of the
most common kernels used in machine learning, particularly with Gaussian Processes,
where it has gained a nickname smoothing device. The latter fact is attributed to the infi-
nite differentiability of the exponential function, resulting in infinitely smooth output
functions. The functional form of the exponentiated-quadratic kernel is

𝑘exp(xxx,x ′x ′x ′) = 𝜎􏷡exp(− ‖xxx − x ′x ′x ′‖􏷡

ℓ􏷡). (.)

It is stated as a function of the difference xxx − xxx, and thus an example of a station-
ary or translation-invariant kernel. The length scale hyperparameter ℓ determines the
distance (in terms of norm ‖xxx − xxx′‖) at which the output functions 𝑓(xxx) and 𝑓(xxx′)
covary (see the next Section, . ,for more discussion on output functions). Larger
length scales thus imply long-range effects between data points. Similarly, when sta-
tionary kernels are treated as one-dimensional functions, they are particularly useful
in spectral analysis, which is a principal tool for stationary kernel decompositions. An
alternative but equivalent form of the kernel is

𝑘exp(xxx,x ′x ′x ′) = 𝜎􏷡exp(−𝛾‖xxx − x ′x ′x ′‖􏷡), (.)

where the length scale is absorbed in the frequency hyperparameter 𝛾. This last form
is included to comply with existing literature later in the text.

The Matérn kernel. The Matérn kernel kernel is another example of a stationary

Low-rank kernel approximation 

kernel, where both the smoothness and the length scale of the output functions can be
controlled explicitly []. The general form of the Matérn kernel is defined as follows:

𝑘Mat(xxx,x ′x ′x ′) = 2􏷠−𝜈

Γ(𝜈) (√2𝜈‖xxx − x ′x ′x ′‖
ℓ)𝜈𝐾𝜈(√2𝜈‖xxx − x ′x ′x ′‖

ℓ), (.)

where 𝐾𝜈 is a modified Bessel function and Γ(𝜈) is the Gamma function []. The
hyperparameters control the smoothness 𝜈, and the length scale ℓ. The latter plays a
very similar role to the length scale ℓ in the exponentiated-quadratic kernel; indeed,
as the smoothness parameter 𝜈 → ∞, the output functions are infinitely smooth.
Conversely, small values of 𝜈 result in very rough functions. In case 𝜈 is of form
𝑝 + 1/2, where 𝑝 is an integer, the output functions are 𝑝 times differentiable. The two
common kernels used in machine learning, depending on 𝜈, are the Matérn / and
Matérn / kernels:

𝑘Mat,/(xxx,x ′x ′x ′) = (1 + √3‖xxx − x ′x ′x ′‖
ℓ) exp(− √3‖xxx − x ′x ′x ′‖

ℓ), (.)

𝑘Mat,/(xxx,x ′x ′x ′) = (1 + √5‖xxx − x ′x ′x ′‖
ℓ + √5‖xxx − x ′x ′x ′‖􏷡

ℓ) exp(− √3‖xxx − x ′x ′x ′‖
ℓ). (.)

Hence, with 𝜈 of form 𝑝 + 1/2, the Matérn kernel is composed of a product of a 𝑝-
degree polynomial and an exponential when treated as a one-dimensional function of
the distance ‖xxx − x ′x ′x ′‖.

String kernels. An example where the kernel methods enable modeling of data which
is not straightforwardly represented in vector spaces is presented next. In this case, the
data points are discrete, finite length, finite character set strings. This is a common sce-
nario in text processing or bioinformatics, where kernels exposing different properties
and patterns exists [].

The data points are strings of length at most 𝐿, derived from a finite alphabet ℬ ,
defining the space of data points as ℬ 𝐿 (including the empty character). The string-
type data can be transformed into a numerical form using e.g. manual preprocessing,
string kernels, or deep learning.

Arguably the simplest string kernel is the spectrum kernel, called also the n-gram
bag-of-words kernel. The inner product between two strings sss, s ′s ′s ′ ∈ ℬ 𝐿 is defined as
a product of occurrences of each substring uuu of length ℓ < 𝐿:

  Kernel methods M. Stražar

𝑘SPEC(sss, s ′s ′s ′) = 􏾜
􏸔􏸔􏸔∈ℬ ℓ

count(uuu,sss) × count(uuu,s ′s ′s ′) (.)

with the substring length ℓ as a hyperparameter and count(uuu,sss) equals the number
occurrences of uuu in sss. Note that this kernel does not regard any positional information
of uuu within strings. The feature space explicitly representing the spectrum kernel could
be simply constructed by listing all substrings and the respective counts, but such
construction becomes unpractical as the size of the feature space grows exponentially
as the size of the alphabet |ℬ |ℓ. A kernel, dependent on the positional information is
the substring kernel, which assumes that the same length 𝐿 for all strings and compares
substrings of length ℓ.

𝑘SUB(sss, s ′s ′s ′) =
𝐿−ℓ+􏷠
􏾜
𝑗=􏷠

𝐼(sss[𝑗 ∶ 𝑗 + ℓ] == s ′s ′s ′[𝑗 ∶ 𝑗 + ℓ]), (.)

where the indicator function 𝐼(expr) is equal to  if the expression in the argument is
true. The substring kernel maps the data into an even larger feature space of dimension
(𝐿−ℓ+1)×|ℬ |ℓ. An example of a kernel that is not trivial to represent in a vector space
is the substring kernel with mismatches, permitting ℓ􏷟 mismatches within substrings of
size ℓ:

𝑘SUB-MIS(sss, s ′s ′s ′) =
𝐿−ℓ+􏷠
􏾜
𝑗=􏷠

𝐼􏿴match(sss[𝑗 ∶ 𝑗 + ℓ], s ′s ′s ′[𝑗 ∶ 𝑗 + ℓ]) > (ℓ − ℓ􏷟)􏿷, (.)

where the match(ttt, ttt′) function counts the number of exact positional matches for a
pair of strings ttt, ttt′. The feature space implied by this kernel is not representable as
a vector space due to a particular substring now matching multiple other substrings
equally, implying non-independent components of a space.

In the original publication, Sonnenburg et al. [] refer to this kernel as weighted degree kernel, where
different lengths of substrings ℓ = 􏷠, 􏷡..., ℓmax can be weighted according to parameters 𝛽􏷪, 𝛽􏷫..., 𝛽max. This
definition includes elements of multiple kernel learning, which is treated later in this book.

Low-rank kernel approximation 

Table .
Common kernels used in this work.

Label Name Input space Expression Hyperparameters (𝜃𝜃𝜃)
𝑘lin(xxx,x ′x ′x ′) Linear ℝ𝑑 xxx𝑇x ′x ′x ′

𝑘poly(xxx,x ′x ′x ′) Polynomial (of degree D) ℝ𝑑 (xxx𝑇x ′x ′x ′)𝐷 D
𝑘exp(xxx,x ′x ′x ′) Exponentiated-quadratic ℝ𝑑 Eq. .-. 𝜎, ℓ
𝑘sig(xxx,x ′x ′x ′) Sigmoid ℝ𝑑 tanh(𝛾xxx𝑇x ′x ′x ′ + 𝑏) 𝛾, b
𝑘Mat,/(xxx,x ′x ′x ′) Matérn / ℝ𝑑 Eq. . ℓ
𝑘Mat,/(xxx,x ′x ′x ′) Matérn / ℝ𝑑 Eq. . ℓ

𝑘SPEC(sss, s ′s ′s ′) Spectrum ℬ 𝐿 Eq. . ℓ
𝑘SUB(sss, s ′s ′s ′) Substring ℬ 𝐿 Eq. . ℓ
𝑘SUB-MIS(sss, s ′s ′s ′) Substring mismatch ℬ 𝐿 Eq. . ℓ, ℓ􏷟

−10 0 10
x

0.0

0.2

0.4

0.6

0.8

1.0

k e
xp
(x

0,
x)

γ=0.03, x0= −5
γ=0.10, x0=0
γ=0.30, x0=5

−10 0 10
x

0.0

0.2

0.4

0.6

0.8

1.0

k m
at
(x

0,
x)

ν=0.50, x0= −5
ν=1.50, x0=0
ν=2.50, x0=5

−10 0 10
x

−100

−50

0

50

100

k p
ol
y(x

0,
x)

D=1, x0=0.5
D=2, x0=0.5
D=3, x0=0.5

Figure .
Basis functions of
exponentiated-quadratic,
Matérn and polynomial
kernel for different hy-
perparameter values. The
kernel 𝑘(𝑥, 𝑥􏷩) is computed
for 𝑥 ∈ [−􏷪􏷩, 􏷪􏷩] ⊂ ℝ􏷪 ,
with the inducing points
𝑥􏷩 selected to avoid clutter.

. Output function spaces

It is interesting to examine the form of output regression functions when a kernel is
used in place of the inner products in linear regression (Eq. B., page ). The
functional form gives a direct insight into the properties of functions induced by a
particular kernel. To achieve this, we must introduce the Reproducing kernel Hilbert
space (RKHS). Assume that 𝒳 is a general vector space. The RKHS is a space of
functions defined by a point in the original input space 𝒳 with the inner product

  Kernel methods M. Stražar

equal to the kernel. In general inner product spaces, a linear functional is defined by
an inner product and an element xxx ∈ 𝒳 []. Similarly, in Hilbert spaces, the linear
functionals can be defined by a point in 𝒳 and a kernel 𝑘.

Concretely, let xxx ∈ 𝒳 be a point in the original vector space and 𝑘 a kernel function.
Then, a function 𝑓 ∈ ℋ can be defined by the point xxx as follows

𝑓 = 𝑘(xxx, ⋅),

where ⋅ indicates the function argument. A evaluation of 𝑓 at a point x ′x ′x ′ is then defined
as

𝑓(x ′x ′x ′) = 𝑘(xxx,x ′x ′x ′).

The evaluation of 𝑓(x ′x ′x ′) is itself defined in the form of an inner product ⟨⋅, ⋅⟩ℋ . Hence,
linear combinations of elements in ℋ give rise to other elements of ℋ . For example,
a linear combination of elements 𝛼𝛼𝛼 ∈ ℝ𝑛 gives rise to the function

𝑔 =
𝑛

􏾜
𝑖

𝛼𝑖𝑘(xxx𝑖, ⋅),

which is also an element of ℋ . The function evaluation for an arbitrary element in
𝒳 is thus

𝑔(x ′x ′x ′) =
𝑛

􏾜
𝑖

𝛼𝑖𝑘(xxx𝑖, x ′x ′x ′). (.)

Note the similarity of Eq. . with Eq. B. where the kernel 𝑘 was used in place of
the canonical inner product. The output functions — inferred given a training set
𝒟 = {xxx􏷠, xxx􏷡, ..., xxx𝑛} and a kernel 𝑘 — are linear combinations of functions in ℋ ,
centered at the points in 𝒟 .

. Multiple kernel learning

Combining different representations of the same set of objects is considerably facili-
tated with kernels. There even exist situations where the original input space can not

A linear functional is a function from a vector space to its field of scalars and are of form 𝑓 ∶ 𝒳 ↦ ℝ.

Low-rank kernel approximation 

be associated to a vector space, but for which kernels can be defined, leading to an im-
plicit definition of the corresponding input space. Common representations of objects
include real vector spaces, discrete spaces, discrete character strings, graphs, trees, and
more. Multiple kernel learning (MKL) not only facilitates selection of kernels from
predefined sets, but also enables seamless operation with different representations of
the same set of objects [].

.. Making new kernels from old

Following the properties of kernels, various rules exists to combine two or more dif-
ferent kernels and obtain new valid kernels (Bishop [], ch. ). For example, the sum
rule for combining two kernels can be straightforwardly shown. Given two kernels 𝑘􏷠
and 𝑘􏷡, the sum

𝑘􏷠+􏷡(xxx,x ′x ′x ′) = 𝑘􏷠(xxx,x ′x ′x ′) + 𝑘􏷡(xxx,x ′x ′x ′)

is also a valid kernel. Letting KKK􏷠 and KKK􏷡 be the corresponding kernel matrices, both
of size ℝ𝑛×𝑛, the positive-definiteness property is preserved by kernel sum

aaa𝑇KKK􏷠+􏷡aaa = aaa𝑇KKK􏷠aaa + aaa𝑇KKK􏷡aaa ≥ 0

for all vectors aaa ∈ ℝ𝑛 and the symmetry property can be shown trivially. All possible
kernel matrices span a special subspace of ℝ𝑛×𝑛, referred to as the positive semi-definite
cone and denoted as ℝ𝑛×𝑛

++ . Although more rules to combine kernels exist (e.g. the
product rule), the sum rule is the most common rule used in MKL.

Let {xxx􏷠, xxx􏷡, ..., xxx𝑛} be a set of input data points associated with target (output) values
yyy ∈ ℝ𝑛. Let 𝒳􏷠, 𝒳􏷡, ..., 𝒳𝑝 be inner product spaces, each containing {xxx􏷠, xxx􏷡, ..., xxx𝑛}
and endowed with respective inner product (kernel) functions 𝑘􏷠, 𝑘􏷡, ...𝑘𝑝. The spaces
𝒳􏷠, 𝒳􏷡, ..., 𝒳𝑝 are isomorphic and can contain different representations of the same
set of objects. The kernels 𝑘𝑞 are positive definite mappings from 𝒳𝑞 × 𝒳𝑞 to ℝ.
In multiple kernel learning (MKL), the domain of 𝑓 is the union (concatenation) of
𝒳􏷠, 𝒳􏷡, ..., 𝒳𝑝 spaces. The functions in a MKL setting are often defined as linear
combinations of base kernels, centered at the input points:

𝑓 =
𝑝

􏾜
𝑞=􏷠

𝑛
􏾜
𝑖=􏷠

𝜇𝑞𝛼𝑖𝑘𝑞(xxx𝑖, ⋅). (.)

  Kernel methods M. Stražar

Here, the vector 𝜇𝜇𝜇 ∈ ℝ𝑝 represents the kernel weights, revealing the importance of
each kernel for the problem at hand, while 𝛼𝛼𝛼 plays the same role as in single kernel
regression. More generally, the weights of kernels and input points can be optimized
jointly as a kernel-input point weight matrix AAA ∈ ℝ𝑝×𝑛:

𝑓 =
𝑝

􏾜
𝑞=􏷠

𝑛
􏾜
𝑖=􏷠

𝑎𝑞𝑖𝑘𝑞(xxx𝑖, ⋅).

Common MKL algorithms solve for 𝜇𝜇𝜇, 𝛼𝛼𝛼 or both. In this work, we will examine the
general form of different MKL algorithms and low-rank kernel matrix approximations.
Importantly, we will highlight the differences from the resulting output function spaces
induced by different algorithms.

.. Multiple kernel learning algorithms

The MKL algorithms optimize the kernel weights 𝜇𝜇𝜇 to combine multiple kernel matri-
ces into a single kernel matrix optimized for supervised learning. Often, it is assumed
as a two-stage process, first optimizing the kernel matrix via 𝜇𝜇𝜇 in . and later infer-
ring the remaining model parameters, e.g. 𝛼𝛼𝛼 in Eq. .. Below, we present baseline
multiple kernel learning algorithms that assume the availability of full kernel matrices.
A thorough review of MKL algorithms is presented in [].
Algorithms based on centered alignment. The following algorithms proposed by Cortes

et al. [] are based on kernel centered alignment in a regression setting and differ in
computational complexity and constraints on the solution 𝜇𝜇𝜇. All are based on align-
ing the kernels with target values, when the space of kernel matrices is treated as a
vector space ℝ𝑛×𝑛

++ , defined above in Section ... The subject to optimization in the
following algorithms are the kernel weights 𝜇𝜇𝜇 ∈ ℝ𝑝, resulting in a combined kernel
matrix

KKK𝜇 =
𝑝

􏾜
𝑞=􏷠

𝜇𝑞KKK𝑞. (.)

We now introduce a number of tools upon which the algorithms are implemented.
The Frobenius product is an inner product between two kernel matrices KKK􏷠 and KKK􏷡,

Low-rank kernel approximation 

defined as:

⟨KKK􏷠,KKK􏷡⟩𝐹 =
𝑛

􏾜
𝑖

𝑛
􏾜

𝑗
KKK􏷠(𝑖, 𝑗)KKK􏷡(𝑖, 𝑗).

To compute the alignment, the feature map associated to the kernel is centered, i.e. the
mapping associated to a data pointxxx is scaled by the expectation 𝜙𝑐(xxx) = 𝜙(xxx) − 𝔼􏸗􏸗􏸗[𝜙(xxx)]
where xxx is sampled from the empirical data distribution. In this case, the centered ker-
nel matrix is obtained from any kernel matrix KKK by applying the following matrix
function:

𝐶(KKK) = (III − 111111𝑇

𝑛)KKK(III − 111111𝑇

𝑛),

where 111 is a vector size 𝑛 with all values equal to . The idempotent linear operator

PPP = (III − 􏷠􏷠􏷠􏷠􏷠􏷠𝑇

𝑛) is the centering projection, from which follows:

⟨KKK􏷠, 𝐶(KKK􏷡)⟩𝐹 = ⟨𝐶(KKK􏷠),KKK􏷡⟩𝐹 = ⟨𝐶(KKK􏷠), 𝐶(KKK􏷡)⟩𝐹 .

Finally, the centered kernel alignment is defined as the cosine of the angle between the
kernel matrices:

𝜌̂(KKK􏷠,KKK􏷡) = ⟨𝐶(KKK􏷠), 𝐶(KKK􏷡)⟩𝐹
‖𝐶(KKK􏷠)‖𝐹‖𝐶(KKK􏷡)‖𝐹

where the matrix norm ‖ ⋅ ‖ is the Frobenius norm defined in Eq. .. Note that
the definitions are consistent with the canonical inner product and the normalized
projection (angle cosine) if KKK􏷠 and KKK􏷡 are unrolled into vectors.

Assume 𝑝 kernel matrices {KKK􏷠,KKK􏷡, ...,KKK𝑝} and the target values yyy ∈ ℝ𝑛. The as-
sociated ideal kernel is defined as KKK𝑦 = yyyyyy𝑇 and represents the assumed true under-
lying kernel. Arguably the simplest algorithm is the independent centered alignment
(Align). The kernel weights 𝜇𝜇𝜇 are defined as:

𝜇𝑞 = 𝜌̂(KKK𝑞,KKK𝑦).

This algorithm is equivalent of 𝑝 independent linear regressions (if kernel matrices are
treated as one-dimensional vectors). Its principal advantages are simplicity and low
computational complexity in the number of kernels. Therefore the choice is suitable
for a small number of data points 𝑛 and arbitrary number of kernels. Additionally,
the optimization does not take into account dependencies between kernels, which is
discussed next.

  Kernel methods M. Stražar

The bounded linear combination solves the optimization problem (Alignf):

max𝜇𝜇𝜇∈ℳ
⟨𝐶(KKK𝜇),KKK𝑦⟩𝐹

‖𝐶(KKK𝜇)‖𝐹
, (.)

where the feasible set is a hypersphere ℳ = {𝜇𝜇𝜇 ∶ ‖𝜇𝜇𝜇‖ = 1} and 𝜇𝜇𝜇 defines KKK𝜇
as in Eq. .. Let the matrix MMM denote the inner products between the kernels,
𝑚𝑖𝑗 = ⟨𝐶(KKK𝑖), 𝐶(KKK𝑗)⟩𝐹 and the vector aaa the inner product with the ideal kernel 𝑎𝑞 =
⟨𝐶(KKK𝑞),KKK𝑦⟩𝐹 . Then the solution to the problem in Eq. . is given by 𝜇𝜇𝜇⋆ = 􏹞􏹞􏹞−􏷪􏸀􏸀􏸀

‖􏹞􏹞􏹞−􏷪􏸀􏸀􏸀‖ .
The solution admits a simple interpretation; it is the solution of a linear regression in
a vector space of kernels which is subsequently scaled. The practical role of scaling is
for interpretation purposes, as the primary goal of MKL is to learn a combined kernel
and not a predictive model. Note that in this case the weighted sum ∑𝑞 𝜇𝑞KKK𝑞 is not
guaranteed to result in a positive semi-definite kernel matrix.

Finally, to ensure a valid kernel matrix and improve interpretation, 𝜇𝜇𝜇 can be limited
to a convex subset, ℳ = {𝜇𝜇𝜇 ∶ ∑𝑞 𝜇𝑞 = 1 and 𝜇𝑞 ≥ 0} — a half-sphere. The solution
involves solving a linearly constrained quadratic problem (QP) and no longer assumes
a closed-form solution (Alignfc):

min􏸕􏸕􏸕≥􏷟 vvv𝑇MMMvvv − 2vvv𝑇aaa (.)

and the optimal solution 𝜇𝜇𝜇⋆ = 􏸕􏸕􏸕⋆

‖􏸕􏸕􏸕⋆‖ . Both solutions to Eq. .-. require at least
quadratic computational complexity in the number of kernels and are infeasible for
problems with large number of kernels, but might be preferred due to interpretability.

Simultaneous solution to MKL and linear regression. A natural extension of MKL
algorithms is to simultaneously solve for the kernel weights and other model parame-
ters, as the two sets of parameters are often dependent. One such case that builds on
Ridge regression and MKL is the 𝐿􏷡-regularized Kernel Ridge Regression (L-KRR)
model []. Recalling the form of the primal Ridge regression,

min􏸖􏸖􏸖 ‖www‖ + 𝑐
𝑛

􏾜
𝑖=􏷠

(www𝑇 𝜙(xxx𝑖) − 𝑦𝑖)􏷡,

where 𝑐 is the trade-off parameter, the dual form can be obtained by replacing the inner
products of feature mappings 𝜙(xxx𝑖) with the kernel matrix:

Low-rank kernel approximation 

max𝛼𝛼𝛼 − 𝜆𝛼𝛼𝛼𝑇𝛼𝛼𝛼 − 𝛼𝛼𝛼𝑇 (KKK𝛼𝛼𝛼 − 2yyy), (.)

where the left-hand term is the model capacity and the right-hand term represents the
data fitting term. When the kernel matrix KKK is replaced with a sum of base kernels
KKK𝜇 = ∑𝑝

𝑞=􏷠 KKK𝑞, the problem can be stated as:

min𝜇𝜇𝜇∈ℳ max𝛼𝛼𝛼 − 𝜆𝛼𝛼𝛼𝑇𝛼𝛼𝛼 −
𝑝

􏾜
𝑞=􏷠

𝜇𝑞𝛼𝛼𝛼𝑇KKK𝑞𝛼𝛼𝛼 + 2𝛼𝛼𝛼𝑇yyy, (.)

where the feasible set ℳ = { 𝜇𝜇𝜇 ≥ 000 and ‖𝜇𝜇𝜇 − 𝜇𝜇𝜇􏷟‖} and 𝜇𝜇𝜇􏷟 is a generalization of
bounding the norm of 𝜇𝜇𝜇.

The optimization problem in Eq. . is deliberately posed as a maximization in-
stead of equivalent minimization, due to the consequent min-max form in Eq. ..
Applying the von Neumann generalized minimax theorem [], the problem in Eq. .
can be stated analogously as:

max𝛼𝛼𝛼 − 𝜆𝛼𝛼𝛼𝑇𝛼𝛼𝛼 + 2𝛼𝛼𝛼𝑇yyy + min𝜇𝜇𝜇∈ℳ − 𝜇𝜇𝜇𝑇vvv,

with vvv = (𝛼𝛼𝛼𝑇KKK􏷠𝛼𝛼𝛼,𝛼𝛼𝛼𝑇KKK􏷡𝛼𝛼𝛼, ...𝛼𝛼𝛼𝑇KKK𝑝𝛼𝛼𝛼). This results in a convex optimization problem
as the point-wise maximum preserves convexity. Similarly as to Eq. ., the problem
admits a closed-form solution 𝜇𝜇𝜇 = 𝜇𝜇𝜇􏷟 + 􏸕􏸕􏸕

‖􏸕􏸕􏸕‖ . The regression weights are then obtained

as the solution to the canonical dual Ridge regression problem, 𝛼𝛼𝛼 = (KKK𝜇 + 𝜆III)−􏷠yyy.
Now, as the two parts of the solution are mutually dependent, the authors propose a
simple iterative algorithm that alternatively solves for 𝜇𝜇𝜇 and 𝛼𝛼𝛼, in accordance with the
solutions stated above.

. Gaussian processes

Gaussian processes (GP) are a common name for non-parametric Bayesian regres-
sion []. An advantage over kernel Ridge regression, presented in Section . is a
principled way to treat uncertainty in the model, which depends on the location of
the inputs and the assumed covariance structure. A definition of a GP follows.

Multivariate normal distribution. The domain of a multivariate normal distribution
𝒩 are vectors in an real vector space of finite dimension ℝ𝑛. It is parametrized by two
sets of parameters: the mean vector mmm ∈ ℝ𝑛 and a positive semi-definite covariance

  Kernel methods M. Stražar

matrix KKK ∈ ℝ𝑛×𝑛
++ . Any kernel is a valid covariance function and can be used to

compute KKK.

Gaussian process. A Gaussian Process is set of real number variables, any finite num-
ber of which are jointly distributed according to a multivariate normal (Gaussian)
distribution.

As before, let 𝒟 = {xxx􏷠, xxx􏷡, ..., xxx𝑛} be a set of input data points associated with
target (output) values yyy ∈ ℝ𝑛. A kernel function 𝑘 is used in place of the inner
product and determines a kernel matrix KKK. In a GP setting, a latent function 𝑓(xxx)
with covariance function 𝑘 is assumed. A finite sample of values of 𝑓 corresponding
to 𝒟 are represented as fff ∈ ℝ𝑛 and distributed according to a GP:

𝑝(fff|𝒟) = 𝒩 (000,KKK),

where we assume mmm = 000 for later convenience. In practice, this assumption means the
target data is centered. Given the latent values fff, the actual observed values yyy will be
distributed according to another GP:

𝑝(yyy|fff) = 𝒩 (fff, 𝜎􏷡III),
𝑝(yyy|𝒟) = 𝒩 (000,KKK + 𝜎􏷡III).

(.)

In other words, the variables yyy are independent given fff and associated with noise vari-
ance governed by 𝜎􏷡. Here, 𝜎􏷡 plays a similar role as the regularization parameter in
Kernel Ridge Regression. In practice, one is interested in predicting the value 𝑦∗ for an
arbitrary element of the original input space xxx∗. The predictive distribution is inferred
using Bayesian inference and basic linear algebra:

𝑝(𝑦∗|xxx∗, 𝒟 ,yyy) = 𝒩 (𝜇∗, 𝜎􏷡
∗)

= 𝒩 (kkk𝑇
∗ (KKK + 𝜎􏷡III)−􏷠yyy, 𝑘(xxx∗, xxx∗) − kkk𝑇

∗ (KKK + 𝜎􏷡III)−􏷠kkk∗ + 𝜎􏷡),

where the vector kkk∗ represents the evaluation of the kernel function between the new
input point xxx∗ and the training data kkk∗ = (𝑘(xxx􏷠, xxx∗), 𝑘(xxx􏷡, xxx∗), ..., 𝑘(xxx𝑛, xxx∗)). The
input data is again accessed solely through the evaluations of the kernel and the main
computational burdens are the computation and inversion of the kernel matrix with
complexities 𝑂(𝑛􏷡) and 𝑂(𝑛􏷢), respectively.

Low-rank kernel approximation 

Samples from Gaussian Processes where the covariance structure is defined by differ-
ent kernels is shown on Figure .. Note how different hyperparameters influence the
shape of the sampled functions 𝑓. For instance, in the case of exponentiated-quadratic
covariance, the parameter 𝛾 governs the length scale, which can be interpreted as the
frequency content of the signal. The parameter 𝜈 of the Matérn kernel induces jagged
functions for small values and increasingly smooth functions for large values. Finally,
for the polynomial kernel the degree parameter determines the degree of the polyno-
mials.

−10 0 10

−3

−2

−1

0

1

2

y

kexp(γ=0.03)

−10 0 10

−3

−2

−1

0

1

2

kexp(γ=0.10)

−10 0 10

−3

−2

−1

0

1

2

kexp(γ=0.30)

−10 0 10
−3

−2

−1

0

1

2

y

kmat(ν=0.50)

−10 0 10

−2

−1

0

1

2

kmat(ν=1.50)

−10 0 10

−3

−2

−1

0

1

2

kmat(ν=2.50)

−10 0 10
x

−20

−10

0

10

20

y

kpoly(D=1)

−10 0 10
x

−125

−100

−75

−50

−25

0

kpoly(D=2)

−10 0 10
x

−2000

−1000

0

1000

2000

kpoly(D=3)
Figure .
Samples from Gaussian
processes with covariance
structure defined by
exponentiated-quadratic,
Matérn and polynomial
kernel for different values
of hyperparameters. With
polynomial kernel of
degree 𝐷 = 􏷪, the linear
kernel is recovered. The
noise parameter 𝜎􏷫 is set to
, so the observed values 􏸲􏸲􏸲
are equal to latent function
values 􏸟􏸟􏸟.

  Kernel methods M. Stražar

. Kernel matrix approximations

The kernel-based models and related algorithms are naturally bounded by the quadratic
complexity in the number of data points and usually assume the computation of the
kernel matrix. This property is severely limiting the applicability of kernel methods
on large datasets. The methods in approximate kernel learning can very broadly be
classified in approximations of the kernel function and approximation of the kernel matrix
and share a common goal in achieving linear complexity in the number of data points.

In this section, we assume a data set of 𝑛 data points 𝒟 = {xxx􏷠, xxx􏷡, ..., xxx𝑛}. A kernel
𝑘 generates the kernel matrix KKK ∈ ℝ𝑛×𝑛. Note that in order to achieve sub-quadratic
complexity, KKK should not be computed in its entirety. Instead, different approxi-
mation schemes compute an approximation to KKK, commonly preserving properties
related to the actual machine learning task. By definition, KKK is a symmetric, positive
semi-definite matrix. Consequently, there exist infinitely many factors GGG of KKK, i.e.
KKK = GGGGGG𝑇 . Approximations to the kernel matrix typically involve a low-rank matrix
GGG ∈ ℝ𝑛×𝑟 where the rank 𝑟 < 𝑛 is usually chosen based on practical constraints.

The following methods are based on a subset of the original data points, referred to
as the active set (inducing set, inducing inputs, pivots):

𝒜 ⊂ {1, 2, ..., 𝑛} and |𝒜 | = 𝑟.

The selection of 𝒜 critically influences both the approximation accuracy and perfor-
mance of the downstream models. It is important to note that the inducing points
need not be exact instances selected from 𝒟 , but can be arbitrary points in the corre-
sponding space. The methods able to optimize inducing points over the whole domain
pose additional assumption on the kernels and are not the treated later in the text.

The methods below will result in the same approximation LLL = GGGGGG𝑇 for the same
set 𝒜 and differ only in the way inducing points are selected. This is guaranteed by
the lemma on the uniqueness of the kernel approximation for a fixed active set:

Proposition. There exists a unique matrix LLL that is (i) symmetric, (ii) has the column
space spanned by KKK(∶, 𝒜) and (iii) LLL(∶, 𝒜) = KKK(∶, 𝒜). The proof can be found in
Bach and Jordan [], Proposition .

The Nyström method. In principle, the Nyström method provides a basic kernel
approximation without specifying the way of selecting the active set 𝒜 (Rasmussen

Low-rank kernel approximation 

[], ch. ). Given a fixed 𝒜 the kernel matrix approximation LLL is obtained as:

LLL = KKK(∶, 𝒜)KKK(𝒜 , 𝒜)−􏷠KKK(∶, 𝒜). (.)

Here, LLL represents a projection of values of the kernel to the subspace spanned by the
vectors in the 𝑛 × 𝑟 submatrix KKK(∶, 𝒜), with the active set submatrix approximated
exactly LLL(𝒜 , 𝒜) = KKK(𝒜 , 𝒜). The active set 𝒜 can be either selected randomly or
optimized with respect to the target task.

Recent developments select 𝒜 based on leverage scores []. The leverage scores
ℓℓℓ ∈ ℝ𝑛 provide an importance sampling distribution for creating random low-rank
approximations (sketches) of KKK:

ℓℓℓ(𝜆) = diag(KKK(KKK + 𝜆III)−􏷠).

This definition can be interpreted as follows: as 𝜆 → 0, the scores are equal for all 𝑖.
Otherwise, as 𝜆 → ∞, the leverage scores are proportional toKKK(𝑖, 𝑖) = 𝑘(xxx𝑖, xxx𝑖) = ‖𝜙(xxx𝑖)‖􏷡

where 𝜙 is a mapping to the Hilbert space defined in Section .. In other words, the
points are scored in proportion to the norm in the implicit inner product space in-
duced by the kernel. The leverage scores are approximated via another random sketch
of KKK, which is selected such that LLL = GGGGGG𝑇 and the active set is selected randomly,

ℓ̂̂ℓ̂ℓ(𝜆) = diag(GGG(GGG𝑇GGG + 𝑛𝜆III)−􏷠GGG𝑇). (.)

It can be observed that the applicability of ℓℓℓ is limited to inner product spaces
where points can have different norms (e.g. induced by linear or polynomial kernel),
while they will be equal for exponentiated-quadratic kernel as 𝑘exp(xxx𝑖, xxx𝑖) = 1 for all
xxx𝑖. Additionally, the approximate leverage scores will be biased towards points that
were selected for the initial matrix sketch GGG. Many alternative selection methods exist
and are based on approximating the distribution of inducing points. Recently, it was
suggested that inducing points can be initialized via the Kmeans++ initialization algo-
rithm proposed by Oglic and Gärtner [], where the inducing points need not be in
𝒟 . Empirically, this method yielded very similar results to the approximate leverage
scores and improved performance on three out of five datasets for a moderate increase
in time (see ref []). Next, we present two iterative, greedy approaches based on an
alternative matrix decomposition.

  Kernel methods M. Stražar

Incomplete Cholesky decomposition (ICD). A natural iterative approach to compute
approximations to symmetric semi-definite matrices is the Cholesky decomposition,
which computes a triangular matrix approximation to KKK and therefore presents an
efficient way to solve linear systems. The Incomplete Cholesky decomposition employs
an efficient selection of pivot columns and stops after a predetermined number of
iterations, which is equal to the target approximation rank.

A kernel matrix KKK is approximated with a low-rank Cholesky factor GGG. The ICD
is a family of methods that produce a finite sequence of matrices GGG􏷠,GGG􏷡, ...,GGG𝑟, such
that GGG𝑟GGG𝑇

𝑟 → KKK as 𝑟 → 𝑛
Initially, GGG is set to 000. A diagonal vector representing the lower-bound on the ap-

proximation gain is initialized as ddd = diag(KKK) and the active set 𝒜 = ∅, keeping track
of selected pivot columns. At iteration 𝑗, a pivot 𝑖 is selected from the remaining set
𝒥 = {1, 2, ..., 𝑛} ⧵ 𝒜 and its pivot column GGG(∶, 𝑗) ← ggg𝑖 is computed as

GGG(𝑖, 𝑗) = 􏽮ddd(𝑖),

GGG(𝒥 , 𝑗) = 1
GGG(𝑖, 𝑗)

􏿵KKK(𝒥 , 𝑖) −
𝑗−􏷠
􏾜
𝑡=􏷠

GGG(𝒥 , 𝑡)GGG(𝑖, 𝑡)􏿸.
(.)

A pivot 𝑖 is selected in each iteration according to the maximal value in ddd. The
pivot columns GGG(∶, 𝑗) can also be seen as evaluations of basis functions when treated as
a function 𝑘(xxx𝑖, ⋅) with fixed xxx𝑖. Importantly, only the information on one column
of KKK is required at each iteration and GGGGGG𝑇 need never be computed explicitly. The
selected pivot is added to the active set, and the counter 𝑗 and the diagonal vector are
updated:

ddd ← ddd − ggg􏷡
𝑖 ,

𝒜 ← 𝒜 ∪ {𝑖},
𝑗 ← 𝑗 + 1.

The selection of pivots can be optimized further in scenarios with a target task, e.g.
linear regression. This type of improvement is presented next.

Cholesky with side-information (CSI). A supervised version of the ICD method,
where the corresponding target values yyy ∈ ℝ𝑛 are assumed []. The method is based

Low-rank kernel approximation 

on the ICD, except for the way pivot columns are selected. The global objective func-
tion 𝐽 to be minimized is defined as:

𝐽(GGG) = 𝜅􏷠‖KKK − GGGGGG𝑇 ‖􏷠 + 𝜅􏷡 min􏸖􏸖􏸖∈ℝ𝑟 ‖yyy − GGGwww‖.

The gradient of 𝐽 is naturally split into two parts, the gain with respect to the approx-
imation error (computed exactly as in ICD) and the gain with respect to the target
values yyy, where the trade-off is controlled by the parameters 𝜅􏷠 and 𝜅􏷡. The gains are
computed efficiently with look-ahead decompositions, where an additional sketch of
the kernel matrix is used to evaluate the gains of each potential pivot column.

The principal advantage of kernel matrix approximations is the independence of any
particular kernel function as the data is always accessed only through the values of the
kernel. Hence, these are the most general methods applicable to any valid kernel. In
the same vein, the resulting approximations are not always optimal as a predefined set
of kernels and hyperparameters must be specified.

. Kernel-specific approximations

Since the primary interest of this work is the approximation of the kernel matrix, we
present details of approximation of kernel functions in Appendix B... Briefly, works
in kernel-specific approximation tend to focus on translation-invariant kernels, that
can be written as a function of one argument (e.g. the difference between data points).
A natural idea then is to generate an explicit form of feature map with the kernel equal
to the corresponding inner product. This can be achieved with using the basis function
decomposition, such as the Fourier transform.

Approximate multiple kernel
learning



  Approximate multiple kernel learning M. Stražar

The related work in kernel learning, presented in Chapter  and Appendix B.., sel-
dom focuses on simultaneous approximation of multiple kernel matrices. In particular,
the related work does not address the following concerns, which we address with the
Mklaren algorithm.

The kernel matrix approximation methods, such as Incomplete Cholesky De-
composition, Cholesky with Side Information or the Nyström method, allow
for a custom basis function selection criterion for one kernel, but the existing
criteria do not address a multiple kernel scenario.

The range (column space) of a sum of the kernel matrices is equivalent to the
range of the concatenation of their respective implicit feature spaces. However,
it is easy to show that this does not hold if a kernel matrix approximation based
on inducing points is used. This means that multiple kernel-aware methods are
needed.

The feature selection methods in classic linear regression assume access to all
possible basis functions. This is not feasible in approximate kernel learning,
as the former aims to achieve sub-quadratic complexity. A trade-off between
optimality and computation is required.

The currently most time-efficient methods are approximations of certain classes
of kernel functions. Significant limitations are posed on both the kernels and
input data (e.g. translation invariance and continuous input spaces). This limits
applications, for example in bioinformatics using string kernels.

In this section, we present a kernel matrix factorization algorithm, where the input
data are accessed only through the kernels, yielding multiple kernel matrices. The cen-
tral idea builds on orthogonality in the Least-angle regression (LAR; Appendix B..),
which is used to select the basis functions in an attempt to maximize the predictive
accuracy of the resulting model. Again, the principal motivation to develop a simul-
taneous approximation of multiple kernel matrices is the increased model capacity
compared to classic matrix factorization algorithms.

We start by presenting the design and the technical details of the Mklaren model and
algorithm, which rely on Incomplete Cholesky Decomposition (Section .), multi-
ple kernel learning (Section .) and Least-angle regression. Technical derivations

Low-rank kernel approximation 

cover out-of-sample prediction (Section .), model interpretation using the relation
between primal and dual regression coefficients (Section .), 𝐿􏷡 norm regulariza-
tion (Section .), and computational complexity (Section .). Finally, we explain
the relation between multiple kernel learning and kernel matrix approximation (Sec-
tion .).

. Initial definitions and overview

Let 𝒟 = {xxx􏷠, xxx􏷡, ..., xxx𝑛} be a set of input data points associated with target values
yyy ∈ ℝ𝑛. Let 𝒳􏷠, 𝒳􏷡, ..., 𝒳𝑝 be inner product spaces, each containing {xxx􏷠, xxx􏷡, ..., xxx𝑛}
and endowed with respective kernel functions 𝑘􏷠, 𝑘􏷡, ...𝑘𝑝. The spaces 𝒳􏷠, 𝒳􏷡, ..., 𝒳𝑝
can contain different representations of the same set of objects (e.g. real vector spaces,
discrete vector spaces, discrete character strings, etc.). The kernels 𝑘𝑞 are positive defi-
nite maps from 𝒳𝑞 ×𝒳𝑞 to ℝ. The role of kernels in regression is to determine the co-
variance structure of the output functions 𝑓(xxx) used to approximate yyy given the inputs.
In multiple kernel learning (MKL), the domain of 𝑓 is the union of 𝒳􏷠, 𝒳􏷡, ..., 𝒳𝑝
input spaces.

Evaluating 𝑘𝑞(xxx𝑖, xxx𝑗) for each pairxxx𝑖, xxx𝑗 in the training set determines kernel matrices
KKK𝑞 ∈ ℝ𝑛×𝑛. The goal of a kernel matrix approximation algorithm is to construct the
matrices GGG􏷠,GGG􏷡, ...,GGG𝑝, where GGG𝑞 ∈ ℝ𝑛×𝑟𝑞 and the total rank 𝑟 = ∑𝑞 𝑟𝑞 < 𝑛. The
given target values or any other additional information can be exploited to focus on
the parts of the input space that are relevant to the task at hand.

The Mklaren algorithm simultaneously learns low-rank approximations of kernel
matrices KKK𝑞 associated to kernels 𝑘𝑞 based on active sets 𝒜𝑞 — subsets of training
points of cardinality |𝒜𝑞| = 𝑟𝑞. Incomplete Cholesky decomposition (ICD) is used
to selectively update some of the GGG𝑞 and the regression estimate fff ∈ ℝ𝑛. At each
step, a kernel 𝑘𝑞 and an inducing point (pivot) xxx𝑖 are chosen based on a heuristic that
evaluates the explained information on the current residual (error) eee = yyy − fff. This is
achieved with the least-angle regression strategy in the space spanned by the current
approximations GGG𝑞 and computed in time 𝑂(𝑛𝑟􏷡) per step. Finally, the coefficients of
a general function estimator ̂𝑓(xxx) are inferred to predict the output of any point in the
input space.

The high-level pseudo code of the Mklaren algorithm is given in Algorithm , and
its steps are described in detail in the following subsections. Further implications of
simultaneous approximation of multiple kernels are discussed in Section ..

  Approximate multiple kernel learning M. Stražar

. Simultaneous Incomplete Cholesky decompositions

Recall the description of Incomplete Cholesky decomposition (ICD) of a single kernel
matrix .. In case of 𝑝 kernels, each kernel function 𝑘𝑞, 𝑞 ∈ 1, 2, ..., 𝑝 determines
a corresponding KKK𝑞, which is approximated with Cholesky factors GGG𝑞. An example
scenario is depicted in Fig. .. The set of all Cholesky factors GGG𝑞 is used to construct a
combined feature matrix as follows. In each step, we assume the existence of a regression
estimate fff ∈ ℝ𝑛, initially set to 000, and the residual eee = yyy − fff.

Figure .
Overview of variables in-
cluded in the hypothetical
model using three kernels,
𝑞 ∈ {􏷪, 􏷫, 􏷬}. Kernel ma-
trices in dashed values are
never computed explicitly.
The markers circle, rectangle
and triangle represent the
selected pivot columns
for kernels 􏷪, 􏷫 and 􏷬,
respectively.

x
1

x
2

.

.

.

.

.

x
n

k
1
(x, x’)

d
at

a
ob

je
ct

s

k
2
(x, x’)

k
p
(x, x’)

K
1

K
2

K
3

G
1

G
2

G
3

kernel
functions

kernel
matrices

Cholesky
factors

centering and
normalization

combined
feature space

h
q,i

= s
q,i

Pg
q,i

/ ||Pg
q,i
||

H

h(1) h(r)

As least-angle regression is defined for centered and scaled data, this condition has
to be ensured for the basis functions in out approximation. For each selected pivot
column ggg𝑞,𝑖 for kernel 𝑘𝑞, define the centering and scaling transformation:

hhh𝑞,𝑖 ← 𝑠𝑞,𝑖PPPggg𝑞,𝑖/‖PPPggg𝑞,𝑖‖, (.)

where the operator PPP is the centering projection PPP = (III− 􏷠􏷠􏷠􏷠􏷠􏷠𝑇

𝑛) and 𝑠𝑞,𝑖 is the sign of the
correlation (PPPggg𝑖)𝑇eee. Each hhh𝑞,𝑖 is normalized and makes an angle of at most  degrees
with the residual eee. The set of columns hhh𝑞,𝑖 span the combined feature space, equivalent
to any matrix HHH ∈ ℝ𝑛×𝑟 containing this same set of columns (in any order):

Low-rank kernel approximation 

span(HHH) = span􏿴{hhh􏷠,􏷠,hhh􏷠,􏷡...,hhh􏷠,𝑟􏷪 ,hhh􏷡,􏷠, ...,hhh􏷡,𝑟􏷫 ,hhh𝑝,􏷠, ...,hhh𝑝,𝑟𝑝 }􏿷. (.)

Applying the operator PPP is equivalent to centering the positive semi-definite matrix
HHHHHH𝑇 — the approximation of the combined Gram matrix — and is used for selection
of new pivot columns independent of their respective length.

Least-angle regression is used to iteratively select the next pivot column and thus
determine HHH and update the regression estimate fff. The next kernel 𝑞 and pivot 𝑗 are
selected from all remaining sets 𝒥𝑞, based on the current residual eee = yyy − fff. The
corresponding pivot column ggg𝑞,𝑖 is computed using the Cholesky step in Eq. . and
added to GGG𝑞. At any iteration, each GGG𝑞 may contain a different number of columns 𝑟𝑞
as the selection depends on the relevance of 𝑘𝑞 for explaining the residual.

. Pivot selection based on Least-angle regression

Least-angle regression (LAR) is an active set-based feature selection in linear regression
(see Appendix and Efron and Hastie [] for a thorough description). Here, we pro-
pose an idea based on the LAR column selection to determine the next pivot column
to be added to any of the GGG𝑞 and consequently to combined feature matrix HHH.

The original LAR method assumes availability of all variables representing the co-
variates (feature vectors) in the sample data matrix. In our case, however, this matrix
is HHH and is constructed iteratively. The adaptation of the LAR-based column selection
is non-trivial since the exact values of the new columns ggg𝑞,𝑖 and hhh𝑞,𝑖 are unknown at
the time of selection. This section describes a method to construct HHH given the columns
hhh𝑞,𝑖 and learn fff ∈ span(HHH). In favor of clarity we assume (only in this section) that
the values of all hhh𝑞,𝑖 are known and describe the ordering of hhh𝑞,𝑖 in HHH. The problem
of unknown candidate pivot column values is postponed to Section ..

The matrix HHH is initialized to 000. The regression estimate fff and the residual eee are
initialized as

fff = 000 and eee = yyy, assuming w.l.g. 111𝑇yyy = 0. (.)

By construction, ‖hhh𝑞,𝑖‖ = 1 and 111𝑇hhh𝑞,𝑖 = 0 for all 𝑞, 𝑖. The hhh𝑞,𝑖 will be added to HHH in
a defined order

HHH(∶, 𝑡) ← hhh𝑞,𝑖 = hhh(𝑡) for 𝑡 = 1, 2, ..., 𝑟,

  Approximate multiple kernel learning M. Stražar

where a unique kernel, pivot pair 𝑞, 𝑖 is selected for each position 𝑡. The ordering de-
pends on the correlation with the residual 𝑐𝑡 = eee𝑇hhh(𝑡). Therefore, Cholesky factors GGG𝑞
containing pivot columns with more information on the current residual are preferably
selected.

The column selection procedure is depicted in Fig. .a and is defined as follows.
At iteration 𝑡 = 1 the first vector is chosen to maximize correlation

max{𝑚∈􏷠,􏷡,...,𝑟} 𝑐𝑚 = eee𝑇hhh(𝑚).

This hhh(𝑚) is then added to HHH(∶, 1) = hhh(𝑚). At each iteration 𝑡, HHH contains 𝑡 columns.
There exist the bisector uuu, having ‖uuu‖ = 1 and making equal angles, less than 
degrees, between the residual eee and vectors currently in HHH. Updating the regression
estimate fff along direction uuu and the residual eee:

fffnew = fff + 𝛾uuu, eeenew = eee − 𝛾uuu, (.)

causes the correlations 𝑐𝑡 = eee𝑇hhh(𝑡) to change equally for all hhh(𝑡) in HHH, for an arbitrary
step size 𝛾 ∈ ℝ. The value 𝛾 is set such that some new column hhh(𝑡+􏷠) not in HHH will
have the same correlation with eeenew as all the columns already in HHH:

∡(eeenew,hhh(􏷠)) = ... = ∡(eeenew,hhh(𝑡)) = ∡(eeenew,hhh(𝑡+􏷠)).

The step size 𝛾 and hhh(𝑡+􏷠) are selected as follows. Define the following quantities

𝐶 = max{𝑡|ℎ(𝑡)∈􏹙􏹙􏹙} 𝑐𝑡 𝐴 = (111𝑇HHH111)−􏷠/􏷡.

Then,

𝛾 = min+
{𝑚|􏸇􏸇􏸇(𝑚)∉􏹙􏹙􏹙} 􏿻

𝐶 − 𝑐𝑚
𝐴 − 𝑎𝑚

, 𝐶 + 𝑐𝑚
𝐴 + 𝑎𝑚

􏿾, where

𝑐𝑚 = eee𝑇hhh(𝑚)

𝑎𝑚 = uuu𝑇hhh(𝑚).

(.)

Here, min+ is the minimum over positive arguments for each choice of 𝑚. The selected
column vector hhh(𝑚) is the minimizer of Eq. . and is inserted at HHH(∶, 𝑡 + 1) = hhh(𝑚).
For the last column vector (as there are no further column vectors to chose from) the
step size simplifies to 𝛾 = 𝐶/𝐴, yielding the least-squares solution for HHH and yyy.

Low-rank kernel approximation 

The mentioned problem in our case is that the exact values of all potential pivot
columns ggg𝑞,𝑖 not in GGG𝑞 and its corresponding hhh𝑞,𝑖 are unknown. Explicit calculation of
all columns using the Cholesky step in Eq. . would yield quadratic computational
complexity in 𝑛, as their values depend on all previously selected pivots. The issue is
addressed by using approximations ĝgg𝑞,𝑖 and ĥhh𝑞,𝑖 that are less expensive to compute, as
described in the following section.

span(H)

h(1)

h(2)

u

eh(3)

u

e-u
A
= enew

G
q

r
q δ

a)

b)

Figure .
a) Updating the regres-
sion estimate within the
combined feature matrix
􏹳􏹳􏹳 containing two vec-
tors 􏸡􏸡􏸡(􏷪) and 􏸡􏸡􏸡(􏷫) . The
residual is 􏸞􏸞􏸞 = 􏸲􏸲􏸲 − 􏸟􏸟􏸟,
where 􏸟􏸟􏸟 ∈ span{􏸡􏸡􏸡(􏷪)} and
∡(􏸞􏸞􏸞,􏸡􏸡􏸡(􏷫)) = ∡(􏸞􏸞􏸞,􏸡􏸡􏸡(􏷪)).
The new residual 􏸞􏸞􏸞new

upon selection of 􏸡􏸡􏸡(􏷫) is
obtained by adding 𝛾􏸮􏸮􏸮 to
􏸟􏸟􏸟 and updating 􏸞􏸞􏸞 accord-
ingly. The step size 𝛾 is
increased until some new
vector 􏸡􏸡􏸡(􏷬) has the same
correlation (angle) with
􏸞􏸞􏸞new as both 􏸡􏸡􏸡(􏷪) and 􏸡􏸡􏸡(􏷫) ,
i.e., ∡(􏸞􏸞􏸞new ,􏸡􏸡􏸡(􏷬)) =
∡(􏸞􏸞􏸞new ,􏸡􏸡􏸡(􏷫)) =
∡(􏸞􏸞􏸞new ,􏸡􏸡􏸡(􏷪)). b) Schematic
representation of selected
𝑟𝑞 pivot columns and 𝛿
look-ahead columns.

. Look-ahead decompositions

The selection of a new column vector hhh(𝑚) to be added to the combined feature ma-
trix HHH and its corresponding hhh𝑞,𝑖, ggg𝑞,𝑖 is based only on the values 𝑎𝑚, 𝑐𝑚 in Eq. ..

  Approximate multiple kernel learning M. Stražar

Instead of explicitly calculating each candidate ggg𝑞,𝑖 for all 𝑞, 𝑖 at each iteration, we use
an approximate column vector ĝgg𝑞,𝑖. The approach uses a similar idea to look-ahead
columns and is based on selecting 𝛿 look-ahead pivot columns, spanning a look-ahead
approximation to the full kernel matrix [, ]. As it will be clear from the description
below, increasing 𝛿 monotonically increases the (look-ahead) approximation accuracy
and is limited only by the available computational resources. See Section . for more
discussion.

By definition of ICD in Eq. ., the values of a candidate pivot column ggg𝑞,𝑖 at step
𝑗 = 𝑟𝑞 and pivot 𝑖 ∉ 𝒜𝑞 are:

ggg𝑞,𝑖 =
(KKK𝑞 − ∑𝑟𝑞−􏷠

𝑡=􏷠 GGG𝑞(∶, 𝑡)GGG𝑞(∶, 𝑡)𝑇)(∶, 𝑖)

􏽯ddd𝑞(𝑖)
.

The main computational cost is the computation of a rank 𝑛 kernel matrix KKK𝑞. Instead,
𝛿 look-ahead columns define a look-ahead approximationLLL𝑞 = GGG𝑞(∶, 𝑟𝑞 + 𝛿)GGG𝑞(∶, 𝑟𝑞 + 𝛿)𝑇 ,
depicted in Fig. .b. This defines approximate values ĝgg𝑞,𝑖:

ĝgg𝑞,𝑖 =
(LLL𝑞 − ∑𝑟𝑞−􏷠

𝑡=􏷠 GGG𝑞(∶, 𝑡)GGG𝑞(∶, 𝑡)𝑇)(∶, 𝑖)

􏽯ddd𝑞(𝑖)
=

=
GGG𝑞(∶, 𝑟𝑞+1∶𝑟𝑞+𝛿) GGG𝑇

𝑞 (𝑟𝑞+1∶𝑟𝑞+𝛿, 𝑖)

􏽯ddd𝑞(𝑖)
.

(.)

Given ĝgg𝑞,𝑖 and consequently ĥhh𝑞,𝑖, consider the computation of approximate 𝑐̂𝑞,𝑖:

𝑐̂𝑞,𝑖 = eee𝑇ĥhh𝑞,𝑖 =
|(PPPĝgg𝑞,𝑖)

𝑇eee|
‖PPPĝgg𝑞,𝑖‖

. (.)

Inserting ĝgg𝑞,𝑖 as in Eq. ., the denominator 1/􏽯ddd𝑞(𝑖) cancels out. The norm ‖PPPĝgg𝑞,𝑖‖
can be computed as:

‖PPPĝgg𝑞,𝑖‖
􏷡 = ‖PPP GGG𝑞(∶, 𝑟𝑞+1∶𝑟𝑞+𝛿) GGG𝑇

𝑞 (𝑟𝑞+1∶𝑟𝑞+𝛿, 𝑖)‖􏷡 =

= GGG𝑞(𝑖, ∶)􏿵GGG𝑇
𝑞 GGG𝑞(𝑟𝑞+􏷠∶𝑟𝑞+𝛿, 𝑟𝑞+􏷠∶𝑟𝑞+𝛿) − GGG𝑇

𝑞 111111𝑇GGG𝑞(𝑟𝑞+􏷠∶𝑟𝑞+𝛿, 𝑟𝑞+􏷠∶𝑟𝑞+𝛿)􏿸GGG𝑞(𝑖, ∶)𝑇 .

Low-rank kernel approximation 

Similarly, dot product with the residual is computed as:

(PPPĝgg𝑞,𝑖)
𝑇eee = eee𝑇 􏿵PPP GGG𝑞(∶, 𝑟𝑞+1∶𝑟𝑞+𝛿)GGG𝑇

𝑞 (𝑟𝑞+1∶𝑟𝑞+𝛿, 𝑖)􏿸
𝑇

=

= 􏿵eee𝑇GGG𝑞(∶, 𝑟𝑞+1∶𝑟𝑞+𝛿) − eee𝑇111111𝑇GGG𝑞(∶, 𝑟𝑞+1∶𝑟𝑞+𝛿)􏿸GGG𝑞(𝑟𝑞+1∶𝑟𝑞+𝛿, 𝑖).
(.)

Computation of 𝑎̂𝑞,𝑖 is analogous. Correctly ordering the computations yields a com-
putational complexity of 𝑂(𝛿􏷡) per column. Note that matrices GGG𝑇

𝑞 GGG𝑞, GGG𝑇
𝑞 111111𝑇GGG𝑞,

eee𝑇GGG𝑞, eee𝑇111111𝑇GGG𝑞 are the same for all columns (independent of 𝑖) and need to be com-
puted only once per iteration.

The values 𝑎̂𝑞,𝑖 and 𝑐̂𝑞,𝑖 can be computed efficiently for all kernel matrices and enable
the selection of the next kernel, pivot column pair 𝑞, 𝑖 to be added to GGG𝑞 and conse-
quently HHH. After selecting 𝑞, 𝑖 a Cholesky step is performed (Eq. .) to compute the
exact ggg𝑞,𝑖 and

GGG𝑞(∶, 𝑗) ← ggg𝑞,𝑖. (.)

The computation of a new column renders the look-ahead columns in GGG𝑞 at indices
𝑟𝑞+1∶𝑟𝑞+𝛿 invalid. After applying Eq. ., all columns at indices 𝑟𝑞+1∶𝑟𝑞+𝛿 are re-
computed using the standard Cholesky step with pivot selection based on the current
maximal value in ddd𝑞 at a cost 𝑂(𝑛𝛿􏷡). The exact values of ggg𝑞,𝑖 and hhh𝑞,𝑖 determine
hhh(𝑚) to be added to HHH and enables the correct computation of 𝑎𝑚, 𝑐𝑚 and step size
𝛾 in Eq. .. The regression estimate fff and the residual eee can be correctly updated
according to Eq. ..

. The Mklaren algorithm

The steps described in the previous sections complete the Mklaren algorithm (Algo-
rithm ). Given a sample of 𝑛 data points with targets yyy and 𝑝 kernel functions, the
model hyperparameters are: the maximum rank 𝑟 of the combined feature matrix, the
number of look-ahead columns 𝛿 and 𝐿􏷡 norm regularization parameter 𝜆 (constrain-
ing fff, discussed in Section .).

The variables related to regression estimate (fff, residual eee and bisector uuu) and individ-
ual decompositions GGG𝑞 (active sets 𝒜 , column counters 𝑟𝑞) are initialized in lines -.
Each GGG𝑝 is initialized using standard ICD with 𝛿 look-ahead columns, as described in
Section . (line ).

  Approximate multiple kernel learning M. Stražar

The main loop is executed for 𝑟 iterations, until the sum of selected pivot columns
equals ∑𝑞 𝑟𝑞 = 𝑟, where at each iteration a kernel 𝑘𝑞 and a pivot column 𝑖 ∉ 𝒜𝑞
are selected and added to GGG𝑞 and consequently the combined feature matrix HHH. For
each kernel 𝑘𝑞 and each pivot 𝑖 ∉ 𝒜𝑞, 𝑎̂𝑞,𝑖 and 𝑐̂𝑞,𝑖 are computed. Based on these
approximate values, the kernel 𝑘𝑞 and pivot 𝑖 are selected. Given the optimal 𝑘𝑞 and
pivot 𝑖, the pivot column ggg𝑞,𝑖 and hhh𝑞,𝑖 are computed. The new pivot column ggg𝑞,𝑖
is added to GGG𝑞(∶, 𝑟𝑞), 𝑟𝑞 is incremented and the 𝛿 columns at GGG𝑞(∶, 𝑟𝑞+1∶𝑟𝑞+𝛿) are
recomputed using standard ICD (lines -). Having computed the exact ggg𝑞,𝑖, the
true values 𝑎𝑞,𝑖 and 𝑐𝑞,𝑖 can be computed and the regression estimate fff and the residual
eee are updated (lines -).

The regression coefficients www solving for HHHwww = fff and required for out-of-sample
prediction, are obtained by constructing HHH and solving the linear system discussed in
Section . (line ).

. Out-of-sample prediction

The coefficients www ∈ ℝ𝑟 determine a general function estimator ̂𝑓, enabling prediction
for any point in the input space. The values of www are found by solving a simple linear
system relating the combined feature space HHH to training set regression estimate fff:

HHHwww = fff ⟹ www = (RRR𝑇RRR)−􏷠QQQ𝑇fff, (.)

where HHH = QRQRQR is the thin QR decomposition [].
Inference of Cholesky factors for arbitrary data points is possible without explicitly

repeating the Cholesky steps. The domain of ̂𝑓 is the representation of data points in
the combined feature space, constructed in Section ., and is practically defined by
the selected pairs of inducing points and kernels. To simplify notation, we show the
approach assuming one kernel matrix, while the computation with multiple kernels is
analogous.

Let 𝒜 ⊂ {1, 2, ..., 𝑛} be an active set of pivot indices. The proposition in Section .
guarantees that the approximation GGGGGG𝑇 equals the Nyström approximation, given the
same 𝒜 :

LLL = GGGGGG𝑇 = KKK(∶, 𝒜)KKK(𝒜 , 𝒜)−􏷠KKK(∶, 𝒜)𝑇 .

Low-rank kernel approximation 

Algorithm : The Mklaren algorithm pseudocode.
Input:

{xxx􏷠, xxx􏷡, ..., xxx𝑛} set of points in 𝒳 ,
𝑘􏷠, 𝑘􏷡, ...𝑘𝑝 kernel functions on 𝒳 × 𝒳 ,
yyy ∈ ℝ𝑛 regression targets, with 111𝑇yyy = 0,
𝑟 maximum total rank,
𝛿 number of look-ahead columns,
𝜆 regularization parameter.

Result:
GGG􏷠 ∈ ℝ𝑛×𝑟􏷪 ,GGG􏷡 ∈ ℝ𝑛×𝑟􏷫 , ...GGG𝑝 ∈ ℝ𝑛×𝑟𝑝 ,

Cholesky factors,
HHH ∈ ℝ𝑛×𝑟 combined feature space,
𝒜􏷠, 𝒜􏷡, ..., 𝒜𝑝 active sets of pivot indices,
fff ∈ ℝ𝑛 regression estimate on the training set,
www ∈ ℝ𝑟 regression coefficients determining function estimator ̂𝑓.

 Initialize:
 HHH = 000, residual eee = yyy, bisector uuu = 000, regression estimate fff = 000,

active sets 𝒜𝑞 = ∅ and counters 𝑟𝑞 = 0 for 𝑞 ∈ {1, ..., 𝑝} .

 Compute standard Cholesky Decompositions with 𝛿 look-ahead columns for
GGG􏷠,GGG􏷡, ...,GGG𝑝.

 while ∑𝑞 𝑟𝑞 < 𝑟 do

 Compute 𝑎̂𝑞,𝑖 and 𝑐̂𝑞,𝑖 for each kernel 𝑞 and pivot 𝑖 ∉ 𝐴𝑞 (Eq. .)
 Select 𝑞, 𝑖 based on the minimum in Eq. .
 Compute ggg𝑞,𝑖 (Eq. .) and hhh𝑞,𝑖 (Eq. .)
 GGG𝑞(∶, 𝑟𝑞) ← ggg𝑞,𝑖
 HHH(∶, ∑𝑞 𝑟𝑞) ← hhh𝑞,𝑖

 𝑟𝑞 ← 𝑟𝑞 + 1, 𝒜𝑞 ← 𝒜𝑞 ∪ {𝑖}

 Recompute GGG𝑞(∶, 𝑟𝑞+1∶𝑟𝑞+𝛿) using standard ICD

 Compute true 𝑎𝑞,𝑖 and 𝑐𝑞,𝑖 (Eq. .)
 Compute the bisector uuu of columns in HHH except hhh𝑞,𝑖 (Eq. B.)
 Compute 𝛾 for hhh(𝑚) = hhh𝑞,𝑖 (Eq. .) and update
 fff ← fff + 𝛾uuu
 eee ← eee − 𝛾uuu

 Solve linear system HHHwww = fff for www using Eq. ..

  Approximate multiple kernel learning M. Stražar

This relation is used to infer the Cholesky factors for new data. Let KKK∗ be the values
of the kernel function 𝑘(xxx∗, xxx𝑖) evaluated for 𝑛𝑡 data points {xxx∗} and the active set {xxx𝑖},
for 𝑖 ∈ 𝒜 . The Cholesky factors GGG∗ ∈ ℝ𝑛𝑡×𝑟 for test samples {xxx∗} are inferred via the
linear transform TTT = KKK(𝒜 , 𝒜)−􏷠KKK(𝒜 , ∶)GGG(GGG𝑇GGG)−􏷠. That is,

GGG∗GGG𝑇 = KKK∗KKK(𝒜 , 𝒜)−􏷠KKK(𝒜 , ∶)
⟹

GGG∗ = KKK∗KKK(𝒜 , 𝒜)−􏷠KKK(𝒜 , ∶)GGG(GGG𝑇GGG)−􏷠

= KKK∗TTT.

(.)

The matrix TTT ∈ ℝ𝑟×𝑟 is inexpensive to compute and store. The combined feature
matrix HHH∗ ∈ ℝ𝑛𝑡×𝑟 is obtained after centering and normalization as in Eq. . and the
predicted outputs are fff∗ = HHH∗www.

. Computing dual coefficients

Regardless of using kernel approximation, a limited form of model interpretation is
still possible for certain classes of kernels. Again, we show the approach for one kernel
matrix and the combined feature matrix HHH while the computation for multiple ker-
nels is analogous. Kernel Ridge regression is often stated in terms of dual coefficients
𝛼𝛼𝛼 ∈ ℝ𝑛, satisfying the relation:

HHH𝑇𝛼𝛼𝛼 = www.

This is an overdetermined system of equations. The vector 𝛼𝛼𝛼 with minimal norm can
be obtained by solving the following least-norm problem:

minimize ‖𝛼𝛼𝛼‖􏷡

subject to HHH𝑇𝛼𝛼𝛼 = www.

The problem has an analytical solution equal to

𝛼𝛼𝛼 = HHH(HHH𝑇HHH)−􏷠www.

Obtaining dual coefficients 𝛼𝛼𝛼 can be useful if the range of the explicit feature map in-
duced by a kernel 𝑘 is of finite dimension, such that 𝑘(xxx,x ′x ′x ′) = 𝜙(xxx)𝜙(xxx), 𝜙 ∶ 𝒳 ↦ ℝ𝑑,

Low-rank kernel approximation 

which is the case for e.g. linear, polynomial, and various string kernels. The values
of regression coefficients in the range of 𝜙, www𝜙 ∈ ℝ𝑑 are obtained by computing the
matrix 𝜙𝜙𝜙 ∈ ℝ𝑛×𝑑 for the training set and considering

www𝜙 = 𝜙𝜙𝜙𝑇𝛼𝛼𝛼.

Moreover, if the vector 𝛼𝛼𝛼 is sparse, only the relevant portions of 𝜙𝜙𝜙 need to be computed.
This condition can be enforced by using techniques such as matching pursuit when
solving for 𝛼𝛼𝛼 [].

. 𝐿􏷡 norm regularization

Increasing the model bias by bounding the norm ‖www‖ or equivalently ‖fff‖ is realized
as follows. Zou and Hastie [] prove the following lemma, which shows that the 𝐿􏷡-
regularized regression problem can be stated as ordinary least squares using appropriate
augmentation of the data XXX,yyy. The lemma assumes for all 𝑡, ‖XXX(∶, 𝑡)‖ = 1, 111𝑇XXX(∶, 𝑡) =
0 and 111𝑇yyy = 0.

Lemma. Define the augmented data set XXX𝜆, yyy𝜆 to equal

XXX𝜆 = 􏽮(1 + 𝜆)
⎛
⎜⎜⎜⎝

XXX
√𝜆III

⎞
⎟⎟⎟⎠

yyy𝜆 =
⎛
⎜⎜⎜⎝
yyy
000

⎞
⎟⎟⎟⎠ .

The least-squares solution of XXX𝜆www = yyy𝜆 is then equivalent to 𝐿􏷡-regularized solution
of the original problem with data XXX,yyy and regularization parameter 𝜆 (see Eq. B.).

The lemma allows us to define simple modification of the combined feature matrix
in Eq. .:

hhh𝜆
𝑞,𝑖 = PPP

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

PPPggg𝑞,𝑖
0
0
...
𝜆
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

/‖PPP

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

PPPggg𝑞,𝑖
0
0
...
𝜆
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

‖.

  Approximate multiple kernel learning M. Stražar

This definition is now equivalent to performing LAR in augmented space HHH𝜆, re-
sulting in an 𝐿􏷡 regularized solution for fff after 𝑟 steps of the approximation. It is
straightforward to modify Eq. ., and Eq. .-. for hhh𝜆

𝑞,𝑖.

. Computational complexity

The Mklaren algorithm scales linearly both in the number of data points 𝑛 and kernels
𝑝. The computational complexity is

𝑂(𝑛𝛿􏷡 + 𝑟(𝑟􏷡 + 𝑛𝑝𝛿􏷡 + 𝑛𝛿􏷡) + 𝑛𝑟􏷡 + 𝑟􏷢) = 𝑂(𝑟􏷢 + 𝑛𝑟􏷡 + 𝑛𝑝𝑟𝛿􏷡). (.)

The look-ahead Cholesky decompositions are standard Cholesky decompositions with
𝛿 pivots and complexity 𝑂(𝑛𝛿􏷡). The main loop is executed 𝑟 times. The selection of
kernel and pivot pairs includes inverting HHH𝑇

𝐴HHH𝐴 of size 𝑟×𝑟, thus having a complexity
of 𝑂(𝑟􏷢). However, as each step is a rank-one modification to HHH𝑇

𝐴HHH𝐴, the Morrison-
Sherman-Woodbury lemma on matrix inversion can be used to achieve complexity
𝑂(𝑟􏷡) per update []. The computation of correlations with the bisector in Eq. .
and residuals are computed for 𝑝 kernels in 𝑂(𝑛𝑝𝛿􏷡). Recomputation of 𝛿 Cholesky
factors requires standard Cholesky steps of complexity 𝑂(𝑛𝛿􏷡). The computation of
the gradient step and updating the regression estimate is 𝑂(𝑛). The QR decomposition
in Eq. . takes 𝑂(𝑛𝑟􏷡), and the computation of linear transform TTT in Eq. . is
of 𝑂(𝑟􏷢 + 𝑛𝑟􏷡) complexity. The computational complexity bound in Eq. . also
provides natural parameter bounds — for total complexity lower than 𝑂(𝑛􏷡) — which
equal 𝑟 < √𝑛 and 𝛿 <

􏽯
𝑛
𝑟𝑝 .

. A function space view

This section discusses the difference between multiple kernel learning of Mklaren and
approximating the unweighted sum of kernel matrices by inducing point-based ap-
proximation methods. It is well-known that learning with Kernel Ridge Regression
(KRR) with the input of a sum of the kernels (in the dual space) is equivalent to the
concatenation of features induced by the kernel (in the primal space) with regard to
the obtained regression estimates.

A general MKL setting is defined as follows. Given a sample of data pointsxxx􏷠, xxx􏷡, ...xxx𝑛,
and multiple kernels 𝑘􏷠, 𝑘􏷡, ..., 𝑘𝑝 as inner products, the output functions 𝑓 are sam-
pled from a space spanned by

Low-rank kernel approximation 

𝑓 ∈ span{𝑘􏷠(xxx􏷠, ⋅), 𝑘􏷠(xxx􏷡, ⋅), ..., 𝑘􏷠(xxx𝑛, ⋅),
𝑘􏷡(xxx􏷠, ⋅), 𝑘􏷡(xxx􏷡, ⋅), ..., 𝑘􏷡(xxx𝑛, ⋅),
𝑘𝑝(xxx􏷠, ⋅), 𝑘𝑝(xxx􏷡, ⋅), ..., 𝑘𝑝(xxx𝑛, ⋅)} ,

(.)

with 𝑘𝑞(xxx𝑖, ⋅) a basis function of kernel 𝑞 centered at data point xxx𝑖. Evaluating 𝑘𝑞(xxx𝑖, xxx𝑗)
for each kernel 𝑘𝑞 and pair xxx𝑖, xxx𝑗 in the training set gives rise to a 𝑛×𝑛𝑝 design matrix.
Given 𝑛 associated target values 𝑦􏷠, 𝑦􏷡, ..., 𝑦𝑛, a solution to the overdetermined linear
system is the 𝑛𝑝 coefficients of the function estimator ̂𝑓, which in turn defines training
set estimates fff ∈ ℝ𝑛. Note that the same estimates fff are obtained if the basis functions
are sums of the 𝑝 kernels, giving rise to a similar, 𝑛 × 𝑛 linear system. Summing the
kernels in the first case occurs simultaneously with optimizing the coefficients deter-
mining ̂𝑓.

Introducing non-zero prior kernel weights - real number coefficients associated to
each of the 𝑝 kernels - does not effect neither the output function span, nor the optimal
solution ̂𝑓, as it accounts for a simple rescaling of the basis functions listed in Eq. ..
This explains the equivalent performance of KRR regardless of learning the kernel
weights []. By definition, Mklaren selects the basis functions from a subspace of
Eq. ..

The situation is very different when a kernel matrix sum KKK = ∑𝑝
𝑞=􏷠 KKK𝑞 is used

with an inducing point-based approximation (Cholesky, Nyström). Let GGG ∈ ℝ𝑛×𝑟

be a rank-𝑟 approximation of KKK obtained by selecting an active set 𝒜 of size 𝑟 and
constructed using Eq. .. Then, as shown in Section ., the column space of GGG
equals the span of KKK(∶, 𝒜). Consequently, the output functions 𝑓 are sampled from
a space:

𝑓 ∈ span{􏾜
𝑞

𝑘𝑞(xxx𝑖, ⋅), ∀𝑖 ∈ 𝒜 }. (.)

Note that this space does not equal that in Eq. ., and is different in two main
aspects:

evaluating all ∑𝑞 𝑘𝑞(xxx𝑖, xxx𝑗) results in an 𝑛×𝑟 design matrix - an underdetermined
linear system.

  Approximate multiple kernel learning M. Stražar

the basis functions are now not individual kernels centered at input points. In-
stead, they are unweighted sums of all input kernels, centered at inducing points.
Summing the kernels precedes the optimization of ̂𝑓, further restricting the
output function space.

The single (practically unrealistic) exception is the case where 𝑟 = 𝑛 and KKK is exactly
approximated by GGG. These facts motivate an algorithm to select both the basis func-
tions and the corresponding inducing points separately, as multiple kernel learning is
not readily achieved by passing the sum of the kernel matrices to a single kernel matrix
approximation algorithm such as ICD, CSI or Nyström. Moreover, one is then able
to use different kernels in different regions/subsets of the input space.

In practical terms, if the 𝑝 kernels are exponentiated-quadratic kernels with dif-
ferent length scales, each basis function at point xxx𝑖 in Eq. . is constrained to an
unweighted sum of basis function centered at xxx𝑖, forcing the resulting output function
to be distorted by all initial length scales. Clearly, the space in Eq. . contains, but
is in general not equal to the space in Eq. .. The consequences of the differences
in function space spans are investigated experimentally in Section ..

Experiments with Mklaren



  Experiments with Mklaren M. Stražar

This part provides an empirical evaluation of the proposed methods. The selection of
methods and their settings is argued in Section .. Empirical results are provided on
robust inducing point selection (Section .), effect of different function spaces on
one-dimensional time series (Section .), and experiments with discrete input spaces
(Section .). Furthermore, we evaluate the dimensionality of approximations (Sec-
tion .), multiple kernel learning (Section .) and empirical execution time (Sec-
tion .).

. A note on compared methods

All the compared methods are used with Kernel Ridge Regression and are listed in
the order of increasing number of assumptions concerning the used kernels. The ex-
periments in the following subsections were designed to elucidate the differences and
trade-offs in terms of applicability, scalability and prediction error. All the experi-
ments assume a data set with {xxx􏷠, xxx􏷡, ..., xxx𝑛} points in 𝑝 inner product spaces 𝒳𝑞 with
corresponding kernel functions 𝑘𝑞(⋅, ⋅) and real number targets yyy = (𝑦􏷠, 𝑦􏷡, ..., 𝑦𝑛).
The dimension of the resulting approximate feature space is equal to rank 𝑟 < 𝑛 and
is equal for all compared methods.

The methods Mklaren, CSI, ICD and Nyström approximate the kernel matrix us-
ing 𝑟 inducing points defining the basis functions 𝑘𝑞(𝑥𝑖, ⋅). The methods ICD and
Nyström do not consider target values yyy, while CSI uses a matching pursuit-based
heuristic. The ICD selects each inducing point based on a lower-bound on approxi-
mation error gain. A relatively recent version of the Nyström method uses approximate
leverage scores to determine the sampling distribution of inducing points within the
training set. The methods CSI, ICD and Nyström do not assume multiple kernels
as opposed to Mklaren. To implement MKL for the former three methods and en-
sure comparable ranks, we either i) approximate an unweighted sum of all 𝑝 kernels
up to rank 𝑟 or ii) approximate each of the 𝑝 kernels up to rank ⌈ 𝑟

𝑝 ⌉. The versions
using the approach ii) are denoted CSI*, ICD* and Nyström*. All methods in this
paragraph can be seen as discrete optimization; the basis functions are selected from
provided kernels with fixed hyperparameters and the inducing points are constrained
to the training set. No further restrictions are posed on neither the input spaces 𝒳𝑞
nor kernels 𝑘𝑞(⋅, ⋅).

With or matching pursuit, we refer to the approach which chooses the basis functions in a greedy manner
and solves for the full least-squares estimate at each step.

Low-rank kernel approximation 

Random Fourier Features (RFF) approximate the frequency components of the ba-
sis functions. Here, the matching pursuit optimization is used; at each step number of
look-ahead basis functions 𝛿 is used to generate basis functions for 𝑘𝑞, greedily select-
ing the best-aligned basis to the current residual, up to rank 𝑟 []. Multiple kernel
learning is realized by sampling the features from different spectral densities, which are
governed by the bandwidth associated to each kernel. To model non-stationary effects,
we implement the spectral densities recently proposed by Ton et al. [], denoting this
method as RFF-NS. More details on both stationary and non-stationary RFF can be
found in Appendix B...

Sparse Pseudo Input Gaussian Processes (SPGPs) approximate the kernel matrix by
continuous, maximum likelihood optimization. This method explores a space of mod-
els with the largest capacity, as it optimizes both the locations of the inducing points
(in the span of the training set), as well as kernel hyperparameters. Consequently,
it is limited to real vector spaces 𝒳𝑞 = ℝ𝑑 of finite dimension 𝑑 and continuous,
differentiable kernels. The method is described in more detail in Appendix B...

As an empirical lower bound on prediction error, we used the 𝐿􏷡-regularized Kernel
learning (L-KRR), learning both the kernel weights and the regression coefficients
given the full kernel matrix []. To evaluate the ability to learn with multiple kernels
independent of the approximation, we used the MKL methods Align (independently
learned weights for each kernel), AlignF (linear combination) and AlignFC (convex
combination) from Cortes et al. [].

. Robust selection of inducing points

The methods compared in this section are based on selecting inducing points in the
input space 𝒳 , but not necessarily coinciding with the training set. The motivation
to compare the robustness of inducing point selection is based on the premise that
the variance in the data is generated by two different sources: the placement of induc-
ing points and noise. In this section, we explore how difference regimes of variance
affect the selection of inducing points. Even though the Gaussian Processes repre-
sent functions over the whole domain 𝒳 , we require a finite sample of data points
{𝑥􏷠, 𝑥􏷡, ..., 𝑥𝑛} and function evaluations fff ∈ ℝ𝑛 to apply GPs in practice. In the same
way a subset of data is an approximation to the underlying function, the set of in-
ducing points 𝒜 is an approximation to the subset of data {𝑥􏷠, 𝑥􏷡, ..., 𝑥𝑛}, possibly
influenced by regions where fff varies.

  Experiments with Mklaren M. Stražar

We use simulated data and assume the input space to be the real line ℝ. The training
set is composed of 𝑛 = 100 equally-spaced points within an interval [0, 20] and the
exponentiated-quadratic kernel is used as a covariance function (Eq. .). The 𝑟 < 𝑛
true inducing points are sampled without replacement from the training set and define
the active set 𝒜 . The inducing points are sampled in two different regimes, defined
by a discrete probability distribution. The uniform regime assumes an uniform distri-
bution. The biased regime assumes an increasing probability towards higher indices in
𝑥􏷠, 𝑥􏷡, ..., 𝑥𝑛:

𝑃(𝑖 ∈ 𝒜) ∝ ([0, 20]𝑛(𝑖))􏷡,

where [𝑎, 𝑏]𝑛 is an equally-spaced, discrete interval of 𝑛 real numbers from 𝑎 to 𝑏, and
(𝑖) represents its 𝑖-th element. Thus, the inducing points are sampled non-uniformly
within the input region. The resulting rank-deficient kernel matrix LLL is computed as
the Nyström approximation:

LLL = KKK(∶, 𝒜)KKK(𝒜 , 𝒜)−􏷠KKK(𝒜 , ∶).

The target values are sampled from a zero-mean Gaussian Process (GP) with covari-
ance matrix LLL and at input-dependent noise represented by a vector 𝜎𝜎𝜎􏷡 ∈ ℝ𝑛.

yyy ∼ 𝒩 (000,LLL + III𝜎𝜎𝜎􏷡).

The noise vector is also set according to two different regimes:

𝜎􏷡
𝑖 = 1 (the fixed regime).

and

𝜎􏷡
𝑖 = 10[−􏷡,􏷡]𝑛(𝑖) (the increasing regime).

Note that with the increasing regime, noise increases towards the same region in the
input space as does the selection of inducing points with biased sampling regime.

Each inducing point xxx𝑖 determines a Gaussian basis function centered at xxx𝑖 with the
spread governed by 𝛾. This is a particular realization of the function space presented
in Section .. Thus, including any data point in the low-rank approximation of KKK
amounts to adding a corresponding basis function to the current function approxima-
tion ̂𝑓(xxx).

Low-rank kernel approximation 

.. Inducing points location distributions

We evaluate inducing point-based methods Mklaren, CSI, ICD, SPGP, and Nyström
for a fixed setting of rank |𝒜 | = 𝑟 = 5. This value is relatively low, as the most notable
differences between the methods are manifested in the first steps of approximation,
with all methods converging in performance above a certain value of 𝑟 (see Sections .
and . below).

For each combination of 𝛾, sampling and noise regimes, we generate  sample
data sets (vectors yyy). The empirical distribution of inducing points is then compared
to the true distribution. Table . shows the Kullback-Leibler divergence (KL, discrete
entropy) between the true and approximating distributions. The visual comparison of
distributions shown as cumulative histograms for one setting of 𝛾 is shown on Fig. ..

The ordering of methods for different regimes appears consistent for various val-
ues of 𝛾. The main differences are caused by the inducing points sampling regime.
While Mklaren, CSI and SPGP are supervised methods and depend on yyy, the Nys-
tröm method samples roughly uniformly while ICD selects fixed inducing points due
to constant inputs XXX.

With uniform sampling regime, the best performance is expectedly achieved by
the Nyström method, as both the true and the sampling distribution are uniform
(e.g. KL=. for intermediate value 𝛾 = 0.3). Mklaren performs second best for
uniform/fixed regime (KL=.). In the uniform/increasing regime, both Mklaren
and CSI are clearly affected by noise, with Mklaren achieving a slightly better fit on 
out of  cases (Fig. .b).

Unsurprisingly, for the biased sampling regimes, supervised methods Mklaren, CSI
and SPGP perform consistently better than the two unsupervised methods, which is
reflected in lower KL and can be explained by the information on targets improving
inducing point selection. At fixed noise, the inducing point distribution of Mklaren
is closest to the true distribution (Fig. .c). Mklaren performs best in  out of 
tested cases with biased regime. At an extremely short length scales / high frequencies
(𝛾=.), all the information on inducing points is lost in the noise, and the uniform
sampling performed by the Nyström method is the best option. Interestingly, as can
be seen on the cumulative histograms, the SPGP method places the inducing points
uniformly across the input domain regardless of heteroskedasticity and/or biased in-
ducing point placement. This is attributable to the uniform prior on inducing point

  Experiments with Mklaren M. Stražar

Table .
Kullback-Leibler divergence of fitting distributions with low-rank kernel matrix approximation methods. Number of samples
𝑛 = 􏷪􏷩􏷩, rank 𝑟 = 􏷮 and the length scale hyperparameter 𝛾 ∈ {􏷩.􏷪, 􏷩.􏷬, 􏷪, 􏷬} (top to bottom).

Mklaren CSI ICD Nyström SPGP
𝛾 = 0.1

uniform/fixed . . . . .
uniform/increasing . . . . .

biased/fixed . . . . .
biased/increasing . . . . .

𝛾 = 0.3
uniform/fixed . . . . .

uniform/increasing . . . . .
biased/fixed . . . . .

biased/increasing . . . . .

𝛾 = 1.0
uniform/fixed . . . . .

uniform/increasing . . . . .
biased/fixed . . . . .

biased/increasing . . . . .

𝛾 = 3.0
uniform/fixed . . . . .

uniform/increasing . . . . .
biased/fixed . . . . .

biased/increasing . . . . .

locations, which is further discussed below in Section . and Appendix B...
The apparent accuracy of CSI and Mklaren in the biased/increasing regime can

be explained by high function variance in the regions where the inducing points are
also present. This is seen on Fig. .b, where the shift in noise heavily influences
the inducing point selection. However, the shift caused by true change in location

Low-rank kernel approximation 

SPGP

Figure .
Cumulative histograms for
selecting inducing points
(at 𝛾 = 􏷩.􏷬) obtained
with  replicate data
sets. The true cumulative
distribution is shown in
black.

of the inducing points also somewhat contributes to the total shift (Fig. .c). As
seen on Fig. .d, both methods tend to select the inducing points with a significant
bias towards the boundary of the input domain. Finally, the Mklaren fit for the bi-
ased/increasing case (KL=.) is substantially better than that of CSI (KL=.).
In summary, a non-uniform probability of inducing points within the input domain
favours supervised pivot selection methods Mklaren and CSI, with a slight advantage
of Mklaren for noisy data, outperforming CSI in  out of  comparisons.

  Experiments with Mklaren M. Stražar

.. Matching pursuit versus Least-angle regression

To elucidate the differences between heuristics used by Mklaren and CSI, we visualize
the solution paths as an increasing number of inducing points are added to the model.
Both methods are based on a current regression estimate and the gain associated to
each unused inducing point. In both cases, this gain is estimated by means of look-
ahead decompositions. To make the scenarios as comparable as possible, we set the
CSI kernel approximation / fitting trade-off parameter 𝜅􏷫

𝜅􏷪+𝜅􏷫
= 0.99999, allowing

only . of gain to be influenced by kernel approximation.
The subtle difference in gain estimation is in the way the regression estimate is com-

puted. For CSI, the regression estimate at each step is taken to be the full least-squares
solution. Mklaren employs the LAR criterion, where intermediate regression estimates
are more conservative; the information available by including a basis function is used
only up to the point at which there is another, unused basis function equally correlated
with the current residual. This point is illustrated in Fig. .. Observe that once CSI
selects an inducing point, the regression estimate passes almost exactly through that
point - it is the optimal least-squares fit at that iteration. Mklaren, on the other hand,
will not maximally increase the magnitude of the associated basis function, but first
select all the pivots before computing the least-squares fit on the last step.

The choice of the inducing points appears to be more appropriate with the use of the
LAR criterion, particularly in the cases where the locations of the true inducing points
are sampled non-uniformly. Quantitatively, Mklaren achieved a 0.94 ± 0.073 Pearson
correlation with the true signal and 71% ± 15% explained variance (average over 
trials). In comparison, CSI scored 0.75 ± 0.23 Pearson correlation and 50% ± 24%
explained variance. In summary, the conservative selection of inducing points defined
by the LAR criterion can lead to low-rank approximations that are closer to the true
inducing points.

. Time series

To provide intuition on the behaviour of the compared methods, we first show exam-
ples on simple data sets with regularly sampled, one-dimensional inputs. The Appli-
ances energy prediction data set contains time series measurements of temperature in
nine building compartments (labelled 𝑇􏷠-𝑇􏷨). The measurements are recorded at 

https://archive.ics.uci.edu/ml/datasets/Appliances+energy+prediction

https://archive.ics.uci.edu/ml/datasets/Appliances+energy+prediction

Low-rank kernel approximation 

1.2. 3.
1.0

0.5

0.0

0.5

1.0

1.5

O
ut

pu
t s

pa
ce

 (y
)

Mklaren

1.2. 3.
1.0

0.5

0.0

0.5

1.0

1.5
CSI

1.2. 3.
0.5

0.0

0.5

1.0

1.5

2.0

2.5

O
ut

pu
t s

pa
ce

 (y
)

1.2. 3.
0.5

0.0

0.5

1.0

1.5

2.0

2.5

1.2.3.
Input space (x)

0.8
0.6
0.4
0.2
0.0
0.2
0.4
0.6
0.8

O
ut

pu
t s

pa
ce

 (y
)

1.2.3.
Input space (x)

0.8
0.6
0.4
0.2
0.0
0.2
0.4
0.6
0.8

Figure .
Three artificial data sets
(in rows) and correspond-
ing regression estimates
Mklaren (green) and CSI
(red). The functions are
samples from a degenerate
Gaussian Process with
exponentiated-quadratic
covariance and fixed
noise variance. The true
(noiseless) function is
plotted with a dashed
line. Intermediate regres-
sion estimates for ranks
𝑟 = 􏷪, 􏷫, 􏷬 are obtained
by adding a basis function
centered at the inducing
point. The location and
the order of inducing point
selection is marked with
the corresponding number
on the x-axis. Thicker lines
represent later regression
estimates. Note that Mk-
laren only proceeds to the
full least-squares solution
at the last step (for 𝑟 = 􏷬).

minute intervals over  weeks. Each week, beginning with Monday, was treated as a
separate time series of length ; to make the signals comparable across weeks, each
signal 𝑇𝑖 is mapped as 𝑇 ′

𝑖 = 𝑇𝑖 −𝑇out, where 𝑇out represents the corresponding outside
temperature.

Signals were split into training, validation and test sets by assigning each consecutive
time point in a different set. The one-dimensional input space was thus represented
as the time index of each measurement in a week. The training set was used to fit

  Experiments with Mklaren M. Stražar

the data on a) exponentiated-quadratic kernels (Eq. .) with the hyperparameter 𝛾
in {10−􏷣, 10−􏷡, 1, 10􏷡, 10􏷣} and b) the Matérn / kernel (Eq. .) with the length
scale hyperparameter assuming equivalent values. The validation set was used to tune
the regularization hyperparameter 𝜆 within {0, 10−􏷠, 10−􏷟.􏷤, 1, 10􏷟.􏷤, 10􏷠}. The look-
ahead parameter for Mklaren, CSI, RFF and RFF-NS was set to 𝛿 = 10, while rank
was set to the number of days in a week (𝑟 = 7). The performance evaluation metric
was the average root mean-squared error (RMSE) on the test sets, averaged over 
signals (weeks).

Summarized results over the nine data sets are shown in Table .. Unsurprisingly,
supervised methods selecting components from different length scales — Mklaren,
SPGP, RFF and RFF-NS — performed best. The difference between Mklaren and the
kernel matrix approximations ICD, CSI and Nyström are statistically significant at
𝑃 < 0.05 (Friedman rank test, Fig ., ref. []). With the exponentiated-quadratic
kernel, Mklaren performed best in  out of  data sets, and  out of  cases with
the Matérn kernel. With both kernels and on all time series, Mklaren outperformed
the kernel matrix approximation methods ICD, CSI and Nyström. The supervised
method CSI expectedly outperformed unsupervised ICD and Nyström.

Surprisingly, Mklaren slightly outperformed SPGP, which is the most flexible of the
methods as the inducing point locations can be optimized in a continuous manner.
However, as Mklaren imposes no prior on inducing point locations, it can sometimes
appear more flexible by placing the inducing points non-uniformly, while SPGP will
favour uniform placement (see Appendix B..). This is again confirmed on Fig. .,
which highlights the differences in output function spaces generated by each of the
approximation methods.

Low-rank approximations of a single kernel matrix (unweighted sum of kernel ma-
trices) — CSI, ICD and Nyström — all suffer from the same effect: the basis functions
are sums of basis functions at individual length scales. This results in a combination of
low- and high- frequency signals, caused by summing the kernels prior to kernel matrix
approximation (Eq. ., Section .). Constraining the output function space in
this way expectedly leads to sub-optimal performance, regardless of the supervised se-
lection of the inducing input points. Conversely, Mklaren selected the basis functions
and kernels from a larger function space (Eq. ., Section .).

Most similar to Mklaren, the basis functions defined by RFF were also sampled from
functions with defined length scales, which are approximated with periodic compo-

Low-rank kernel approximation 

Table .
RMSE on time series models with the exponentiated-quadratic and Matérn kernels for data sets with temperature measure-
ments in nine building compartments (𝑇􏷪-𝑇􏷲). The best score for each compartment is shown in red.

𝑘exp Mklaren CSI ICD Nyström RFF RFF-NS SPGP
𝑇􏷠 .±. .±. .±. .±. .±. .±. .±.
𝑇􏷡 .±. .±. .±. .±. .±. .±. .±.
𝑇􏷢 .±. .±. .±. .±. .±. .±. .±.
𝑇􏷣 .±. .±. .±. .±. .±. .±. .±.
𝑇􏷤 .±. .±. .±. .±. .±. .±. .±.
𝑇􏷥 .±. .±. .±. .±. .±. .±. .±.
𝑇􏷦 .±. .±. .±. .±. .±. .±. .±.
𝑇􏷧 .±. .±. .±. .±. .±. .±. .±.
𝑇􏷨 .±. .±. .±. .±. .±. .±. .±.

𝑘Mat,/

𝑇􏷠 .±. .±. .±. .±. - - .±.
𝑇􏷡 .±. .±. .±. .±. - - .±.
𝑇􏷢 .±. .±. .±. .±. - - .±.
𝑇􏷣 .±. .±. .±. .±. - - .±.
𝑇􏷤 .±. .±. .±. .±. - - .±.
𝑇􏷥 .±. .±. .±. .±. - - .±.
𝑇􏷦 .±. .±. .±. .±. - - .±.
𝑇􏷧 .±. .±. .±. .±. - - .±.
𝑇􏷨 .±. .±. .±. .±. - - .±.

nents rather than inducing points. This way, Mklaren is able to model data dependen-
cies at different length scales in regions of the input space defined by inducing points,
which is not possible by the stationary RFF. The improved performance by Mklaren
is most likely attributable to direct exploitation of the target signal, rather than the
two-step approach of initially generating random features and subsequently selecting
them using matching pursuit.

The non-stationary RFF-NS, somewhat unexpectedly, performed slightly worse
than stationary RFF. We speculate that this can be attributed to the specific way the
optimization is implemented; as both approaches sample periodic basis functions and

  Experiments with Mklaren M. Stražar

Figure .
Critical distance dia-
grams, displaying average
rankings accross data sets
in Table . at signifi-
cance level 𝑃 < 􏷩.􏷩􏷮.
a) Exponentiated-quadratic
kernel. b) Matérn /
kernel.

a)

b)

1 2 3 4 5 6 7

CD

Mklaren
RFF

RFF−NS
SPGP

CSI
ICD
Nyström

1 2 3 4 5

CD

Mklaren

SPGP
CSI

ICD
Nyström

the signal variance appears constant across the input region, stationary features are
not at a notable disadvantage. Since both methods are allowed the same number of 𝛿
look-ahead draws, and as RFF samples from a smaller space, the probability of finding
useful basis functions appears slightly larger. These type of claims, however, need to
be based on more analytical foundations, and are out of scope of the present work.

On that note, an interesting future challenge would be to couple the efficient sam-
pling from different spectral densities in a supervised, Mklaren-like manner. This type
of approach could be based on conditioning the sampling from the spectral densities
(Eq. B.) on some information on the target signal. Additionally, since the spec-
tral densities are continuous functions in both hyperparameters and frequencies 𝜔𝜔𝜔, a
maximum-likelihood based optimization would likely enable such a hybrid approach.

Low-rank kernel approximation 

−2

0

2

M
kl
ar
en

−2

0

2

C
S
I

−2

0

2

IC
D

−2

0

2

N
ys
trö

m

−2

0

2

R
FF

−2

0

2

R
FF

-N
S

0 200 400 600 800 1000
Input space (x)

−2

0

2

S
P

G
P

Figure .
Selected example of a
time series fit with the
exponentiated-quadratic
kernels (𝑇􏷯 , first week,
𝜆 = 􏷩). The predictions for
each model are compared
to the test data points (in
gray). The locations of
selected inducing points
are marked with triangles
near the bottom edge
(where applicable).

. String kernels

In this section, we evaluate the performance in a domain of discrete, finite length
character strings. This is a common scenario in text processing or bioinformatics, and

  Experiments with Mklaren M. Stražar

different kernels exists for this task []. First, we examine the behaviour on synthetic
data sets with known generating parameters and finally present experiments on a real
biological data set.

The data points are 𝑛 strings of length 𝐿, derived from a finite alphabet representing
DNA bases, ℬ = {𝐴, 𝐶, 𝐺, 𝑇}. We assume a real number target 𝑦𝑖 associated to each
data point sss𝑖. The string-type data can be transformed into a numerical form using e.g.
manual preprocessing, string kernels, or deep learning. In this scenario, we assume the
data to only be available through evaluation of kernels between data points.

We focus on the spectrum kernel, called also the n-gram bag-of-words kernel. Recall
the definition from Eq. .; The spectrum kernel between two strings is defined as
a product of occurrences of each substring uuu of length ℓ. The substring length ℓ is
a hyperparameter and count(uuu, s􏸈s􏸈s􏸈) the number occurrences of uuu in s􏸈s􏸈s􏸈. The already
mentioned exponential space complexity of explicitly constructing the feature space
renders SPGP-like continuous optimization of inducing inputs locations unfeasible.

More interestingly, there exists a similarity of hyperparameter ℓ with the band-
width/length scale hyperparameter 𝛾 ∝ 􏷠

ℓ) of the exponential kernel. Decreasing 𝛾
results in the larger distance (length scale) at which the points in a vector space are
conditionally dependent (in terms of output values). The same effect is achieved by
decreasing ℓ, as the smaller ℓ causes more points to be conditionally dependent. This
concept will be explored in a similar way as the length scales of continuous functions
in the previous section.

.. Experiments on synthetic data

First, we evaluate the performance on synthetic data sets with random strings of length
𝐿 = 30, generated by uniformly sampling from ℬ 𝐿. The sizes of training, validation
and test sets were set to 𝑛tr = 500, 𝑛val = 𝑛te = 5000 respectively. We used a sum
of  spectrum kernels with ℓ in the integer interval [1, 10]. We randomly sampled
an active set 𝒜 of 𝑟 = 7 inducing points from the training set. The underlying
true kernel matrix was LLL = KKKℓ=􏷣(∶, 𝒜)KKKℓ=􏷣(𝒜 , 𝒜)−􏷠KKKℓ=􏷣(∶, 𝒜)𝑇 with KKKℓ=􏷣 the
spectrum kernel matrix with a fixed ℓ = 4. The true function was sampled from a
degenerate Gaussian Process:

yyy ∼ 𝒩 (000,LLL). (.)

The sampling, training and validation (optimizing 𝜆) was repeated  times. The
methods evaluated methods were ICD, Nyström, CSI (using an unweighted sum of

Low-rank kernel approximation 

kernel matrices), and Mklaren (approximating the kernel matrices individually). Out
of  comparisons, Mklaren achieved lowest RMSE in  (. ), while CSI in
the remaining  (.) cases (𝑃 < 0.0017, Wilcoxon paired signed rank test). The
differences are shown as a critical distance plots on Fig. .a, showing the differences
in ranks at 𝑃 < 0.051. Difference in the results can be explained by the effect of
approximating the kernel sum as outlined in the Sections . and .. We illustrate
this point next.

To visualize the model fit for a given method, we devise the following strategy. Here,
each method is examined through evaluations of its inferred output function ̂𝑓(sss).
First, we compute the distance between strings sss𝑖, sss𝑗, induced by a kernel 𝑘ℓ:

Δℓ(sss𝑖, sss𝑗) = 􏽯𝑘ℓ(sss𝑖, sss𝑖) + 𝑘ℓ(sss𝑗, sss𝑗) − 2𝑘ℓ(sss𝑖, sss𝑗). (.)

This is to be compared with the difference

Δ ̂𝑓(𝑖, 𝑗) = | ̂𝑓(sss𝑖) − ̂𝑓(sss𝑗)|

where ̂𝑓(sss𝑖), ̂𝑓(sss𝑗) are the predicted outputs for strings sss𝑖, sss𝑗, respectively. We then
calculate the empirical alignment between each kernel (parametrized by ℓ) and the
function estimate ̂𝑓 as

alignment(ℓ, ̂𝑓) = 𝜌(Δℓ(𝑖, 𝑗), Δ ̂𝑓(𝑖, 𝑗)), (.)

where 𝜌 is the Pearson correlation, and 𝑖, 𝑗 are  bootstrap pairs randomly sampled
from the test set. Thus, Eq. . estimates the importance of a substring length ℓ for
the output function ̂𝑓. The alignment computed between each ℓ and the true signal
yyy is considered as ground truth.

Fig. .b shows a typical example where Mklaren outperforms the kernel matrix sum
approximations and most closely matches the profile of the true output. The methods
approximating the kernel sum are prone to the short length substrings (i.e. ℓ = 1, 2, 3),
which is analogous to high frequency signals in Section .. These results confirm
Mklaren is suitable for modelling discrete string data, where selection of individual
basis functions outperforms the unweighted kernel matrix sum.

  Experiments with Mklaren M. Stražar

Figure .
a) Critical distance dia-
gram of average ranks at
significance level 𝑃 < 􏷩.􏷩􏷮.
b) Visualization of dif-
ferent model fits for a
sample data set. The y-axis
represents the alignment
defined in Eq. .. The
true substring length ℓ = 􏷭
used to generate the data is
marked with a vertical line.

Length scale l

A
lig

n
m

e
n

t
(l
,
f
)

1 2 3 4

CD

Mklaren

CSI

Nyström

ICD

a)

b)

.. Predicting RNA-binding protein binding affinities

Finally, we evaluated the methods on a real biological data with thousands of RNA
sequences of length 𝐿 = 30, along with (real number) affinities of nine different RNA-
binding proteins (data sets), similar to the original setup []. In total, there are 
data sets,  replicates for each protein, with the total number of sequences 𝑛 on the
order of tens of thousands. We used 𝑛tr = 𝑛va = 3000 randomly selected sequences
for training and validation. All the remaining sequences were used for testing. The
training-validation-testing process was repeated  times. For all methods, the rank
was set to 𝑟 = 10 and the look-ahead parameter was set to 𝛿 = 10 (Mklaren and CSI).

The results are shown in Table .. Expectedly, the supervised methods Mklaren

Low-rank kernel approximation 

and CSI achieve lowest average RMSE on all data sets. The differences are slight, but
statistically significant. Mklaren achieves the minimal average RMSE in  out of 
data sets. By ranking the results, the RMSE achieved by Mklaren is significantly lower
than that of CSI (𝑃 = 0.0028, Wilcoxon paired signed-rank test). In summary, low-
rank approximations are suitable choices for data sets where the objects are described
only in terms of the kernel matrix, where Mklaren achieves competitive performance.

Table .
Root-mean squared error (RMSE) on the RBP binding affinity prediction data sets using low-rank matrix reconstruction on
string kernels. The lowest RMSE in each data set is shown in red.

n Mklaren CSI Nyström ICD
UA (set B)  .±. .±. .±. .±.
UA (set A)  .±. .±. .±. .±.

VTS (set B)  .±. .±. .±. .±.
VTS (set A)  .±. .±. .±. .±.
Fusip (set B)  .±. .±. .±. .±.
Fusip (set A)  .±. .±. .±. .±.

RBM (set B)  .±. .±. .±. .±.
RBM (set A)  .±. .±. .±. .±.
SLM (set B)  .±. .±. .±. .±.
SLM (set A)  .±. .±. .±. .±.

PTB (set B)  .±. .±. .±. .±.
PTB (set A)  .±. .±. .±. .±.
SF (set B)  .±. .±. .±. .±.
SF (set A)  .±. .±. .±. .±.

HuR (set B)  .±. .±. .±. .±.
HuR (set A)  .±. .±. .±. .±.
YB (set B)  .±. .±. .±. .±.
YB (set A)  .±. .±. .±. .±.

. Compactness of approximations

The main difference of Mklaren compared to the established kernel matrix approxi-
mation methods is simultaneous approximation of multiple kernels and the selection

  Experiments with Mklaren M. Stražar

criterion, which guarantees that all the basis functions are equally correlated with the
current residual at each each step. In this section, we evaluate the minimal rank, nec-
essary to achieve equivalent performance to full-rank multiple kernel learning method
L-KRR, optimizing both the kernel weights and regression coefficients. We therefore
seek compact approximations, in the sense of finding the minimal approximation rank
such to achieve the performance equivalent to a full-rank, highly optimized method.
We performed the comparison on  public regression data sets provided with Knowl-
edge Extraction Evolutionary Learning regression tool []. The experimental setup
mimics the one of Bach and Jordan [].

We have used 𝑝 = 10 exponentiated-quadratic kernels (Eq. .) with varying length
scale/bandwidth hyperparameters 𝛾 within the {10−􏷢, 10−􏷡, ..., 10􏷤, 10􏷥}. The perfor-
mance was assessed using -fold cross-validation as follows. Up to  data points
were selected randomly from each data set. For each random split of the data set, a
training set containing  of the data was used for kernel matrix approximation and
regression model parameters inference. A validation set containing  of the data was
used to select the regularization parameter 𝜆 from {0, 10−􏷤, 10−􏷣, ..., 10􏷠}. All variables
were standardized and the targets yyy were centered. The look-ahead parameter 𝛿 was
set to  for Mklaren, CSI, RFF and RFF-NS. The final performance was measured
with root mean square error (RMSE), obtained on the test set with the remaining 
of the data.

Figure .
A critical distance plot.
The positioning on the
line denotes the average
ranking of the methods in
Table .. The thick black
line represents the critical
distance at significance
level 𝑃 < 􏷩.􏷩􏷮.

1 2 3 4 5 6 7 8 9

CD

SPGP

Mklaren

RFF

CSI

RFF−NS

Nyström*

ICD

Nyström

CSI*

ICD*

Table . shows the minimal setting of 𝑟 where the performance is at most one
standard deviation away from the performance obtained by L-KRR. The differences

Available at http://sci2s.ugr.es/keel/category.php?cat=reg

http://sci2s.ugr.es/keel/category.php?cat=reg

Low-rank kernel approximation 

Table .
Minimal setting of rank 𝑟 at which the performance of each method is at most one standard deviation away from the target
performance of L-KRR. The data sets (rows) where none of the methods achieved the target were removed from the compari-
son (data sets mv, pole, stock, concrete).

n M
kl

ar
en

C
SI

IC
D

N
ys

trö
m

C
SI

*

IC
D

*

N
ys

trö
m

*

R
FF

R
FF

-N
S

SP
G

P

diabetes           
machineCPU           

baseball       -  - - 
dee           

autoMPG           
autoMPG           

ele-           
forestFires           

laser           
mortgage   - - -    - - 

treasury         - - 
ele-     -      

friedman   - - - - - - - - 
wizmir   - - -  -  - - 

wankara   - - -  -  - - 
plastic           
quake           

anacalt           
abalone           

california   - - -  -  - - 
compactiv   - - -  -  - - 

elevators   - - - - - - - - 
house   - -  - -  - - 

tic           

in ranks among all evaluated methods are shown in Table . and are statistically sig-
nificant (𝑃 < 2.2 × 10−􏷠􏷥, Friedman rank-sum test). The results are summarized on

  Experiments with Mklaren M. Stražar

Fig. . using the average ranking critical distance plot [].
The best two methods are SPGP and Mklaren, whose rankings are statistically indis-

tinguishable at statistical significance threshold of 𝑃 < 0.05 (Friedman test), although
SPGP consistently achieves the minimal rank. Expectedly, Mklaren, RFF and RFF-
NS perform comparably, due to selection of basis functions from a given set of kernels
centered on the training set. In all the examples, only Mklaren and SPGP achieve the
goal within the given rank constraints. There is a larger gap between Mklaren and
other kernel matrix approximation methods, attributable to supervised selection of in-
ducing points from multiple kernels, and the difference in function spaces, discussed
above in Sections . and ..

The difference in rankings of Mklaren and CSI (next best kernel matrix approxi-
mation method) is statistically significant when examined independently (Wilcoxon
paired signed-rank test, 𝑃 = 0.009). In general, the methods using the unweighted
sum outperform the methods using individual kernel approximation (CSI*, ICD*,
Nyström*). Adaptable decision on which kernel to approximate next, used by Mk-
laren, outperforms fixed decompositions of all 𝑝 kernels when provided with compa-
rable rank constraints.

In summary, Mklaren performs best out of general kernel matrix approximation
methods based on inducing point selection and is comparable to highly optimized
methods for exponentiated-quadratic kernels. Importantly, it retains the general ap-
plicability for arbitrary kernels. Overall, the results confirm the utility of the LAR
criterion in selecting not only the inducing points, but also the kernels to be approx-
imated and suggest Mklaren as the method of choice when competitive performance
in very low dimensional feature spaces is desired. Furthermore, the kernels that are
not included in the decomposition can be discarded. This point is discussed further
in the next subsection.

. Comparison of MKL methods on rank-one kernels

The comparison of Mklaren to multiple kernel learning methods using the full kernel
matrix is challenging as it is unrealistic to expect improved predictive performance
with low-rank approximation methods. Although the restriction to low-rank feature
spaces may result in implicit regularization and improved performance, the difference
in implicit dimension of the feature space makes the comparison difficult [].

We focus on the ability of Mklaren to select from a set of kernels and taking into ac-

Low-rank kernel approximation 

count the implicit correlations between the kernels. We build on the empirical analysis
of Cortes et al. [], who used four sentiment analysis data sets compiled by Blitzer
et al. []. In each data set, the examples are user reviews of products and the target
is the product rating in the integer interval 1..5. The features are counts of the 
most frequent unigrams and bigrams in each data set. Each feature was represented
by a rank-one kernel, thus enabling the use of multiple kernel learning for feature se-
lection and explicit control over the feature space dimension. The data sets contain
a moderate number of examples: books (𝑛 = 5501), electronics (𝑛 = 5901), kitchen
(𝑛 = 5149) and dvd (𝑛 = 5118). The splits into training and test set were provided
by the data set authors.

We compared Mklaren with state-of-the-art multiple kernel learning methods, based
on maximizing centered kernel alignment []. The Align method infers the kernel
weights independently, while AlignF and AlignFC consider the between-kernel cor-
relations when maximizing the alignment. The combined kernel learned by all three
methods was used with the kernel Ridge regression model. The Align method is lin-
ear in the number of kernels (𝑝), while AlignF and AlignFC are cubic as they include
solving an unconstrained (AlignF) or a constrained QP (AlignFC).

When testing for different ranks 𝑟, the features were first filtered according to the de-
scending centered alignment metric for Align, AlignF, AlignFC prior to optimization.
When using Mklaren, the 𝑟 pivot columns were selected from the complete set of 
features. The parameter 𝛿 was set to . Note that in this scenario Mklaren is equivalent
to the original LAR algorithm, thus excluding the effect of low-rank approximation
and comparing only the kernel selection part. This way, the same dimension of the
feature space was ensured.

The performance was measured via -fold cross-validation. At each step,  of
the training set was used for kernel matrix approximation (Mklaren) or determining
kernel weights (Align, AlignF, AlignFC). The remaining  of the training set was
used for selecting regularization parameter 𝜆 from the set 0, 10−􏷢, 10−􏷡, ...10􏷢, and the
final performance was reported on the test set as RMSE.

The results for different settings of 𝑟 are shown in Table .. For the lowest settings
of 𝑟, Mklaren outperforms all four other MKL methods that assume full kernel ma-
trices, as the RMSE is more than one standard deviation away from that of any other
methods. Mklaren outperforms the all full-rank multiple kernel methods at ranks
𝑟 = 10, 20, 40, and performs best in on dvd data set at 𝑟 = 80, kitchen and dvd at

  Experiments with Mklaren M. Stražar

Table .
Mean RMSE on the test set for evaluated MKL methods. The columns represent increasing rank 𝑟, which is equal to the
number of kernels/features included.

books     
Uniform .±. .±. .±. .±. .±.

Align .±. .±. .±. .±. .±.
AlignF .±. .±. .±. .±. .±.

AlignFC .±. .±. .±. .±. .±.
Mklaren .±. .±. .±. .±. .±.

dvd     
Uniform .±. .±. .±. .±. .±.

Align .±. .±. .±. .±. .±.
AlignF .±. .±. .±. .±. .±.

AlignFC .±. .±. .±. .±. .±.
Mklaren .±. .±. .±. .±. .±.

electronics     
Uniform .±. .±. .±. .±. .±.

Align .±. .±. .±. .±. .±.
AlignF .±. .±. .±. .±. .±.

AlignFC .±. .±. .±. .±. .±.
Mklaren .±. .±. .±. .±. .±.

kitchen     
Uniform .±. .±. .±. .±. .±.

Align .±. .±. .±. .±. .±.
AlignF .±. .±. .±. .±. .±.

AlignFC .±. .±. .±. .±. .±.
Mklaren .±. .±. .±. .±. .±.

𝑟 = 160. On all four data sets, the performance appears to saturate at 𝑟 = 160 and
does not improve significantly at 𝑟 = 320 (not shown due to space limitations). The

Low-rank kernel approximation 

greedy kernel and pivot selection used by Mklaren criterion considers implicit corre-
lations between kernels. However, there is an important difference in computational
complexity. Note that Mklaren is linear in the number of kernels 𝑝, which presents
a practical advantage when dealing with a large number of kernels. A comparison of
run times is performed in Section ..

Finally, we compare the methods with respect to feature selection on the kitchen data
set. Each of the methods Mklaren, Align, AlignF, and AlignFC infers the ordering of
kernels. With Mklaren, the ordering is obtained as the pivot columns corresponding
to kernels are iteratively added to the model. With alignment-based methods, we use
the order indicated by the kernel weight vector. In Fig. ., we display the top  fea-
tures obtained from each ordering, shown as words on the vertical axis. As each feature
is added, we infer the ordinary least-squares solution wwwOLS,𝑖, which uses all features
up to 𝑖. The arrows below each word at step 𝑖 indicate the sign of the corresponding
weight in wwwOLS,𝑖. Intuitively, the slope (change in explained variance) is higher for
features corresponding to words associated to strong sentiments. This is most notable
for words such as great, good, love, etc. Not surprisingly, the order in which features
are added to the model critically influences the explained variance. Here, Mklaren
outperforms the alignment-based methods. Due to the similarity of LAR and Lasso
(𝐿􏷠) regression , the features strongly correlated to the response are identified early,
irrespective of their magnitude []. On the other hand, the centered alignment ap-
pears to be biased towards words with a high number of nonzero entries in the data
set, such as propositions. Moreover, the words associated to negative or positive sen-
timents are approximately balanced, according to the signs in wwwOLS,𝑖. These results
confirm Mklaren can also be used for model interpretation.

. Empirical execution times

Finally, we measured the training time of the evaluated low-rank kernel approximation
and MKL algorithms. We generated random data sets as described in Section ., us-
ing exponentiated-quadratic kernels, rank 𝑟 ∈ {5, 10, 30}, number of kernels 𝑝 ∈ {1, 10},
and the number of data points 𝑛 ∈ {10􏷡, 10􏷡.􏷤, 10􏷢, ..., 10􏷤.􏷤, 10􏷥}. The regularization
parameter was set to 𝜆 = 0.1 and the look-ahead parameter was set to 𝛿 = 10 for
Mklaren, CSI and RFF. All methods were presented with an XXX ∈ ℝ𝑛×𝑑 input matrix,
a yyy ∈ ℝ𝑛 target vector and 𝑘􏷠, 𝑘􏷡, ..., 𝑘𝑝 kernel functions. The time to compute the
full-kernel matrix was included in the total training time for all full-rank methods and

  Experiments with Mklaren M. Stražar

CSI (see Section . for explanation). The processes for each tested algorithm were
allowed memory resources of  GB RAM and a time budget of  seconds before
being stopped.

Timings of different scenarios for varying 𝑛 are shown in Fig. .. For the most
resource-consuming scenario, 𝑑 = 100 and 𝑟 = 30, the exact times are shown in Ta-
ble .. For up to 10􏷡.􏷤 = 316 examples, the full-rank MKL methods are comparable
to low-rank approximations. SPGP is least efficient in this case due to optimization
of inducing points overhead. For large data sets, only low-rank matrix approxima-
tions met the time constraints, with RFF being most efficient due to the absence of
explicit computation of the kernel function. Mklaren runs in linear time complexity
and an takes .-. times more time in comparison to Nyström due to look-ahead
steps associated to each of the 𝑝 = 10 kernels. Note that the run time associated to
CSI could be improved by a more efficient implementation, as that provided by the
authors is defined for the full kernel matrix input, which must be computed prior to
approximation.

Similarly, we evaluate the performance of the methods in multiple kernel learning
context with 𝑛 = 1000, 𝑑 = 100 and 𝑟 = 30, varying number of kernels 𝑝. The exact
timings are shown in Table .. The methods with quadratic complexity in the num-
ber of kernels (AlignF, AlignFC) or SPGP exceeded the given or memory constraints
when the number of kernels exceeded . Mklaren is second most efficient up to
𝑝 = 31, after which the overhead in selectively evaluating the kernel function favours
pre-computation of the full kernel matrix.

With these results, we empirically demonstrate the scalability of Mklaren to large
data sets in comparison to related methods. In practice, the savings could be shown
more explicitly by computing effective ranks (related to L-KRR performance, similar
to Section .), however such experiment is severely limited by time and memory
constraints associated to computing the full-kernel matrix for large 𝑛.

. Summary of the results on approximate MKL

Subquadratic complexity in the number of data points is essential in large-scale ap-
plication of kernel methods. Learning the kernel matrix efficiently from the data and
the selection of relevant portions on the data early reduces the time and storage re-
quirements. Using a greedy low-rank approximation to multiple kernels, we achieve
linear complexity in the number of kernels and data points without sacrificing the

Low-rank kernel approximation 

Table .
Timings (in seconds) for rank 𝑟 = 􏷬􏷩, input space dimension 𝑑 = 􏷪􏷩􏷩, number of kernels 𝑝 = 􏷪􏷩 and number of data points
𝑛 from - (in columns). Cases where processes exceeded  hour or memory limits are marked with a dash (-). The
rows are sorted by criteria: ) number of cases not exceeding one hour and ) average rank in remaining cases.

method / 𝑛         
RFF . . . . . . . . .
ICD . . . . . . . . .

Nyström . . . . . . . . .
Mklaren . . . . . . . . .

SPGP . . . . . . . . .
CSI . . . . . . - - -

Uniform . . . . . - - - -
L-KRR . . . . - - - - -

Align . . . . - - - - -
AlignF . .  . - - - - -

AlignFC . . . . - - - - -

Table .
Timings (in seconds) for rank 𝑟 = 􏷬􏷩, input space dimension 𝑑 = 􏷪􏷩􏷩, and number of data points 𝑛 = 􏷪􏷩􏷩􏷩 and number of
kernels 𝑝 from - (in columns). Cases where processes exceeded  hour or memory resources are marked with a dash (-).

method / p       
RFF . . . . . . .

Uniform . . . . . . .
Mklaren . . . . . . .
L-KRR . . . . . . .

Align . . . . . . .
SPGP . . . . - - -

AlignF . . . . - - -
AlignFC . . . . - - -

consideration of between-kernel correlations.
When used with low-rank approximations, the unweighted sum of kernel matrices

is not equal to concatenation of feature spaces induced by the kernels. Sampling the
inducing point-centered basis functions only from the relevant kernels enables using

  Experiments with Mklaren M. Stražar

different hyperparameters in different regions of the input space. This property proved
important both in matching the output functions in one-dimensional, continuous
signals, string data sets, as well as general multidimensional regression data sets.

We show how the least-angle criterion can improve the regression function approx-
imation by exploring regions of the input space in a more conservative manner than
greedy approaches. In this sense, it can be seen in similar light to orthogonality regu-
larization used in general matrix factorization approaches, such as iONMF, presented
in the first part of the book.

Mklaren is a flexible approach for multiple kernel regression. It is kernel function
independent, with data assumed to be accessed only through evaluation of the kernels.
Nevertheless, its performance is comparable with methods that are optimized for spe-
cific kernels or types of input spaces. Natural extensions of the approach would include
different target tasks, such as classification, ranking, or general linear models. If the
used kernels are differentiable with respect to hyperparameters, the latter could also be
optimized at the time of approximation, by appropriate modification of the inducing
point selection heuristic. With the abundance of different data representations, we
expect kernel methods to remain ubiquitous in machine learning applications.

Low-rank kernel approximation 

Figure .
Increase in explained vari-
ance upon incrementally
including features to an
ordinary least-squares
model. The order of fea-
tures is determined by
the magnitude of kernel
weights for Align, AlignF
and AlignFC or the order
of selection by Mklaren.
Arrows indicate positive
(black) or negative (gray)
sign of the feature in the
model weight vector upon
inclusion. Underscored are
words ”great” and ”not”,
which significantly alter
the explained variance
when discovered by the
Align, AlignF and AlignFC
models.

  Experiments with Mklaren M. Stražar

Figure .
Timings (in minutes)
for rank 𝑟 ∈ {􏷮, 􏷬􏷩}
(in columns), number of
kernels 𝑝 ∈ {􏷪, 􏷪􏷩}. Both
the time and the number
of data points 𝑛 are shown
in log􏷪􏷩 scale.

SPGP



Conclusion



  Conclusion M. Stražar

The inclusion of multiple, heterogeneous data sources often implies machine learning
with large data sets. The modeling necessarily includes a notion of data approxima-
tion to enable tractable computation and storage. In this work, we look at two differ-
ent modeling paradigms, non-negative matrix factorization and approximate multiple
kernel learning, which share similar technical concepts associated to exploration of the
space of models. We conclude by giving a high level view of these similarities from a
general perspective.

Subject to no additional constraints provided, multiple kernel learning and multiple
matrix factorization can be reduced to a straightforward concatenation of multiple
features describing the data points. We show how including either different model
capacity-limiting constraints - orthogonality regularization, or the order of operations
to compute the kernel matrix approximation yield different spaces of models than the
previously mentioned concatenation. This enables selective exploration of the input
spaces, by discovering patterns present at varying magnitudes and selecting the basis
functions of different parameters at different regions of the input space. Additionally,
this notion favours interpretable models, either due to orthogonal patterns with little
shared information, or the basis function induced from different kernels revealing some
information about the problem of interest. By means of experimentation on real and
synthetic datasets, we demonstrate that limiting the model capacity can improve the
model performance on previously unseen data points or at least retain a statistically
equivalent performance comparing to models based on complete (not approximate)
data.

The presented work presents many further avenues for extending the algorithms
to different modelling scenarios; for example, it would be interesting to tailor the
(kernel) matrix approximation methods for data assuming non-Gaussian distributions
(multinomial data / classification, count data, bounded data) - general linear models,
or models with additional hierarchical structure. Also, the work can be extended to
models based on different cost functions, such as support vector machines, or to couple
the least-angle regression criterion with the efficiency of Random Fourier Features of
multiple kernels.

The benefits of including of multiple, circumstantial data sources in machine learn-
ing solutions also come with a warning notice, in sense of potential to occlude the true
signal of interest. By exploring some alternative ways of limiting the model capacity,
provided by orthogonality and least-angle regression, we achieve feasible models for

Low-rank kernel approximation 

linear and non-linear regression when multiple patterns are expected to contribute to
the target output signal. Thus, by stating explicit assumptions about the output func-
tions naturally provides tractable model inference both in non-negative matrix factor-
ization and multiple kernel learning, which are two possible modeling paradigms of
choice when interpretable decisions are required.

A

A brief introduction to RNA
biology



 A A brief introduction to RNA biology M. Stražar

In this section, we provide a short introduction on RNA and RNA-binding proteins,
that are one of the main themes and motivation for development of specific machine
learning methods in this work.

The Ribonucleic acid (RNA) molecules are one of the main carriers of regulatory
information in the cell. The central dogma molecular biology (DNA → RNA →
protein) places RNA as an intermediate, flexible entity between fixed and stable heredi-
tary information (DNA) and proteins as the machinery enabling key processes: metabolism,
immune response and chemical reaction catalysis in general. RNA is composed of a
singled-stranded chain of nucleotides adenine (A), cytosine (C), guanine (G) and uri-
dine (U), in a way similar to the double-stranded DNA. The process of conversion of
DNA to RNA is termed transcription, while the process converting RNA to protein is
known as translation.

At each level in the DNA → RNA → protein chain, there exist various types of in-
teractions: protein-DNA interaction (regulation of gene expression), protein-protein
interaction, RNA-RNA interactions and protein-RNA interaction, where all the inter-
actions play an important mechanistic role on the path from DNA to the downstream
processes. The traditionally well-understood role of DNA is the storage and multipli-
cation of hereditary information passed from one subject of the species to the next.
From an evolutionary perspective, DNA needs to be inherently robust to environ-
mental perturbations. In contrast, the role of RNA is to provide an organism with
plasticity - the ability to react to sudden changes in the environment on significantly
shorter time scales.

The main focus of the preset work are protein-RNA interactions, which can be
assayed with relatively recent next-generation sequencing (NGS) protocols and bring
numerous challenges in computational data analysis, interpretation and prediction.
The integration with a multitude of related available data sources provides a platform
for biology, exploratory data analysis, computation and machine learning.

Protein-RNA interactions underpin important cell functions related to the regula-
tion of gene expression, regulation of expression of gene isoforms (splicing; in eukary-
otes []), nuclear export of proteins, and RNA processing []. The differing modes
of protein-RNA interactions as well as the malfunctions are related to cell differentia-
tion, and many diseases commonly related to aging and motoric, neuronal or sensory
disabilities [, ].

The role of RNA and RBPs in gene expression is illustrated on A.. A gene, the

Low-rank kernel approximation 

basic unit of hereditary information in all organism is a defined, contiguous location a
genome of an organism. It’s DNA sequence contains a blueprint for a protein, which
is to perform different functions. In eukaryotes, the path from a gene to a protein
is quite complex. A gene can be further split into exons, the parts that end up in a
protein, and introns, the parts that do not. This process is not always deterministic
and the definition of exons and introns is carried out by RNA-binding proteins in a
process called splicing. This is one on the main drivers of diversity in organism and an
important mechanism that enables rapid changes in gene expression as a response to
sudden changes in the environment.

Product A (mRNA)

Product B (mRNA)

Exon

Intron

Untranslated region (UTR)

Gene annotation

(DNA)

Transcription (DNA 4 RNA)

RBP-mediated RNA splicing

Isoform A (pre-mRNA)

Isoform B (pre-mRNA)

Figure A.
A high-level schematic of
gene expression. A gene is
represented as a contiguous
DNA sequence at a defined
location in a genome of an
organism. An eukaryotic
gene is composed of
untranslated regions, exons
and introns. After RBP-
mediated processing, the
final gene products can
vary in composition.

A distinctive feature of RNA-binding proteins are the various RNA-recognition do-
mains, the subparts of the proteins that both recognize and directly interact with the
RNA. Specificity is achieved by short, signature RNA sequences, called RNA motifs,
recognized by the RNA-binding domains. The RNA motifs can be of varying length
and non-deterministic sequence content but nevertheless present a confident marker
of potential RBP binding sites, and can be identified both with in vitro and in vivo
experimental protocols [, ]. For RBPs that play a key mechanistic part in gene
expression, RNA splicing and processing, the positioning within the gene also plays an
important role []. The interaction between RBPs and the RNA can also be indirect,

 A A brief introduction to RNA biology M. Stražar

with many cases of RBPs being able to harbour other proteins in the close proximity
of the target RNA, resulting in a cooperative or competitive mode of action [].

Various protocols exist for capturing and mapping the interactions between RBPs
and the RNA, varying in resolution, accuracy and cost []. One of the most common
approaches is crosslinking and immunoprecipitation (CLIP), adopted by protocols
HITS-CLIP, iCLIP and PAR-CLIP. A very brief description of the main processing
steps follows.

The data acquisition in CLIP-based protocols starts by treating the cells with UV
light in order to induce covalent bonds between RNA and RBPs (Fig. A., step ).
The RBP-RNA complexes are isolated via protein-specific antibodies and subsequently
cleaved such that only the part of a proteins interacting with the RNA remains. Reverse
transcription of the RNA fragments is then stopped by the remaining fragment of
the RBP, resulting in RNA fragments that terminate on the interacting nucleotide
(Fig. A., step ). By mapping the obtained fragments back to the reference genome,
a binding map is obtained for a protein of interest (Fig. A., step ). The output of
the experimental assay is a protein-specific binding signal. The computational data
analyses include quality control, statistical analysis and modeling (Fig. A., step ).

Expectedly, the data acquisition process is error prone and influenced by intrinsic
noise factors, such as the variability in gene expression, mappability of the genomic
sites, availability of correct reagents and more. To get a reliable set of potential binding
sites, one must include additional information in the analysis, such as the sequence
affinity, ideally obtained by independent measurement protocols (see e.g. Ray et al.
[]). To this end, the development of computational methods to integrate multiple
data sources presents an important component of the field.

Low-rank kernel approximation 

experimental

computational

Reference genome

TAUATCGAUCTAAAA

UCUCAAAA

RBP

AUCUAAAA

AUUUCGAUCU A AAA

RNA

cell nucleus

Quality control

 • Peak detection,

 • detecting false,

 positives/negatives,

 • reproducibility,

 • ...

Statistical analysis

 • RNA motif enrichment,

 • gene function analysis,

 • differential gene expression,

 • ...

Modeling & prediction

 • Discovery of new binding sites,

 • new RBPs,

 • new RBP modes of actions,

 • intervention/effect on disease,

 • ...

1 RNA/RBP interaction

2 Cleavage, reverse

transcription, amplification

3 Mapping to reference

genome

4 Data analysis

Figure A.
A common RNA-binding
protein (RBP) interaction
analysis steps. Contem-
porary experimental
protocols enable the cap-
ture of bound RNA-RBP
complexes (step ). The
complexes are subsequently
cleaved such that only a
part of the protein in direct
contact with the RNA
remains. The RNA close
to the interaction site is
then reverse transcribed
and amplify to produce
a sequencing library of
short RNA reads (step ).
The data is then processed
computationally by first
mapping the reads to the
reference genome, pro-
ducing an RBP binding
map (step ). Subsequent
analyses include quality
control, statistical analyses
and modeling.

B

Details on derivations and
algorithms



 B Details on derivations and algorithms M. Stražar

This section contains related work, auxiliary details, proofs and derivations that would
otherwise clutter the main text. The mathematical notation used throughout the book
is listed in Table B..

B. Low-rank matrix approximation

B.. Notions of error

The matrix -norm. The matrix norm is defined as induced Euclidean vector norm for
matrices. For a matrix AAA the -norm is defined as

‖AAA‖􏷡 = max‖􏸗􏸗􏸗‖=􏷠 ‖AAAxxx‖ = 𝜎max. (B.)

It represents the maximum amount for which the matrix AAA, when treated as a linear
operator, can stretch a unit length vector xxx. The value 𝜎max is the maximum singular
value of AAA and is equal to √𝜆max — the maximum eigenvalue of AAA𝑇AAA.

Kullback-Leibler divergence / Maximum likelihood. The Euclidean distance / ex-
plained variance is appropriate when assuming that the data is distributed according to
a normal distribution, both in terms of its domain and probability density function. A
more general approach is obtained when considering general probability distributions,
in practice allowing specification of distributional assumptions.

Let 𝑝(xxx) be a probability density over a continuous variable xxx ∈ ℝ𝑑. Assume 𝑝 is
approximated with another probability distribution 𝑞, possibly parametrized by a set
of parameters 𝜃𝜃𝜃 yielding 𝑞(xxx|𝜃𝜃𝜃). The Kullback-Leibler divergence between 𝑝 and 𝑞 is
defined as

KL(𝑝, 𝑞 | 𝜃𝜃𝜃) = − 􏾙 𝑝(xxx)log
𝑝(xxx)

𝑞(xxx|𝜃𝜃𝜃) 𝑑xxx. (B.)

Observe that the KL divergence is non-symmetric and equal to  if and only if 𝑞
matches 𝑝 exactly. In practice, it is unfeasible to evaluate the exact KL-divergence as 𝑝
is unknown. Given a finite sample of 𝑛 data points enables approximate computation
of the two quantities:

𝐿 =
𝑛

􏾜
𝑖=􏷠

−log 𝑞(xxx𝑖|𝜃𝜃𝜃) + log 𝑝(xxx𝑖),

Low-rank kernel approximation 

Table B.
A summary of notation used in the text.

Common scalars
𝑛 number of data points
𝑑 dimensionality of various spaces/matrices
𝑟 factorization / approximation rank
𝑝 number of data matrices, kernels or kernel matrices
𝑃 statistical significance level (p-value)

𝛼, 𝜆 optimization constraints
Functions

𝑘(xxx,xxx′) kernel function
𝑓(xxx) output regression function

𝐽 cost function
𝒩 Multivariate normal (Gaussian) distribution

Vectors and matrices
xxx data point as a vector
XXX data matrix
yyy target vector
YYY target matrix
KKK kernel matrix

xxx⋆ optimal solution to an optimization problem over vectors xxx
Iteration

𝑖 = 1, ..., 𝑛 iteration over data points
𝑗 = 1, ..., 𝑑 iteration over vector components
𝑞 = 1, ..., 𝑝 iteration over data sources, kernels or kernel matrices

Indexing
xxx𝑖 𝑖-th row of matrix XXX

𝑥𝑖𝑗,XXX(𝑖, 𝑗) element at row 𝑖, column 𝑗 in a matrix XXX
XXX(∶, 𝑗) 𝑗-th column of matrix XXX

XXX(𝑎 ∶ 𝑏, 𝑐 ∶ 𝑑) submatrix of XXX
KKK(𝒜 , ℬ) submatrix of KKK indexed by index subsets 𝒜 and ℬ
𝑘(XXX􏷠,XXX􏷡) kernel matrix from pairwise evaluations of the 𝑘 on XXX􏷠 and XXX􏷡

KKK􏷠,KKK􏷡, ...,KKK𝑝 different kernel matrices
XXX∗ the data matrix XXX of an arbitrary number of test data points
KKK∗ the kernel matrix KKK of an arbitrary number of test data points

Miscellaneous
𝐶(KKK) centered kernel matrix KKK

 B Details on derivations and algorithms M. Stražar

where the second term is independent of 𝜃𝜃𝜃. The above expression is the data log-
likelihood under the distribution 𝑞 and can be maximized with respect to 𝜃𝜃𝜃.

In context of matrix factorization, the data XXX can be considered as samples from a
distribution over ℝ􏷠 and a matrix X̂XX = AAABBB𝑇 as a sample from corresponding approxi-
mate distribution parametrized by AAA,BBB []. In practice, to use XXX and X̂XX as probability
distributions, the values should be normalized to . This yields the following diver-
gence:

𝐷(XXX||X̂XX) =
𝑛

􏾜
𝑖=􏷠

𝑑
􏾜
𝑗=􏷠

𝑥𝑖𝑗log
𝑥𝑖𝑗

𝑥̂𝑖𝑗
− 𝑥𝑖𝑗 + 𝑥̂𝑖𝑗,

which reduces to the Kullback-Leibler divergence when the matrices XXX and X̂XX sum to .
Stating the problem as maximum likelihood optimization enables the usage of general
probability distributions, which is suitable for datasets of discrete data (Dirichlet dis-
tribution), count-based data (Poisson/Negative Binomial distribution), finite interval
data (Beta distribution) and more.

We give an example optimization of the Kullback-Leibler divergence (Eq. B.). The
following strategy is based on Quasi-Newton optimization (QNO), an alternative way
to circumvent the need to set a fixed step size in gradient-based optimization [].
Briefly, as the gradient of the parameters determines the direction, the step can be set
proportional to the inverse of the matrix of second gradients - the Hessian. Intuitively,
the larger the change in gradient - the cost function changes more rapidly - the smaller
steps are taken. Conversely, the smaller change in gradient implies more flat surfaces
where the optimization can proceed more rapidly by using larger step sizes.

Again, let AAA ∈ ℝ𝑛×𝑟 and BBB ∈ ℝ𝑑×𝑟 and X̂̂X̂X = AAABBB𝑇 . This second order strategy is
encoded as follows:

AAAnew = AAA − 𝑢(HHH−􏷠
􏹒􏹒􏹒

𝛿𝐷
𝛿AAA)

BBBnew = BBB − 𝑢(HHH−􏷠
􏹓􏹓􏹓

𝛿𝐷
𝛿BBB),

where 𝛿𝐷
𝛿􏹒􏹒􏹒 ∈ ℝ𝑛𝑟 is a vector of model parameters and HHH􏹒􏹒􏹒 ∈ ℝ𝑛𝑟×𝑛𝑟 is the matrix

of second derivatives. Here, we have used 𝑢(⋅) to denote a operation of unrolling
the vector of size 𝑛𝑟 into a matrix of size 𝑛 × 𝑟. The definitions of BBB, 𝛿𝐷

𝛿􏹒􏹒􏹒 and HHH−􏷠
􏹓􏹓􏹓

Low-rank kernel approximation 

are analogous. The issues with negative parameter values are solved by the projected
gradient descent (Section .).

In case 𝐷 is set as the KL divergence (Eq. B.), Zdunek and Cichocki [] propose
a method that solves for a generalized alpha Amari divergence, written as

𝐷𝐴(XXX ||X̂̂X̂X) =
𝑛

􏾜
𝑖=􏷠

𝑑
􏾜
𝑗=􏷠

𝑥𝑖𝑗
(𝑥𝑖𝑗/𝑥̂𝑖𝑗)𝛼−􏷠 − 1

𝛼(𝛼 − 1) +
𝑥̂𝑖𝑗 − 𝑥𝑖𝑗

𝛼

for a scalar parameter 𝛼, which retrieves the KL-divergence in the limit 𝛼 → 1. Other
divergences can be retrieved by setting 𝛼 appropriately, see ref. Zdunek and Cichocki
[] and the references therein. The first order gradients with respect to AAA are

𝛿𝐷𝐴
𝛿AAA = 1

𝛼BBB𝑇 􏿴1 − (XXX
X̂̂X̂X

)𝛼􏿷,

where matrix divisions are element-wise. Furthermore, the second order gradients with
respect to parameters AAA are in turn defined as matrices:

𝛿􏷡𝐷𝐴
𝛿𝑎𝑖𝑝𝛿𝑎𝑘𝑞

=
𝑑

􏾜
𝑗=􏷠

𝑏𝑗𝑝𝑥𝛼
𝑖𝑗𝑏𝑗𝑞

(∑𝑟
𝑞=􏷠 𝑎𝑖𝑞𝑏𝑗𝑞)𝛼+􏷠 .

The definitions for the derivatives with respect to BBB are defined analogously. In prac-
tice, a small magnitude diagonal matrix is added to the Hessian to guarantee invert-
ibility (known as Levenberg-Marquardt regularization, Press []).

B.. Principal component analysis

If the matrices XXX ∈ ℝ𝑛×𝑑, AAA ∈ ℝ𝑛×𝑟 and BBB ∈ ℝ𝑑×𝑟 are unconstrained, there exist a
unique projection to an 𝑟-dimensional subspace that satisfies two equivalent projection
measures. Suppose the {xxx􏷠, xxx􏷡, ..., xxx𝑛} ∈ ℝ𝑑 are rows of XXX. Then, there exists a princi-
pal subspace spanned by the orthogonal set of unit vectors UUU = {uuu􏷠,uuu􏷡, ...,uuu𝑟} ∈ ℝ𝑑

such that

The variance of the projected data X̂̂X̂X, x̂̂x̂x𝑖 = UUUxxx𝑖 is maximal.

The distance between the original data and the projected subspace is minimal.

 B Details on derivations and algorithms M. Stražar

Both criteria lead to the same unique solution, obtained with Principal component
analysis (PCA), which depends on the symmetric eigenvalue decomposition. Here, we
briefly present the solution derived by the explained variance maximization []. Con-
sequently, PCA ensures maximal variance by the approximated matrix and maximizes
the -norm ‖X̂̂X̂X‖􏷡, or, equivalently, minimizes the -norm of the residual ‖XXX −X̂̂X̂X‖􏷡 (see
Eq. B.).

The coordinate system of any vector space can be represented by an orthonormal
basis {uuu􏷠,uuu􏷡, ...,uuu𝑑} ∈ ℝ𝑑 by definition. The goal is to find an orthonormal subset
UUU = {uuu􏷠,uuu􏷡, ...,uuu𝑟}, 𝑟 < 𝑑 such that the projected data has maximal variance.

Suppose, without loss of generality, the projection to one dimensional subspace,
such that UUU = uuu􏷠. The variance of the projected data is defined as

𝔼[(x̂̂x̂x − 𝔼[x̂̂x̂x])􏷡] =

1
𝑛

𝑛
􏾜
𝑖=􏷠

(uuu𝑇
􏷠 xxx𝑖 − uuu𝑇

􏷠 x̄̄x̄x)􏷡 =

uuu𝑇
􏷠 SSSuuu􏷠,

where x̄̄x̄x is the average row in XXX and SSS is a 𝑑 × 𝑑 covariance matrix:

SSS =
𝑛

􏾜
𝑖=􏷠

(xxx𝑖 − x̄̄x̄x)(xxx𝑖 − x̄̄x̄x)𝑇 .

To maximize the projected variance uuu𝑇
􏷠 SSSuuu􏷠, uuu􏷠 must be constrained to the set of unit

vectors, i.e. ‖uuu􏷠‖􏷡 = 1 ⟹ uuu𝑇
􏷠 uuu􏷠 = 1. This is achieved by maximizing the

Lagrangian:

max􏸔􏸔􏸔􏷪 uuu𝑇
􏷠 SSSuuu􏷠 + 𝜆􏷠(1 − uuu𝑇

􏷠 uuu),

which is a quadratic optimization problem with respect to uuu􏷠. Setting the derivative
with respect to uuu􏷠 to zero, we obtain the conditions for a stationary point:

SSSuuu􏷠 = 𝜆􏷠uuu􏷠 (B.)

and so the projected variance uuu𝑇
􏷠 SSSuuu􏷠 = 𝜆􏷠uuu𝑇uuu􏷠 = 𝜆􏷠. From Eq. B. we recognize the

eigenvalue decomposition, so uuu􏷠 is an eigenvector of SSS. The projected variance is given
by the eigenvalue 𝜆􏷠, so the optimal projection to the one-dimensional subspace is

Low-rank kernel approximation 

obtained by selecting the eigenvector with the largest eigenvalue. The general solution
for the optimal, 𝑟-dimensional subspace is obtained by selected the 𝑟 largest eigenvalues
and corresponding eigenvectors, resulting in the corresponding orthonormal matrix
UUU ∈ ℝ𝑑×𝑟. To express the PCA solution as matrix factorization defined in Chapter ,
we set X̂̂X̂X = XXXUUUUUU𝑇 with AAA = XXXUUU ∈ ℝ𝑛×𝑟 and BBB = UUU ∈ ℝ𝑑×𝑟.

 B Details on derivations and algorithms M. Stražar

B. Linear regression

B.. The relation between dual and primal regression weights

A regression problem is defined given the data matrix XXX ∈ ℝ𝑛×𝑑 and target values
(outputs) yyy ∈ ℝ𝑛.

Lemma. Let the parameters www ∈ ℝ𝑑 be the solution of a regression problem, defined
by the expression

www = (XXX𝑇XXX + 𝜆III𝑑)−􏷠XXX𝑇yyy. (B.)

Then, www can be written as a linear combination of rows in XXX, i.e. www = XXX𝑇𝛼𝛼𝛼 for some
real vector 𝛼𝛼𝛼 ∈ ℝ𝑛.

Proof. The proof follows from a direct application of the Sherman-Morrison-Woodbury
lemma on the matrix inverse []. Specifically, the linear transform (XXX𝑇XXX + 𝜆III𝑑)−􏷠 in
Eq. B. can be expanded as

(XXX𝑇XXX + 𝜆III𝑑)−􏷠 = (𝜆−􏷠III − 𝜆−􏷡XXX𝑇 (III𝑛 + 𝜆−􏷠XXXXXX𝑇)−􏷠XXX).

The right-hand side of Eq. B. can then be re-arranged as:

www = 𝜆−􏷠XXX𝑇 􏿮yyy − 𝜆−􏷠(III𝑛 + 𝜆−􏷠XXXXXX𝑇)−􏷠XXX)XXX𝑇yyy􏿱.

Indeed, www can be expressed as a linear combination of rows of XXX, with 𝛼𝛼𝛼 defined as
the expression in the square brackets above.

∎

B.. Least-angle regression

Least-angle regression (LAR) is an active set method, originally designed for feature
subset selection in linear regression [, , ]. A column is chosen from the set of
candidates such that the correlations with the residual are equal for all active variables.
This is possible because all variables (columns) are known a priori.

Let the predictor variables {xxx􏷠, xxx􏷡, ..., xxx𝑝} be vectors in ℝ𝑛, arranged in a matrix
XXX ∈ ℝ𝑛×𝑝. The associated response vector is yyy ∈ ℝ𝑛. The LAR method iteratively
selects the predictor variables xxx𝑗, and the corresponding coefficients 𝑤𝑗 are updated at

Low-rank kernel approximation 

the same time as they are moved towards their least-squares coefficients. In the last
step, the method reaches the least-squares solution.

The high-level pseudo code is as follows:

. Start with the residual eee = yyy − ȳyy, and regression coefficients 𝑤􏷠, 𝑤􏷡, ...𝑤𝑝 = 0.

. Find the variable xxx𝑗 most correlated with eee.

. Move 𝑤𝑗 towards its least-squares coefficient until another xxx𝑘 has as much cor-
relation with eee.

. Move 𝑤𝑗 and 𝑤𝑘 in the direction towards their joint least-sq. coeff., until some
new xxx𝑙 has as much correlation with eee.

. Repeat until all variables have been entered, reaching the least-sq. solution.

Note that the method is easily modified to include early stopping, after a maximum
number of selected predictor variables are included. Importantly, the method can
be viewed as a version of supervised Incomplete Cholesky decomposition of the linear
kernel KKK = XXXXXX𝑇 which corresponds to the usual inner product in ℝ𝑝. A more detailed
description of the algorithm follows.

Assume the predictor variables are standardized and response is centered:

111𝑇xxx𝑗 = 0 and ‖xxx𝑗‖􏷡 = 1 for 𝑗 = 1, 2, ..., 𝑝,
111𝑇yyy = 0.

Initialize the regression estimate fff, the residual eee and the active set 𝒜 :

fff = 000, eee = yyy and 𝒜 = ∅.

The LAR algorithm estimates fff = XXXwww in successive steps. Say the predictor xxx𝑖 has
the largest correlation with eee. Then, the index 𝑖 is added to the active set 𝒜 and the
regression estimate and residual are updated:

fffnew = fff + 𝛾xxx𝑖,
eeenew = eee − 𝛾xxx𝑖.

 B Details on derivations and algorithms M. Stražar

The step size 𝛾 is set such that a new predictor xxx𝑗 will enter the model after fff is updated
and all predictors in the active set as well as xxx𝑗 are equally correlated to eee. The key parts
are the selection of predictors added to the model and the calculation of the step size.

The active matrix for a subset of indices 𝑗 with sign 𝑠𝑗 is defined as

XXX𝐴 = 􏿴 ⋯ 𝑠𝑗xxx𝑗 ⋯ 􏿷 for 𝑗 ∈ 𝒜

𝑠𝑗 = sign{xxx𝑇
𝑗 eee}.

By elementary linear algebra, there exists a bisector uuu𝐴 –– an equiangular vector, having
‖uuu𝐴‖􏷡 = 1 and making equal angles, less than  degrees, with vectors in XXX𝐴. Define
the following quantities respectively: XXX𝐴 the active matrix, 𝐴 the normalization scalar,
uuu𝐴 the bisector, and 𝜔𝜔𝜔 the vector making equal angles with the columns of XXX𝐴. The
bisector is obtained as follows:

TTT𝐴 = XXX𝑇
𝐴XXX𝐴,

𝐴 = (111𝑇
𝐴TTT𝐴111𝐴)−􏷠/􏷡,

𝜔𝜔𝜔 = 𝐴TTT−􏷠
𝐴 111𝐴,

uuu𝐴 = XXX𝐴𝜔𝜔𝜔𝐴.

(B.)

The calculation of step size 𝛾 proceeds as follows. Get the maximum vector of corre-
lations. The active set contains variables with highest absolute correlations.

𝑐𝑗 = xxx𝑇
𝑗 eee,

𝐶 = max𝑗 {𝑐𝑗},
aaa = XXX𝑇

𝐴uuu𝐴,

𝛾 = min+
𝑗∈𝒜 𝑐 {

𝐶 − 𝑐𝑗

𝐴𝐴 − 𝑎𝑗
,

𝐶 + 𝑐𝑗

𝐴𝐴 + 𝑎𝑗
},

(B.)

where min+ is the minimum over positive components. By Eq. B.., the change in
correlations within the active set can be expressed.

𝑐new
𝑗 = xxx𝑇

𝑗 (yyy − eeenew) = 𝑐𝑗 − 𝛾𝑎𝑗. (B.)

Low-rank kernel approximation 

For the predictors in the active set, we have

|𝑐new
𝑗 | = 𝐶 − 𝛾𝐴, for 𝑗 ∈ 𝒜 . (B.)

A variable is selected from the remaining variables in 𝒜 𝑐, such that 𝑐new
𝑗 is maximal.

Equaling Eq. B. and Eq. B., and maximizing yields 𝛾 = 𝐶−𝑐𝑗
𝐴−𝑎𝑗

. Similarly, −𝑐new
𝑗

for the reverse covariate is maximal at 𝛾 = 𝐶+𝑐𝑗
𝐴+𝑎𝑗

. Hence, 𝛾 is chosen in Eq. B. as a

minimal value for which a variable joins the active set.

 B Details on derivations and algorithms M. Stražar

B. Kernel methods

B.. Inner product spaces

An inner product space is a vector space 𝒳 , endowed with an inner product function
denoted ⟨⋅, ⋅⟩, mapping (𝒳 × 𝒳) ↦ ℝ. Let aaa,bbb,ccc be arbitrary elements from the
space 𝒳 . An inner product is any function satisfying the following properties:

. Non-negativity.

⟨aaa,aaa⟩ ≥ 0, and ⟨aaa,aaa⟩ = 0 ≡ aaa = 000

. Multiplication with a scalar. For a scalar 𝑐 ∈ ℝ:

⟨𝑐aaa,bbb⟩ = 𝑐⟨aaa,bbb⟩

. Distributivity over sums of elements.

⟨aaa + bbb,ccc⟩ = ⟨aaa,ccc⟩ + ⟨bbb,ccc⟩

. Symmetry.

⟨aaa,bbb⟩ = ⟨bbb,aaa⟩

A canonical example of a inner product is the mapping ⟨aaa,bbb⟩ = ∑𝑖 𝑎𝑖𝑏𝑖. An inner
product of an element with itself defines a norm, √⟨aaa,aaa⟩ = ‖aaa‖.

B.. A simple example of (kernel) linear regression

Let {xxx􏷠, xxx􏷡, ..., xxx𝑛} be a set of data points in a inner product space 𝒳 of dimension
𝑑, associated with target values (outputs) yyy ∈ ℝ𝑛. A mapping 𝑓 from 𝒳 to ℝ can
be used to predict the value 𝑦𝑖 given an xxx𝑖. Given a set of 𝑛 example pairs (xxx𝑖, 𝑦𝑖), the
problem is stated as minimization of loss over a space of functions:

min𝑓

𝑛
􏾜
𝑖=􏷠

(𝑓(xxx𝑖) − 𝑦𝑖)􏷡. (B.)

In linear regression, 𝒳 is a real vector space of dimension 𝑑, so 𝒳 is ℝ𝑑. The functions
𝑓 are limited to linear functions, defined by parameters www ∈ ℝ𝑑:

𝑓(xxx) = ⟨www,xxx⟩ =
𝑑

􏾜
𝑗=􏷠

𝑥𝑗𝑤𝑗. (B.)

Low-rank kernel approximation 

Note that in this case, www is simply another point in the input space 𝒳 . The optimal
solution for 𝑓 is found as the solution to a linear system of equations

XXXwww = yyy, (B.)

where XXX is an 𝑛 × 𝑑 matrix (of rank min(𝑛, 𝑑)) with examples xxx𝑖 in rows. In general,
𝑛 does not equal 𝑑 and the above system may be under-determined (if 𝑑 > 𝑛) or
over-determined (if 𝑑 < 𝑛). In the former case, the system has an infinite number of
solutions, while in the latter case there is no exact solution in general. In practice, the
system in Eq. B. is replaced by a full-rank, 𝑑 × 𝑑 system with the Ridge regression
solution

www = (XXX𝑇XXX + 𝜆III𝑑)−􏷠XXX𝑇yyy, (B.)

where III𝑑 is the identity matrix of dimension 𝑑 and 𝜆 > 0 is a scalar regularization
parameter, which bounds the norm ‖www‖. The interpretation is as follows. The function
𝑓, determined by a point in 𝒳 , lies in the linear span of data points XXX. So, www can be
defined as a linear combination of rows of XXX:

www = XXX𝑇𝛼𝛼𝛼, (B.)

for an 𝛼𝛼𝛼 ∈ ℝ𝑛. For derivation of Eq. B. from Eq. B., see Appendix B... The
optimization problem can then be stated as:

(XXXXXX𝑇 + 𝜆III𝑛)𝛼𝛼𝛼 = yyy, (B.)

with solution 𝛼𝛼𝛼 = (XXXXXX𝑇 + 𝜆III𝑛)−􏷠yyy. The matrix XXXXXX𝑇 is called the Gram matrix and is
obtained by evaluation of inner products ⟨xxx𝑖, xxx𝑗⟩. Thus, linear regression is defined for
any inner product space.

B.. Kernel-specific approximations

In this part, we present the kernel approximation that are limited either to specific, in-
dividual kernels or assume properties other than the basic properties of kernels listed in
Section .. Unsurprisingly, this can move the lower bound of the computational com-
plexity below 𝑂(𝑛𝑟􏷡) achieved by kernel matrix approximation methods presented in
Section .. Furthermore, hyperparameter optimization can be done simultaneously
with kernel approximation, allowing for models of larger capacity.

 B Details on derivations and algorithms M. Stražar

B.. Translation-invariant kernels and explicit feature maps

A translation-invariant or stationary kernel is a kernel that can be written as a function
of a single-argument — e.g. the difference between the two elements, 𝑘(xxx,x ′x ′x ′) = 𝑘(xxx − x ′x ′x ′).
Kernels of this type are often continuous functions. A natural idea to approximate a
kernel is to derive its underlying (approximate) feature map, as defined Section ..

Bochner’s theorem. A continuous translation-invariant kernel 𝑘(xxx − x ′x ′x ′) on a real
domain ℝ𝑑 is positive definite if and only if 𝑘 is the Fourier transform of a non-negative
measure. This means that the corresponding Fourier transform gives rise to a valid
probability distribution. Letting 𝜁𝜔𝜔𝜔(xxx) = 𝑒𝑖𝜔𝜔𝜔𝑇􏸗􏸗􏸗, the statement of the theorem is:

𝑘(xxx − x ′x ′x ′) = 􏾙
ℝ𝑑

𝑝(𝜔𝜔𝜔)𝑒𝑖𝜔𝜔𝜔𝑇 (􏸗􏸗􏸗−􏸗′􏸗′􏸗′)𝑑𝜔𝜔𝜔 = 𝔼𝜔𝜔𝜔[𝜁𝜔𝜔𝜔(xxx)𝜁𝜔𝜔𝜔(x ′x ′x ′)]. (B.)

Random Fourier features. The Bochner’s theorem provides a straightforward tool
to generate explicit feature maps if the Fourier transform of 𝑘 can be derived analyti-
cally []. As both 𝑘 and 𝑝 are real-valued functions, the complex exponentials are re-
placed with cosines. An explicit feature map can then be defined as 𝑧𝜔𝜔𝜔(xxx) = 𝑐𝑜𝑠(𝜔𝜔𝜔𝑇xxx + 𝑏)
with 𝜔𝜔𝜔 drawn from 𝑝(𝜔𝜔𝜔) and 𝑏 drawn uniformly from [0, 2𝜋], which is derived from
applying basic trigonometry rules on 𝑒𝑖𝜔𝜔𝜔𝑇 (􏸗􏸗􏸗−􏸗′􏸗′􏸗′). Equivalently, following Ton et al.
[], random features can be defined as sine-cosine pairs:

Φ𝜔𝜔𝜔(xxx) = 􏿵cos(𝜔𝜔𝜔𝑇xxx), sin(𝜔𝜔𝜔𝑇xxx)􏿸.

To lower the variance of the estimator, 𝑟 random vectors 𝜔𝜔𝜔 are sampled from 𝑝(𝜔𝜔𝜔),
determining the effective dimensionality of the feature space. The approximation to
the kernel matrix given random vectors 𝜔𝜔𝜔𝑗, 𝑗 = 1...𝑟 and a data matrix XXX is then equal
to

LLL = 1
2𝑟

𝑟
􏾜
𝑗=􏷠

𝛷𝛷𝛷𝜔𝜔𝜔𝑗 (XXX)𝛷𝛷𝛷𝜔𝜔𝜔𝑗 (XXX)𝑇 .

Here, one needs to be able to solve an indefinite integral for the kernel defined as a
function ofxxx−x ′x ′x ′. For example, evaluating the Fourier transform for the exponentiated-
quadratic kernel results in probability distribution

Measure: a continuous function defined over a set with a finite value of any definite integral. The function
value is monotonically increasing with number of elements in the set, and therefore it can be interpreted as set
size. Example: all probability distributions are measures over the respective domains.

Low-rank kernel approximation 

𝑝exp(𝜔𝜔𝜔) = (2𝜋𝜎􏷡)−𝑑/􏷡𝑒− 􏷪
􏷫𝜎􏷫 ‖𝜔𝜔𝜔‖􏷫

􏷫 , (B.)

which is the multivariate normal distribution over ℝ𝑑, centered at the origin. The
variance 𝜎􏷡 is directly related to the bandwidth of the exponentiated-quadratic kernel
(Eq. .), with the equality 𝜎􏷡 = 2𝑑𝛾.

Feature maps of non-stationary kernels. The above approximation applies to stationary
kernels only. The results of Samo and Roberts [] provide a generalization based
on combinations of kernels yielding approximations of non-stationary kernels. The
modification to the Bochner’s theorem in Eq. B. is as follows:

𝑘(xxx,x ′x ′x ′) = 􏾙
ℝ𝑑

𝑝􏷡(𝜔𝜔𝜔𝑎,𝜔𝜔𝜔𝑏)𝑒𝑖(𝜔𝜔𝜔𝑇𝑎 􏸗􏸗􏸗−𝜔𝜔𝜔𝑇
𝑏 􏸗′􏸗′􏸗′)𝑑𝜔𝜔𝜔𝑎𝑑𝜔𝜔𝜔𝑏,

where 𝜔𝜔𝜔𝑎, 𝜔𝜔𝜔𝑏 ∈ ℝ𝑑 are two distinct random vectors, sampled from a positive-definite
measure 𝑝􏷡 defined over ℝ𝑑 × ℝ𝑑. If 𝜔𝜔𝜔𝑎 = 𝜔𝜔𝜔𝑏, the stationary kernel approximation
in Eq. B. is recovered. The explicit feature map is then equal to

Φ𝜔𝜔𝜔𝑎𝑗 ,𝜔𝜔𝜔𝑏𝑗 (xxx) = 􏿵cos(𝜔𝜔𝜔𝑇
𝑎𝑗xxx) + cos(𝜔𝜔𝜔𝑇

𝑏𝑗xxx), sin(𝜔𝜔𝜔𝑇
𝑎𝑗xxx) + sin(𝜔𝜔𝜔𝑇

𝑏𝑗xxx)􏿸,

and the kernel matrix approximation equals

LLL = 1
4𝑟

𝑟
􏾜
𝑗=􏷠

𝛷𝛷𝛷𝜔𝜔𝜔𝑎𝑗 ,𝜔𝜔𝜔𝑏𝑗 (XXX)𝛷𝛷𝛷𝜔𝜔𝜔𝑎𝑗 ,𝜔𝜔𝜔𝑏𝑗 (XXX)𝑇 .

There is a large flexibility in choosing the positive-definite measure 𝑝􏷡, and the simplest
case is to set 𝑝􏷡(𝜔𝜔𝜔𝑎,𝜔𝜔𝜔𝑏) = 𝑝(𝜔𝜔𝜔𝑎)𝑞(𝜔𝜔𝜔𝑏), where 𝑝, 𝑞 are measures over ℝ𝑑 and typically
correspond to densities of known stationary kernels [].

𝛾-homogeneous kernels. An alternative approximation to non-stationary, single-
argument kernel functions, is as follows. The work of Rahimi and Recht [] was
extended by Vedaldi and Zisserman [] from stationary to 𝛾-homogeneous kernels.

A 𝛾-homogeneous kernel 𝑘ℎ(𝑥, 𝑥′) for 𝑥, 𝑥′ ∈ ℝ has the following property: for a
scalar 𝑐 > 0, 𝑘ℎ(𝑐𝑥, 𝑐𝑥′) = 𝑐𝛾 for some real number 𝛾. Setting 𝛾 to 1/√𝑥𝑥′, enables
𝑘ℎ to be written as

 B Details on derivations and algorithms M. Stražar

(𝑥𝑥′)
􏷪
􏷫 𝑘ℎ(

􏽰
𝑥′

𝑥 ,
􏽰

𝑥
𝑥′) =

(𝑥𝑥′)
􏷪
􏷫 𝑘ℎ(𝑒

􏷪
􏷫 log 𝑥′

𝑥 , 𝑒− 􏷪
􏷫 log 𝑥′

𝑥) =

(𝑥𝑥′)
􏷪
􏷫 𝒦 (log 𝑥′ − log 𝑥) = (𝑥𝑥′)

􏷪
􏷫 𝒦 (𝜆),

where 𝒦 is the signature function and 𝜆 is a scalar parameter. Similarly as with Ran-
dom Fourier Features and stationary kernels, the 𝛾-homogeneous kernels can be trans-
formed via discrete Fourier transform,

𝒦̂ (𝜆) =
+∞
􏾜

𝑗=−∞
𝜅̂𝑗𝑒−𝑖𝑗𝐿𝜆

and 𝜅̂𝑗 presents a discrete sampling at periods 𝑗 = 0, 1, ... of continuous Fourier trans-
form of the signature function 𝒦 (𝜆). Given a continuous spectrum 𝜅(𝜔) of a sig-
nature function, the discrete spectrum can be obtained by sampling and rescaling,
𝜅̂𝑗 = 𝐿𝜅(𝑗𝐿) for any frequency 𝐿. A discrete feature map for a set number of compo-
nents 𝑗 = 0, 1, ..., 𝐾 and a fixed 𝐿 is then obtained as:

Ψ̂𝑗(𝑥) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

√ ̂𝜅􏷟, 𝑗 = 0,

􏽯
2𝑥𝛾𝜅̂ 𝑗+􏷪

􏷫
cos(𝑗+􏷠

􏷡 𝐿 log 𝑥) 𝑗 > 0 odd,

􏽯
2𝑥𝛾𝜅̂ 𝑗

􏷫
sin(𝑗

􏷡 𝐿 log 𝑥) 𝑗 > 0 even.

Example 𝛾-homogeneous kernels are the Hellinger kernel 𝑘(𝑥, 𝑥′) = √𝑥𝑥′ or the
intersection kernel 𝑘(𝑥, 𝑥′) = min(𝑥, 𝑥′). Their respective continuous spectra are
𝜅(𝜔) = 𝛿(𝜔) (Dirac’s delta function) and 𝜅(𝜔) = 􏷡

𝜋
􏷠

􏷠+􏷣𝜔􏷫 , with respective con-
tinuous feature maps Ψ𝑤 = √𝑥 and Ψ𝑤 = 𝑒𝑖𝜔log𝑥√𝑥𝜅(𝜔).

B.. Optimization of differentiable kernels

Kernels can be optimized with respect to the target task (Bishop [], ch. ). A com-
mon assumption is that the kernels 𝑘(xxx,xxx′;𝜃𝜃𝜃) are differentiable functions with respect
to the input points and possible hyperparameters 𝜃𝜃𝜃. Examples of differentiable ker-
nels with hyperparameters are the exponentiated-quadratic, sigmoid or the polynomial

Low-rank kernel approximation 

kernel presented in Table ., Section .. The following ideas are presented in con-
text of Gaussian process regression and are transferable to any task based on gradient
optimization.

Optimization of kernel hyperparameters. The distribution of targets yyy assuming a
Gaussian process prior is presented in Eq. ., Section .. The covariance matrix is
assumed to be CCC = KKK + 𝜎􏷡III and depends both on the dataset 𝒟 and kernel hyperpa-
rameters 𝜃𝜃𝜃. The log-likelihood is then evaluated as

log 𝑝(yyy|𝒟 ,𝜃𝜃𝜃) = − 1
2 log |CCC| − 1

2yyy𝑇CCC−􏷠yyy − 𝑛
2 log(2𝜋),

where | ⋅ | is the matrix determinant. The gradient with respect to the 𝑖-th scalar hy-
perparameter 𝜃𝑖 is:

𝛿
𝛿𝜃𝑖

log 𝑝(yyy|𝒟 ,𝜃𝜃𝜃) = − 1
2 tr(CCC−􏷠 𝛿CCC

𝛿𝜃𝑖
) + 1

2yyy𝑇CCC−􏷠 𝛿CCC
𝛿𝜃𝑖

CCC−􏷠yyy. (B.)

The log-likelihood is generally a non-convex function and is solved by gradient ascent
to find the local maxima.

Joint optimization of the inducing locations and hyperparameters. In contrast to active
set sampling-based methods presented in Section ., there exist alternative ways to
optimize the low-rank kernel matrix. One approach, suitable for continuous input
spaces are the Sparse Pseudo Input Gaussian Processes (SPGPs, []).

Let XXX ∈ ℝ𝑛×𝑑 be the matrix of data points in the input space ℝ𝑑, and UUU ∈ ℝ𝑚×𝑑 be
a set of 𝑚 inducing input locations in the same input space. This is different from the
active sets 𝒜 described for the kernel matrix approximations in Section ., as their
locations are not limited to the training set. The following kernel matrices are defined:
KKK𝑢𝑢 ∈ ℝ𝑟×𝑟 as 𝑘(UUU,UUU), KKK𝑇

𝑥𝑢 = KKK𝑢𝑥 ∈ ℝ𝑟×𝑛 as 𝑘(UUU,XXX), KKK𝑥𝑥 ∈ ℝ𝑛×𝑛 as 𝑘(XXX,XXX).
The latter matrix is to be avoided in an attempt to avoid 𝑂(𝑛􏷢) complexity of matrix
inversion. The vector of noisy target values is denoted yyy ∈ ℝ𝑛 and the true underlying
function values by fff.

The authors assume existence of fff𝑢 — the noiseless pseudo targets at locations UUU.
The crucial assumption is the prior distribution on the pseudo targets:

𝑝(fff𝑢| UUU) = 𝒩 (000,KKK𝑢𝑢), (B.)

 B Details on derivations and algorithms M. Stražar

implying that the mean of fff𝑢 is the same as the mean of the true targets fff. Moreover,
this necessarily implies that the pseudo inputs UUU must be well-spread throughout the
input region. To see why this is the case, imagine UUU being concentrated in an in-
creasingly small region. This would cause fff𝑢 to be increasingly concentrated around
values of 𝑓 in that region. Now, for smooth functions, the probability of hitting a
small region where the mean of fff𝑢 is exactly zero is infinitesimal. It turns out that
the assumption in Eq. B. is crucial for gradient-based optimization of pseudo input
placement. This is realized with optimizing the marginal likelihood with respect to UUU
and other possible hyperparameters of the kernel(s).

The second key point is that the targets yyy are modelled with the predictive posterior
distribution with KKK𝑢𝑢 used in place of KKK𝑥𝑥. If fff𝑢 would be known, the posterior would
equal

𝑝(yyy|XXX,UUU,fff𝑢) = 𝒩 (KKK𝑥𝑢KKK−􏷠
𝑢𝑢fff𝑢,𝛬𝛬𝛬 + 𝜎􏷡III), (B.)

where 𝛬𝛬𝛬 is diagonal matrix with entries equal to 𝜆𝜆𝜆 = diag(KKK𝑥𝑥 − KKK𝑥𝑢KKK−􏷠
𝑢𝑢KKK𝑢𝑥). The

equation is similar to the standard Nyström approximation in Eq. ., except that the
pseudo targets are used. This method is referred in sparse Gaussian Processes literature
as Fully-independent training conditional (FITC, Quiñonero-Candela and Rasmussen
[]).

The marginal likelihood for the targets yyy is obtained via Bayes rule, by combining
the prior in Eq. B. with the standard likelihood in Eq. B.. It is obtained by
marginalizing out the variables fff𝑢, which has an closed-form expression in the case of
the product of two normal distributions:

𝑝(yyy|XXX,UUU,𝜃𝜃𝜃) = 􏾙 𝑝(yyy|XXX,UUU,fff𝑢)𝑝(fff𝑢| UUU)𝑑fff𝑢 = 𝒩 (000,KKK𝑥𝑢KKK−􏷠
𝑢𝑢KKK𝑢𝑥+𝛬𝛬𝛬+𝜎􏷡𝐼). (B.)

The matrix 𝛬𝛬𝛬 is the crucial increase in variance that forces gradient-based optimization
to explore the input region, and makes the likelihood different than the case where the
classic Nyström approximation is used in place of the full kernel matrix (Eq. .). The
log-likelihood from Eq. B. can be optimized very similarly as in B. with respect
to UUU and 𝜃𝜃𝜃. However, a principal limitation of SPGPs is that input space must be
continuous and not too large (in the sense of dimension 𝑑).

C

Supplementary Information on
iONMF



 C Supplementary Information on iONMF M. Stražar

C. Detailed information on analyzed RBP experiments

Reference and details about all experiments used in the study are listed. Experiments
for the same proteins are sorted into groups A-Q. Factor models for each experi-
ment do not consider biological or technical replicates in the same group to eliminate
bias. Depending on the experimental protocol used (PARCLIP, CLIPSEQ, iCLIP,
HITSCLIP) we report number of crosslinking clusters and number of individual sites
(measured as the sum of cluster lengths) for each experiment used. We used infor-
mation on clusters (column Clusters) if provided by the original study. In case of
experiments - and , we used information on individual crosslink sites (column
CL sites). From individual positions (clusters or individual crosslinks), we select up to
. samples with highest cDNA counts.

C. Details on models inferred from subsets of data sources

In this section, we present details on parameter settings (factorization rank) for factor
models learned on different subsets of data sources. The model learned on the complete
set of data sources {XXXCLIP,XXXGO,XXXKMER,XXXRNA,XXXRG}, with 𝑛 = 50,000 training samples
and rank 𝑟 = 10 results in

𝑁 = (𝑛 + 􏾜
𝑞

𝑑𝑞) ⋅ 𝑟

= (50,000 + 1 + 3,030 + 101 + 505 + 25,865 + 39,560) ⋅ 10 = 1,190,570

free parameters. This is the total number of entries in matrices WWW, HHH𝑌 and all HHH𝑞 of
the full model. Note that the XXXCLIP matrix has up to , columns, the exact number
is depending on the replicate group corresponding to the selected protein. To ensure
fair comparison among different combinations of data sources, we set the rank to

𝑟𝑠 = ⌈𝑁/(𝑛 + 1 + 􏾜
𝑠

𝑑𝑠)⌉

for a subset of data sources 𝑠 ⊂ {XXXCLIP,XXXGO,XXXKMER,XXXRNA,XXXRG}. This ensures an
approximately equal number of free parameters of the factor model (column 𝑁𝑠 in
Suppl. Table C.).

Low-rank kernel approximation 

C. Importance of different data sources

C.. Prediction accuracy of data source subsets

Each combination of RBP experiments and subset of data sources yields a factor model.
In Suppl. Tables C.,C. and C. we compare all such models on area under ROC
curve (AUC), obtained via prediction of the independent hold-out test set (see main
text). For each protein, we highlight the best-scoring subset of data sources.

C.. Mutual information within individual data sources

Assessing the importance of individual data sources in Suppl. Tables C.-C. is non-
trivial since the scores obtained by a particular subsets are not independent. Neverthe-
less, we transformed each column of Suppl. Tables C.-C. in a 31 × 5 binary matrix
BBB, corresponding to  subsets of  data sources. For each data source, we calculate the
Spearman correlation coefficient between: its corresponding column in BBB and column
with AUC scores. Thus, we obtain a 5 × 1 vector containing correlation coefficients
for each protein, which we use to perform hierarchical clustering in Suppl. Figure C..

We observe an influence of XXXKMER on sequence-dependent proteins (TIA/TIAL,
PUM, hnRNPs, UAF, FUS, etc.), while the influence is less pronounced for more
region-type dependent proteins, such as those displaying bias towards introns and
’UTRs (ELAVL, []), or in both exons and introns (SRSF, []). On the other
hand, RNA structure is most informative data source for eIFAIII, which binds un-
structured RNA ([]).

Interestingly, all experiments performed using iCLIP show strong RNA k-mer pref-
erence, which is attributed to the individual nucleotide resolution. Protocols with
lower resolution, such as CLIPSEQ, conversely are not correlated with RNA k-mers,
but are rather modelled by more coarse data sources such as region type and RNA
structure.

C.. Clustering of RBPs based on individual data sources

We examine values of features in the coefficient matrices HHH𝑞 for each RBP experiment.
By comparing the magnitude of individual features in the modules related to positive
samples (crosslink sites), we identify features determining RBP binding.

For each RBP experiment, we select the most relevant module (see main text) and
normalize the corresponding row vector in HHH𝑞. We run hierarchical clustering (Ward’s

 C Supplementary Information on iONMF M. Stražar

linkage) on the row vectors and display the results as heatmaps for each data source.
The results are shown in Suppl. Fig. C.-C..

Figure C.
Hierarchical clustering
of proteins based on
the importance of each
individual data source. [2] Ago2-MNase (PARCLIP)

 [9] ELAVL1-MNase (PARCLIP)
 [5] Ago2 (CLIPSEQ)
 [10] ELAVL1A (PARCLIP)
 [15] IGF2BP1-3 (PARCLIP)
 [1] Ago/EIF2C1-4 (PARCLIP)
 [21] MOV10 (PARCLIP)
 [11] ELAVL1 (CLIPSEQ)
 [3] Ago2 (1) (HITSCLIP)
 [25] SRSF1 (CLIPSEQ)
 [4] Ago2 (2) (HITSCLIP)
 [7] eIF4AIII (2) (CLIPSEQ)
 [6] eIF4AIII (1) (CLIPSEQ)
 [27] TDP-43 (iCLIP)
 [31] U2AF2 (KD) (iCLIP)
 [30] U2AF2 (iCLIP)
 [24] QKI (PARCLIP)
 [17] hnRNPC (iCLIP)
 [13] FUS (PARCLIP)
 [16] hnRNPC (iCLIP)
 [26] TAF15 (PARCLIP)
 [14] Mut FUS (PARCLIP)
 [18] hnRNPL (iCLIP)
 [20] hnRNPL-like (iCLIP)
 [23] PUM2 (PARCLIP)
 [28] TIA1 (iCLIP)
 [29] TIAL1 (iCLIP)
 [22] Nsun2 (iCLIP)
 [19] hnRNPL (iCLIP)
 [12] ESWR1 (PARCLIP)
 [8] ELAVL1 (PARCLIP)

−1 0 1
S1earman R

XCLIP XGO XRNA XRG XKMER

Figure C.
Protein similarity based on
RNA k-mer row vectors
in 􏹳􏹳􏹳KMER . Features
represent all possible
kmers within the interval
[-..] relative to the
crosslink sites, resulting
in 􏷪􏷩􏷪 × 􏷫􏷮􏷯 = 􏷫􏷮,􏷱􏷮􏷯
features. To avoid clutter,
only the centers and first
three nucleotides of the
-mer are displayed. [25] SRSF1

 [6] eIF4AIII (1)
 [7] eIF4AIII (2)
 [1] Ago/EIF2C1-4
 [9] ELAVL1-MNase
 [3] Ago2 (1)
 [4] Ago2 (2)
 [27] TDP-43
 [22] Nsun2
 [12] ESWR1
 [14] Mut FUS
 [23] PUM2
 [13] FUS
 [24] QKI
 [18] hnRNPL
 [30] U2AF2
 [28] TIA1
 [29] TIAL1
 [11] ELAVL1
 [8] ELAVL1
 [10] ELAVL1A
 [21] MOV10
 [5] Ago2
 [26] TAF15
 [2] Ago2-MNase
 [15] IGF2BP1-3
 [20] hnRNPL-like
 [19] hnRNPL
 [31] U2AF2 (KD)
 [16] hnRNPC
 [17] hnRNPC

−5 54 53 52 51 0 1 2 3 4 5
Fea230e 4-score AA

AN
AA

CN
AA

GN
AA

UN
AC

AN
AC

CN
AC

GN
AC

UN
AG

AN
AG

CN
AG

GN
AG

UN
AU

AN
AU

CN
AU

GN
AU

UN
CA

AN
CA

CN
CA

GN
CA

UN
CC

AN
CC

CN
CC

GN
CC

UN
CG

AN
CG

CN
CG

GN
CG

UN
CU

AN
CU

CN
CU

GN
CU

UN
GA

AN
GA

CN
GA

GN
GA

UN
GC

AN
GC

CN
GC

GN
GC

UN
GG

AN
GG

CN
GG

GN
GG

UN
GU

AN
GU

CN
GU

GN
GU

UN
UA

AN
UA

CN
UA

GN
UA

UN
UC

AN
UC

CN
UC

GN
UC

UN
UG

AN
UG

CN
UG

GN
UG

UN
UU

AN
UU

CN
UU

GN
UU

UN

Low-rank kernel approximation 

 [6] eIF4AIII (1)
 [7] eIF4AIII (2)
 [25] SRSF1
 [1] Ago/EIF2C1-4
 [9] ELAVL1-MNase
 [3] Ago2 (1)
 [4] Ago2 (2)
 [27] TDP-43
 [14] Mut FUS
 [12] ESWR1
 [22] Nsun2
 [19] hnRNPL
 [16] hnRNPC
 [17] hnRNPC
 [18] hnRNPL
 [31] U2AF2 (KD)
 [8] ELAVL1
 [10] ELAVL1A
 [11] ELAVL1
 [30] U2AF2
 [28] TIA1
 [29] TIAL1
 [26] TAF15
 [13] FUS
 [23] PUM2
 [5] Ago2
 [24] QKI
 [2] Ago2-MNase
 [20] hnRNPL-like
 [15] IGF2BP1-3
 [21] MOV10

−5 54 53 52 51 0 1 2 3 4 5
Fea230e 4-score -40 -20 0 20 40 -40 -20 0 20 40 -40 -20 0 20 40 -40 -20 0 20 40 -40 -20 0 20 40 -40 -20 0 20 40 -40 -20 0 20 40 -40 -20 0 20 40 -40 -20 0 20 40 -40 -20 0 20 40

AUCG UUUU UAAU CUAU GAUC AAAA GCGG UCUU GUUU AGGA

Figure C.
Protein similarity based
on RNA k-mer row vec-
tors in 􏹳􏹳􏹳KMER . K-means
clustering is performed
on row vectors from top
modules for each of the
RBP experiments. Ten k-
mers closest to the centroid
vectors were selected. The
z-scores within the inter-
vals [−􏷮􏷩..􏷮􏷩] nucleotides
are displayed.

 [12] ESWR1
 [4] Ago2 (2)
 [3] Ago2 (1)
 [25] SRSF1
 [1] Ago/EIF2C1-4
 [9] ELAVL1-MNase
 [6] eIF4AIII (1)
 [7] eIF4AIII (2)
 [8] ELAVL1
 [10] ELAVL1A
 [11] ELAVL1
 [18] hnRNPL
 [26] TAF15
 [13] FUS
 [30] U2AF2
 [19] hnRNPL
 [22] Nsun2
 [15] IGF2BP1-3
 [20] hnRNPL-like
 [2] Ago2-MNase
 [23] PUM2
 [28] TIA1
 [5] Ago2
 [24] QKI
 [27] TDP-43
 [31] U2AF2 (KD)
 [14] Mut FUS
 [21] MOV10
 [16] hnRNPC
 [17] hnRNPC
 [29] TIAL1

−5 −4 −3 −2 −1 0 1 2 3 4 5
Fea230e 5-score -50 -25 0 25 50

Position relative to crosslink site

Figure C.
Protein similarity based on
RNA secondary structure
row vectors in 􏹳􏹳􏹳RNA . Z-
scores of features obtained
via RNAfold output
are proportional to the
predicted probability of
double-stranded RNA at
the particular nucleotide
within the [-..]
interval relative to the
crosslink sites.

 [7] eIF4AIII (2)
 [9] ELAVL1-MNase
 [12] ESWR1
 [6] eIF4AIII (1)
 [1] Ago/EIF2C1-4
 [4] Ago2 (2)
 [3] Ago2 (1)
 [25] SRSF1
 [8] ELAVL1
 [10] ELAVL1A
 [11] ELAVL1
 [16] hnRNPC
 [18] hnRNPL
 [26] TAF15
 [28] TIA1
 [30] U2AF2
 [31] U2AF2 (KD)
 [21] MOV10
 [14] Mut FUS
 [17] hnRNPC
 [29] TIAL1
 [24] QKI
 [5] Ago2
 [27] TDP-43
 [2] Ago2-MNase
 [13] FUS
 [23] PUM2
 [19] hnRNPL
 [22] Nsun2
 [15] IGF2BP1-3
 [20] hnRNPL-like

−5 −4 −3 −2 −1 0 1 2 3 4 5
Fea230e 5-score -50 -25 0 25 50

Position relative to crosslink site

Figure C.
Protein similarity based on
RNA secondary structure
row vectors in 􏹳􏹳􏹳RNA . Z-
scores of features obtained
via RNAfold output
are proportional to the
predicted probability of
double-stranded RNA at
the particular nucleotide
within the [-..]
interval relative to the
crosslink sites. Scores
within  nucleotide bins
were summed.

 C Supplementary Information on iONMF M. Stražar

Figure C.
Protein similarity based
on cDNA counts row
vectors in 􏹳􏹳􏹳CLIP . Note
that the values for RBPs in
the same groups are zero
in order not to bias the
clustering. [18] hnRNPL

 [19] hnRNPL
 [14] Mut FUS
 [25] SRSF1
 [30] U2AF2
 [16] hnRNPC
 [17] hnRNPC
 [28] TIA1
 [29] TIAL1
 [27] TDP-43
 [26] TAF15
 [8] ELAVL1
 [15] IGF2BP1-3
 [23] PUM2
 [6] eIF4AIII (1)
 [7] eIF4AIII (2)
 [22] Nsun2
 [3] Ago2 (1)
 [1] Ago/EIF2C1-4
 [4] Ago2 (2)
 [24] QKI
 [9] ELAVL1-MNase
 [10] ELAVL1A
 [20] hnRNPL-like
 [5] Ago2
 [21] MOV10
 [31] U2AF2 (KD)
 [2] Ago2-MNase
 [13] FUS
 [11] ELAVL1
 [12] ESWR1

−5 54 53 52 51 0 1 2 3 4 5
Fea230e 4-score [1

] A
go

/E
IF

2C
1-

4
[2

] A
go

2-
M

Na
se

[3
] A

go
2
(1
)

[4
] A

go
2
(2
)

[5
] A

go
2

[6
] e
IF
4A

III
 (1
)

[7
] e
IF
4A

III
 (2
)

[8
] E

LA
VL

1
[9
] E

LA
VL

1-
M
Na

se
[1
0]
 E
LA

VL
1A

[1
1]
 E
LA

VL
1

[1
2]
 E
SW

R1
[1
3]
 F
US

[1
4]
 M
ut
 F
US

[1
5]
 IG

F2
BP

1-
3

[1
6]
 h
nR

NP
C

[1
7]
 h
nR

NP
C

[1
8]
 h
nR

NP
L

[1
9]
 h
nR

NP
L

[2
0]
 h
nR

NP
L-
lik
e

[2
1]
 M
OV

10
[2
2]
 N
su
n2

[2
3]
 P
UM

2
[2
4]
 Q
KI

[2
5]
 S
RS

F1
[2
6]
 T
AF

15
[2
7]
 T
DP

-4
3

[2
8]
 T
IA
1

[2
9]
 T
IA
L1

[3
0]
 U
2A

F2
[3
1]
 U
2A

F2
 (K

D)

Figure C.
Protein similarity based on
genomic region types row
vectors in 􏹳􏹳􏹳RG . For each
region type, the interval
[-..] relative to the
crosslink sites is shown. [28] TIA1

 [15] IGF2BP1-3
 [23] PUM2
 [21] MOV10
 [11] ELAVL1
 [10] ELAVL1A
 [18] hnRNPL
 [26] TAF15
 [8] ELAVL1
 [29] TIAL1
 [30] U2AF2
 [16] hnRNPC
 [17] hnRNPC
 [27] TDP-43
 [5] Ago2
 [13] FUS
 [20] hnRNPL-like
 [24] QKI
 [9] ELAVL1-MNase
 [14] Mut FUS
 [19] hnRNPL
 [22] Nsun2
 [31] U2AF2 (KD)
 [6] eIF4AIII (1)
 [12] ESWR1
 [1] Ago/EIF2C1-4
 [4] Ago2 (2)
 [25] SRSF1
 [3] Ago2 (1)
 [2] Ago2-MNase
 [7] eIF4AIII (2)

−5 −4 −3 −2 −1 0 1 2 3 4 5
Fea341e z-score -40 -20 0 20 40 -40 -20 0 20 40 -40 -20 0 20 40 -40 -20 0 20 40 -40 -20 0 20 40

exon intron 5'UTR 3'UTR CDS

Low-rank kernel approximation 

Table C.
Detailed information on individual protein-RNA experimental interaction data used. Total number of sites for each experi-
ment. Experiments describing same protein in different technical or biological replicates are grouped.

ID Protein Tissue Protocol Ref. group CL sites Clusters Reference
[] Ago/EIFC- HEK PARCLIP A   []
[] Ago-MNase HEK PARCLIP A   []
[] Ago () HEK HITSCLIP A   []
[] Ago () HEK HITSCLIP A   []
[] Ago HEK CLIPSEQ A   []
[] eIFAIII () HeLa CLIPSEQ B   []
[] eIFAIII () HeLa CLIPSEQ B   []
[] ELAVL HEK PARCLIP C   []
[] ELAVL-MNase HEK PARCLIP C   []
[] ELAVLA HEK PARCLIP C   []
[] ELAVL HEK CLIPSEQ C   []
[] ESWR HEK PARCLIP D   []
[] FUS HEK PARCLIP E   []
[] Mut FUS HEK PARCLIP E   []
[] IGFBP- HEK PARCLIP F   []
[] hnRNPC HeLa iCLIP G   []
[] hnRNPC HeLa iCLIP G   []
[] hnRNPL HeLa iCLIP H  - []
[] hnRNPL U iCLIP H  - []
[] hnRNPL-like U iCLIP H  - []
[] MOV HEK PARCLIP I   []
[] Nsun HEK iCLIP J  - []
[] PUM HEK PARCLIP K   []
[] QKI HEK PARCLIP L   []
[] SRSF HEK CLIPSEQ M   []
[] TAF HEK PARCLIP N   []
[] TDP- HeLa iCLIP O   []
[] TIA HeLa iCLIP P   []
[] TIAL HeLa iCLIP P   []
[] UAF HeLa iCLIP Q   []
[] UAF (KD) HeLa iCLIP Q   []

 C Supplementary Information on iONMF M. Stražar

Table C.
Details on parameter settings for factor models on different subsets of data sources.

Subset name Data subset 𝑠 ∑𝑠 𝑑𝑠 𝑁𝑠 𝑟𝑠 Avg. AUC
C XXXCLIP    0.733 ± 0.018
G XXXGO    0.493 ± 0.009
K XXXKMER    0.690 ± 0.017
R XXXRNA    0.744 ± 0.024
T XXXRG    0.704 ± 0.018
CG XXXCLIP,XXXGO    0.701 ± 0.021
CK XXXCLIP,XXXKMER    0.820 ± 0.020
CR XXXCLIP,XXXRNA    0.788 ± 0.023
CT XXXCLIP,XXXRG    0.796 ± 0.021
GK XXXGO,XXXKMER    0.776 ± 0.020
GR XXXGO,XXXRNA    0.699 ± 0.026
GT XXXGO,XXXRG    0.816 ± 0.015
KR XXXKMER,XXXRNA    0.763 ± 0.019
KT XXXKMER,XXXRG    0.860 ± 0.018
RT XXXRNA,XXXRG    0.735 ± 0.022
CGK XXXCLIP,XXXGO,XXXKMER    0.842 ± 0.016
CGR XXXCLIP,XXXGO,XXXRNA    0.774 ± 0.026
CGT XXXCLIP,XXXGO,XXXRG    0.858 ± 0.018
CKR XXXCLIP,XXXKMER,XXXRNA    0.911 ± 0.000
CKT XXXCLIP,XXXKMER,XXXRG    0.910 ± 0.000
CRT XXXCLIP,XXXRNA,XXXRG    0.807 ± 0.021
GKR XXXGO,XXXKMER,XXXRNA    0.830 ± 0.017
GKT XXXGO,XXXKMER,XXXRG    0.884 ± 0.008
GRT XXXGO,XXXRNA,XXXRG    0.834 ± 0.015
KRT XXXKMER,XXXRNA,XXXRG    0.873 ± 0.016
CGKR XXXCLIP,XXXGO,XXXKMER,XXXRNA    0.903 ± 0.008
CGKT XXXCLIP,XXXGO,XXXKMER,XXXRG    0.880 ± 0.011
CGRT XXXCLIP,XXXGO,XXXRNA,XXXRG    0.863 ± 0.016
CKRT XXXCLIP,XXXKMER,XXXRNA,XXXRG    0.921 ± 0.007
GKRT XXXGO,XXXKMER,XXXRNA,XXXRG    0.878 ± 0.012
CGKRT XXXCLIP,XXXGO,XXXKMER,XXXRNA,XXXRG    0.887 ± 0.011

Low-rank kernel approximation 

Table C.
Area under ROC curve for all combinations of RBP experiments and data sources subsets.

Subset [
]A

go
/E

IF
C

-


[
]A

go
-

M
N

as
e

[
]A

go


(
)

[
]A

go


(
)

[
]A

go


[
]e

IF
A

II
I(

)

[
]e

IF
A

II
I(

)

[
]E

LA
V

L

[
]E

LA
V

L
-M

N
as

e

[
]

EL
AV

L
A

C . . . . . . . . . .
G . . . . . . . . . .
K . . . . . . . . . .
R . . . . . . . . . .
T . . . . . . . . . .
CG . . . . . . . . . .
CK . . . . . . . . . .
CR . . . . . . . . . .
CT . . . . . . . . . .
GK . . . . . . . . . .
KR . . . . . . . . . .
KT . . . . . . . . . .
GR . . . . . . . . . .
GT . . . . . . . . . .
RT . . . . . . . . . .
CGK . . . . . . . . . .
CKR . . . . . . . . . .
CKT . . . . . . . . . .
CGR . . . . . . . . . .
CGT . . . . . . . . . .
CRT . . . . . . . . . .
GKR . . . . . . . . . .
GKT . . . . . . . . . .
KRT . . . . . . . . . .
GRT . . . . . . . . . .
CGKR . . . . . . . . . .
CGKT . . . . . . . . . .
CKRT . . . . . . . . . .
CGRT . . . . . . . . . .
GKRT . . . . . . . . . .
CGKRT . . . . . . . . . .

 C Supplementary Information on iONMF M. Stražar

Table C.
Area under ROC curve for all combinations of RBP experiments and data sources subsets (continued).

Subset [
]

EL
AV

L

[
]

ES
W

R


[
]

FU
S

[
]

M
ut

FU
S

[
]

IG
F

BP
-



[
]

hn
R

N
PC

[
]

hn
R

N
PC

[
]

hn
R

N
PL

[
]

hn
R

N
PL

[
]

hn
R

N
PL

-li
ke

C . . . . . . . . . .
G . . . . . . . . . .
K . . . . . . . . . .
R . . . . . . . . . .
T . . . . . . . . . .
CG . . . . . . . . . .
CK . . . . . . . . . .
CR . . . . . . . . . .
CT . . . . . . . . . .
GK . . . . . . . . . .
KR . . . . . . . . . .
KT . . . . . . . . . .
GR . . . . . . . . . .
GT . . . . . . . . . .
RT . . . . . . . . . .
CGK . . . . . . . . . .
CKR . . . . . . . . . .
CKT . . . . . . . . . .
CGR . . . . . . . . . .
CGT . . . . . . . . . .
CRT . . . . . . . . . .
GKR . . . . . . . . . .
GKT . . . . . . . . . .
KRT . . . . . . . . . .
GRT . . . . . . . . . .
CGKR . . . . . . . . . .
CGKT . . . . . . . . . .
CKRT . . . . . . . . . .
CGRT . . . . . . . . . .
GKRT . . . . . . . . . .
CGKRT . . . . . . . . . .

Low-rank kernel approximation 

Table C.
Area under ROC curve for all combinations of RBP experiments and data sources subsets (continued).

Subset [
]

M
O

V


[
]

N
su

n

[
]

PU
M



[
]

Q
K

I

[
]

SR
SF



[
]

TA
F



[
]

T
D

P-


[
]

T
IA



[
]

T
IA

L

[
]

U
A

F

[
]

U
A

F
(K

D
)

C . . . . . . . . . . .
G . . . . . . . . . . .
K . . . . . . . . . . .
R . . . . . . . . . . .
T . . . . . . . . . . .
CG . . . . . . . . . . .
CK . . . . . . . . . . .
CR . . . . . . . . . . .
CT . . . . . . . . . . .
GK . . . . . . . . . . .
KR . . . . . . . . . . .
KT . . . . . . . . . . .
GR . . . . . . . . . . .
GT . . . . . . . . . . .
RT . . . . . . . . . . .
CGK . . . . . . . . . . .
CKR . . . . . . . . . . .
CKT . . . . . . . . . . .
CGR . . . . . . . . . . .
CGT . . . . . . . . . . .
CRT . . . . . . . . . . .
GKR . . . . . . . . . . .
GKT . . . . . . . . . . .
KRT . . . . . . . . . . .
GRT . . . . . . . . . . .
CGKR . . . . . . . . . . .
CGKT . . . . . . . . . . .
CKRT . . . . . . . . . . .
CGRT . . . . . . . . . . .
GKRT . . . . . . . . . . .
CGKRT . . . . . . . . . . .

D

Razširjeni povzetek



 D Razširjeni povzetek M. Stražar

V času pospešenega zbiranja, organiziranja in dostopnosti podatkov se pojavlja potreba
po razvoju napovednih modelov na osnovi hkratnega učenja iz več podatkovnih virov.
Konkretni primeri uporabe obsegajo področja strojnega učenja, priporočilnih siste-
mov, socialnih omrežij, financ in računske biologije. Heterogenost in velikost tipičnih
podatkovnih zbirk vodi razvoj postopkov za hkratno zmanjšanje velikosti (zgoščevanje)
in sklepanje iz več virov podatkov v skupnem model. Matrična faktorizacija in jedrne
metode (ang. kernel methods) sta dve splošni orodji, ki omogočata dosego navedenega
cilja. Pričujoče delo se osredotoča na naslednja specifična cilja: i) iskanje interpretabil-
nih, neprekrivajočih predstavitev vzorcev v podatkih s pomočjo ortogonalne matrične
faktorizacije in ii) nadzorovano hkratno faktorizacijo več jedrnih matrik, ki omogoča
modeliranje nelinearnih odzivov in interpretacijo pomembnosti različnih podatkovnih
virov.

Motivacija za razvoj modelov in algoritmov v pričujočem delu izhaja iz RNA bi-
ologije in bogate kompleksnosti interakcij med proteini in RNA molekulami v celici.
Čeprav se regulacija RNA dogaja na več različnih nivojih - kar vodi v več podatkovnih
virov/pogledov - lahko odgovorimo na vprašanja s pomočjo omejitev v fazi modeli-
ranja. V delu predstavimo postopek hkratne matrične faktorizacije z omejitvijo, da se
posamezni vzorci v podatkih ne prekrivajo med seboj - so neodvisni oz. ortogonalni.
V praksi to pomeni, da lahko odkrijemo različne, neprekrivajoče načine regulacije
RNA s strani različnih proteinov. Z vzključitvijo več podatkovnih virov izboljšamo
napovedno točnost pri napovedovanju potencialnih vezavnih mest posameznega RNA-
vezavnega proteina. Vzorci, odkriti iz podatkov so primerljivi z eksperimentalno določen-
imi lastnostmi posameznega RNA vezavnega proteina, ki obsegajo kratka zaporedja
nukleotidov na RNA, kooperativno vezavo z drugimi proteini, RNA D strukturnimi
lastnostmi ter funkcijsko anotacijo.

Klasične metode matrične faktorizacije tipično temeljijo na linearnih modelih po-
datkov oz. tarčnih izhodnih funkcij. Jedrne metode so eden od načinov za razširitev
modelov matrične faktorizacije za modeliranje nelinearnih odzivov. Učenje z več jedri
(ang. Multiple kernel learning) omogoča učenje iz več podatkovnih virov, a je ome-
jeno s kvadratno računsko zahtevnostjo v odvisnosti od števila primerov (instanc) v
podatkih. To omejitev lahko omilimo z ustreznimi približki pri izračunu jedrnih ma-
trik (ang. kernel matrix). V ta namen izboljšamo obstoječe metode na način, da hkrati
izračunamo aproksimacijo jedrnih matrik ter njihovo linearno kombinacijo, ki mod-
elira podan tarčni signal. To dosežemo z metodo Mklaren (ang. Multiple kernel learn-

Low-rank kernel approximation 

ing based on Least-angle regression), ki je sestavljena iz Nepopolnega razcepa Choleskega
in Regresije najmanjših kotov (ang. Least-angle regression). Načrt algoritma vodi v lin-
earno časovno in prostorsko odvisnost tako glede na število primerov v podatkih kot
tudi glede na število jeder. Osnovne prednosti postopka so poleg računske odvisnosti
tudi splošnost oz. neodvisnost od uporabljenih jedrnih funkcij. Tako lahko upora-
bimo različne, splošne jedrne funkcije za modeliranje različnih delov prostora vhod-
nih podatkov, ki so lahko zvezni ali diskretni, npr. vektorski prostori, prostori nizov
in drugih podatkovnih struktur, kar je prikladno za uporabo v bioinformatiki.

V delu tako razvijemo algoritme na osnovi hkratne matrične faktorizacije in jedrnih
metod, obravnavnamo modele linearne in nelinearne regresije ter interpretacije po-
datkovne domene - odkrijemo pomembne jedrne funkcije in primere podatkov, pri
čemer je metode mogoče poganjati na milijonih podatkovnih primerov in podatkovnih
virov.

Ortogonalna matrična faktorizacija z več podatkovnimi viri

Matrična faktorizacija je matematična metoda, ki rešuje problem razcepa matrike in
njenega zapisa v obliki produkta vsaj dveh matrik. Je orodje za reševanje sistemov lin-
earnih enačb, v strojnem učenju pa pogosto služi kot približen zapis matrike podatkov
in omogoča stiskanje podatkov, iskanje vzorcev, odstranjevanje šuma, napovedovanje
neznanih ali manjkajočih vrednosti in več.

Naj bo XXX ∈ ℝ𝑛×𝑑 matrika 𝑛 × 𝑑 realnih števil oz. podatkov. Cilj je poiskati matriki
AAA ∈ ℝ𝑛×𝑟 ter BBB ∈ ℝ𝑑×𝑟, kjer je 𝑟 ≤ min(𝑛, 𝑑), tako da:

XXX ≈ AAABBB𝑇 . (D.)

Pogosto je število 𝑟 rang matrik AAA in BBB, ter bistveno manjši od originalnih dimenzij 𝑛
in 𝑑, kar pomeni, da je rešitev približek natančne rešitve. Problem je rešljiv s pomočjo
matematične optimizacije, algoritem pa je odvisen od omejitev, ki jih predpostavimo
za model, podan z AAA in BBB.

V primeru strojnega učenja tako iščemo kompromis med natančnostjo približka ter
kompaktnostjo takega zapisa. Izkaže se, da so morebitni vzorci prisotni v XXX - podobni
stolpci oz. vrstice matrike - povzeti v AAA in BBB. Zaradi velikega prostora možnih mod-
elov (veliko možnih lokalnih minimumov Neenačbe D.) pa je iskanje vzorcev lahko
oteženo, posebej ko so vrednosti XXX različnih velikostnih redov, vzorci pa prisotni v

 D Razširjeni povzetek M. Stražar

neenakomernih razmerjih. Tako pri optimizaciji parametrov AAA in BBB uporabimo do-
datne predpostavke, kot so npr. nenegativnost (nenegativna matrična faktorizacija,
NMF), redkost, omejenost ali ortogonalnost.

V pričujočem delu razvijemo algoritem za reševanje problem nenegativne, ortogo-
nalne matrične faktorizacije (ang. Integrative, orthogonal non-negative matrix factoriza-
tion, iONMF), kjer so vhodni podatki predstavljeni z več podatkovnimi matrikami
XXX􏷠,XXX􏷡, ...,XXX𝑝; te lahko predstavljajo več podatkovnih virov oz. pogledov na podatke.
V modelu poiščemo skupno matriko AAA ter matrike BBB􏷠,BBB􏷡, ...,BBB𝑝, ki so lastne vsakemu
od podatkovnih virov:

XXX􏷠,XXX􏷡, ...,XXX𝑝 ≈ AAABBB𝑇
􏷠 ,AAABBB𝑇

􏷡 , ...,AAABBB𝑇
𝑝 ,

z omejitvami

nenegativnosti; XXX ⪰ 000, AAA ⪰ 000, BBB ⪰ 000, ter

približne ortogonalnosti ‖BBB𝑇
𝑞 BBB𝑞 − III‖ < 𝑡 za skalar 0 < 𝑡 < ∞ in 𝑞 = 1, 2, ...𝑝.

Omejitvi sta pomembni zaradi izboljšane interpretacije vzorcev (nenegativnost, or-
togonalnost) ter redkosti in iskanja neprekrivajočih vzorcev, prisotnih v različnih številih
primerov (ortogonalnost). Poseben poudarek je na ortogonalnosti matrik, specifičnih
za posamezne podatkovne vire BBB, saj slednja omejitev naredi problem različen od pre-
prostega združevanja (konkatenacije) podatkov v eno samo matriko.

Omenjene izboljšave postopka so navidez zelo tehnične narave, vendar pomembno
izboljšajo modeliranje interakcij med proteini in RNA. V konkretnem primeru vrstice
matrik predstavljajo različne genomske lokacije, stolpci pa predstavitev različnih po-
datkovnih virov oz. dejavnikov: afinitete vezave (protokol CLIP), RNA zaporedja
(sekvence), RNA D strukture, anotacije genskih regij ter funkcijske anotacije. Ra-
zlični proteini prepoznavanjo oz. nastopajo v reakcijah z različnimi RNA molekulami.
Proces interakcije je odvisen od različnih dejavnikov; proteini prepoznavajo specifična,
kratka zaporedja nukleotidov na RNA (A, C, G in U) - RNA motive. Da pa bo do de-
janske vezave v resnici prišlo, je odvisno tudi od drugih dejavnikov, kot so npr. dostop-
nost RNA motiva v prostoru (D struktura RNA), lokacija RNA v celici, zadostne
koncentracije obravnavanega proteina, kompeticije za vezavna mesta z drugimi pro-
teini. Našteta dejstva govorijo v prid modeliranja/napovedovanja interakcij s hkratno
uporabo več podatkovnih virov oz. pogledov na podatke. Vzorci, ki jih odkrijemo s

Low-rank kernel approximation 

pomočjo modelov NMF, so prisotni v več podatkovnih virih in so v podatkih različno
pristotni - odkrivanje vzorcev izboljšamo z uporabo ortogonalnih modelov NMF.

Metodo primerjamo s sorodnimi pristopi matrične faktorizacije na podlagi več kri-
terijev: napovedne točnosti, prekrivanja med odkritimi vzorci, redkosti modelov in
ujemanjem z obstoječim znanjem o posameznih RNA vezavnih proteinih. Pri tem
izboljšamo napovedno točnost pri  od  obravnavanih RNA vezavnih proteinov
(Slika ., str. ). Razlika med iONMF in običajnim pristopom NMF se povečuje
s številom učnih primerov genomskih lokacij (Slika ., str. ). Z nadzorovanjem
ortogonalnosti faktorjev modela najdemo vzorce z bistveno manjšo stopnjo prekri-
vanja, večjo stopnjo redkosti, za bistveno manjšo ceno v napovedni točnosti (Slika .,
str. ). V primerjavi s klasično metodo NMF, predlagana metoda iONMF od-
krije neprekrivajoče vzorce in različne načine regulacije RNA s strani istega proteina
(Slika ., str. ). V pripadajoči objavi odkrijemo tipične lastnosti molekul RNA, ki
nastopajo v reakcijah z vsakim od  obravnavanih RNA-vezavnih proteinov [].

Na ta način pokažemo praktično uporabo metode za napovedovanje interakcij med
proteini in RNA ter iskanje vzorcev v podatkih. V primeru velikih prostorov modelov
- v tem primeru podanim z nekaj deset tisoč dimenzionalnimi vektorskimi prostori - je
pomembna uporaba dodatnih omejitev pri optimizaciji parametrov. Metoda iONMF
tako izboljša obstoječe metode matrične faktorizacije in je uporabna v primeru iskanja
neprekrivajočih vzorcev v podatkih.

Nadzorovana aproksimacija jedrnih matrik

Zgoraj opisane metode matrične faktorizacije lahko obravnavamo kot modele lin-
earne regresije z enim ali več tarčnimi funkcijami. Za modeliranje nelinearnih izhod-
nih funkcij lahko uporabimo jedrne metode (ang. kernel methods). V tem primeru
kot podatkovni viri nastopajo različne jedrne funkcije, ki jih lahko interpretiramo
kot funkcije podobnosti med podatki - določajo kovariančno strukturo skupne po-
razdelitve. Jedrna funkcija med elementoma vektorskega prostora xxx𝑖 in xxx𝑗, 𝑘(xxx𝑖, xxx𝑗)
predstavlja notranji produkt in je lahko definirana na prostorih realnih števil, nizov
znakov, podatkovnih struktur in drugih objektov. Tako lahko modeliramo podatke
z bogatimi predstavitvami, kar je v bioinformatiki uporabno npr. pri modeliranju
bioloških zaporedij.

Cena pri uporabi jedrnih metod je kvadratna računska zahtevnost pri izračunu in
shranjevanju jedrne matrike. Tudi v tem primeru se pokaže potreba po hkratnem

 D Razširjeni povzetek M. Stražar

zmanjševanju dimenzije podatkov in iskanju parametrov modela. Predlagamo novo
metodo Mklaren, ki hkrati rešuje oba omenjena problema, tako da pri aproksimaciji
več jedrnih matrik poišče relevantne dele, ki se prilegajo tarčni funkciji. Na ta način
lahko odkrijemo relevantne dele prostora vhodnih podatkov in izberemo najprimerne-
jše jedrne funkcije za obravnavani problem (Slika ., str. ).

Za zmanjšanje dimenzionalnosti prostora prilagodimo metodo Nepopolnega raz-
cepa Choleskega (ang. Incomplete Cholesky Decomposition). Za dano simetrično, pozitivno-
semidefinitno jedrno matriko KKK, kjer je KKK(𝑖, 𝑗) = 𝑘(xxx𝑖, xxx𝑗), je Razcep Choleskega
definiran kot

KKK = GGGGGG𝑇 , (D.)

kjer je GGG zgornje-trikotna matrika. Enačba D. drži v primeru, ko je rang matrike
KKK enak rangu matrike GGG. Ker je tak rang v primerih velikih podatkov prevelik za
praktično uporabo, metodo razcepa ustavimo pri manjšem rangu od polnega in tako
dobimo Nepopoln razcep Choleskega. V pričujočem delu predlagamo tehnični rešitvi
za naslednja problema:

obravnava razcepa v kontekstu nadzorovanega učenja, ter

hkratni razcep več jedrnih matrik.

Problema se prevedeta na izbiro pivotov (posameznih delov jedrne matrike) oz.
baznih funkcij. Če delujemo v kontekstu nadzorovanega učenja, npr. regresije, lahko
pivot izberemo na način, ki najbolj ustreza modeliranju tarčnega signala. V ta na-
men uporabimo tehniko regresije najmanjših kotov (LAR, ang. Least-angle regression,
Slika ., str. ) in poudarimo povezavo med metodama LAR in Nepopolnim razce-
pom Choleskega.

Rezultat je splošna metoda za nadzorovano učenje in/ali izbiro najustreznejših je-
drnih funkcij. Metodo smo ovrednotili na splošnih podatkovnih zbirkah, zgrajenih za
namen vrednotenja regresijskih modelov. Predlagana metodaMklaren izboljša trenutne
metode za aproksimacijo splošnih jedrnih matrik ter je primerljiva z bolj specifičnimi
metodami, ki delujejo na podrazredih jedrnih funkcij, pri čemer vrednotimo:

minimalni rang aproksimacije za dosego primerljive napovedne točnosti v primer-
javi z uporabo celotne jerdne matrike,

napovedno točnost v diskretnih in zveznih prostorih vhodnih podatkov,

Low-rank kernel approximation 

iskanje smiselnih jeder v obdelavi besedil in bioloških zaporedjih,

časovno zahtevnost.

Metodo prav tako uporabimo v praksi za modeliranje interakcij med proteini in
RNA, pri čemer se osredotočimo na modeliranje bioloških zaporedij, predstavljenimi
kot nizi znakov končne abecede. Poleg izboljšanje napovedne točnosti uspemo od-
kriti najprimerjenše dolžine RNA motivov, ki jih prepoznava posamezni RNA veza-
vni protein. Metoda tako omogoča modeliranje linearnih in nelinearnih izhodnih
funkcij, ki so podane s kovariačno strukturo (jedrno funkcijo) v odvisnosti od po-
datkov. Z uporabo aproksimacije jedrnih matrik tako omogočimo modeliranje po-
datkovnih zbirk z milijoni vhodnih primerov in zapis modelov z več tisoč jedrnimi
funkcijami.

BIBLIOGRAPHY

[] Tinghui Zhou, H Shan, A Banerjee, and G Sapiro.
Kernelized Probabilistic Matrix Factorization: Ex-
ploiting Graphs and Side Information. SDM, .

[] Hao Ma, Haixuan Yang, Michael R Lyu, and Irwin
King. Sorec: social recommendation using prob-
abilistic matrix factorization. In Proceedings of the
th ACM conference on Information and knowledge
management, pages –. ACM, . ISBN
.

[] Stein Aerts, Diether Lambrechts, Sunit Maity, Peter
Van Loo, Bert Coessens, Frederik De Smet, Leon-
Charles Tranchevent, Bart De Moor, Peter Marynen,
Bassem Hassan, Peter Carmeliet, and Yves Moreau.
Gene prioritization through genomic data fusion.
Nature biotechnology, ():–, may . ISSN
-. doi: ./nbt.

[] Genevieve D Erwin, Nir Oksenberg, Rebecca M
Truty, Dennis Kostka, Karl K Murphy, Nadav Ahi-
tuv, Katherine S Pollard, and John a Capra. In-
tegrating diverse datasets improves developmental
enhancer prediction. PLoS computational biol-
ogy, ():e, jun . ISSN -.
doi: ./journal.pcbi..

[] Yehuda Koren, Robert Bell, and Chris Volinsky.
Matrix factorization techniques for recommender
systems. Computer, (), .

[] RP Adams, GE Dahl, and Iain Murray. Incor-
porating Side Information in Probabilistic Matrix
Factorization with Gaussian Processes. arXiv preprint
arXiv:., (), .

[] Marinka Zitnik and Blaz Zupan. Data Fusion by
Matrix Factorization. IEEE Transactions on Pattern
Analysis & Machine Intelligence, .

[] Weiyong Li. Supervised principal component analy-
sis, .

[] Gert Lanckriet and Nello Cristianini. Learning
the kernel matrix with semidefinite programming.
Journal of Machine Learning Research, :–, .

[] J. M. Hillis. Combining Sensory Information:
Mandatory Fusion Within, but Not Between,
Senses. Science, ():–, . ISSN
. doi: ./science..

[] Henrik Boström, Sten F Andler, Marcus Brohede,
Ronnie Johansson, Alexander Karlsson, Joeri Van
Laere, Lars Niklasson, Maria Nilsson, Anne Persson,
and Tom Ziemke. On the Definition of Information
Fusion as a Field of Research. IKI Technical Reports,
pages –, . doi: HS-IKI-TR--.

[] Paul Pavlidis, Jason Weston, Jinsong Cai, and
William Stafford Noble. Learning gene functional
classifications from multiple data types. Journal of
computational biology, ():–, .

[] D D Lee and H S Seung. Learning the parts of ob-
jects by non-negative matrix factorization. Nature,
():–, oct . ISSN -.
doi: ./.

[] Shihua Zhang, Chun-Chi Liu, Wenyuan Li, Hui
Shen, Peter W Laird, and Xianghong Jasmine Zhou.
Discovery of multi-dimensional modules by inte-
grative analysis of cancer genomic data. Nucleic
acids research, ():–, oct . ISSN
-. doi: ./nar/gks.

[] Fei Wang, Tao Li, and Changshui Zhang. Semi-
supervised clustering via matrix factorization. In
SDM, number , pages –. SIAM, .

[] Nicolas Gillis and Robert Luce. Robust Near-
Separable Nonnegative Matrix Factorization Using
Linear Optimization. arXiv preprint arXiv:.,
:–, .

[] Nicolas Gillis. The Why and How of Nonnegative
Matrix Factorization. Regularization, Optimization,
Kernels, and Support Vector Machines, :, jan
.

[] Sebastian Riedel, Limin Yao, Andrew McCallum, and
Benjamin M Marlin. Relation extraction with matrix



http://dx.doi.org/10.1038/nbt1203
http://dx.doi.org/10.1371/journal.pcbi.1003677
http://dx.doi.org/10.1126/science.1075396
http://dx.doi.org/HS-IKI-TR-07-006
http://dx.doi.org/10.1038/44565
http://dx.doi.org/10.1093/nar/gks725

 Bibliography M. Stražar

factorization and universal schemas. In Proceedings of
the  Conference of the North American Chapter of
the Association for Computational Linguistics: Human
Language Technologies, pages –, .

[] Samuel Kaski and Mehmet Gonen. Kernelized
Bayesian matrix factorization. IEEE Transactions
on Pattern Analysis & Machine Intelligence, ():
–, .

[] C. Boutsidis and E. Gallopoulos. SVD based
initialization: A head start for nonnegative ma-
trix factorization. Pattern Recognition, ():
–, apr . ISSN -.
doi: http://dx.doi.org/./j.patcog....

[] Russell Albright, James Cox, David Duling,
A Langville, and C Meyer. Algorithms, initializa-
tions, and convergence for the nonnegative matrix
factorization. arXiv preprint arXiv:., (),
.

[] Nathan Srebro. Maximum-margin matrix factoriza-
tion. Advances in neural information processing systems,
pages —-, .

[] S.Z. Li. Local non-negative matrix factorization
as a visual representation. Proceedings nd Inter-
national Conference on Development and Learning.
ICDL , pages –, . doi: ./DE-
VLRN...

[] Stan Z Li, Xinwen Hou, Hongjiang Zhang, and
Qiansheng Cheng. Learning spatially localized, parts-
based representation. In Computer Vision and Pattern
Recognition, . CVPR . Proceedings of the 
IEEE Computer Society Conference on, volume , pages
I—-. IEEE, . ISBN .

[] PO O Hoyer. Non-negative matrix factorization with
sparseness constraints. Journal of Machine Learning
Research, :–, nov . ISSN -.

[] Naiyang Guan, Dacheng Tao, Zhigang Luo, and
Bo Yuan. Online Nonnegative Matrix Factoriza-
tion With Robust Stochastic Approximation. IEEE
Transactions on Neural Networks and Learning Sys-
tems, ():–, jul . ISSN -X.
doi: ./TNNLS...

[] Chris Ding, Tao Li, and Michael I Jordan. Convex
and Semi-Nonnegative Matrix Factorizations. IEEE
Transactions on Pattern analysis and Machine Intel-
ligence, ():–, jan . ISSN -.
doi: ./TPAMI...

[] Bernhard Schölkopf and Alexander J Smola. Learning
with kernels: Support Vector Machines, Regularization,
Optimization, and Beyond. MIT press, .

[] Christopher M Bishop. Pattern Recognition and Ma-
chine Learning. Information Science and Statistics.
Springer, . ISBN .

[] Francis R. Bach, Gert R. G. Lanckriet, and Michael I.
Jordan. Multiple kernel learning, conic duality, and
the SMO algorithm. Twenty-first international confer-
ence on Machine learning - ICML ’, page , .
doi: ./..

[] Mehmet Gönen and Ethem Alpaydin. Multiple ker-
nel learning algorithms. Journal of Machine Learning
Research, :–, .

[] Shai Fine and Katya Scheinberg. Efficient SVM train-
ing using low-rank kernel representations. Journal of
Machine Learning Research, :–, .

[] Ali Rahimi and Ben Recht. Weighted sums of ran-
dom kitchen sinks: replacing minimization with
randomization in learning. In Advances in Neural In-
formation Processing Systems (NIPS), volume , pages
–, .

[] Francis R. Bach and Michael I. Jordan. Predictive
low-rank decomposition for kernel methods. In
International Conference on Machine learning (ICML),
pages –, New York, New York, USA, .
ACM Press. ISBN .

[] Brian Kulis, Mátyás Sustik, and Inderjit S. Dhillon.
Low-rank kernel learning with Bregman matrix di-
vergences. Journal of Machine Learning Research, :
–, .

[] Bradley Efron and Trevor Hastie. Least angle re-
gression. The Annals of Statistics, ():–,
.

[] Alain Rakotomamonjy. SimpleMKL. Journal of Ma-
chine Learning Research, :–, . ISSN
. doi: .....

[] Corinna Cortes, Mehryar Mohri, and Afshin Ros-
tamizadeh. Two-stage learning kernel algorithms. In
International Conference on Machine learning (ICML),
pages –, .

[] Francis Bach. Sharp analysis of low-rank kernel ma-
trix approximations. arXiv preprint arXiv:.,
aug .

[] Steven K. Tjoa and K. J.Ray Liu. Multiplicative
update rules for nonnegative matrix factorization
with co-occurrence constraints. ICASSP, IEEE In-
ternational Conference on Acoustics, Speech and Signal
Processing - Proceedings, pages –, . ISSN
. doi: ./ICASSP...

http://dx.doi.org/http://dx.doi.org/10.1016/j.patcog.2007.09.010
http://dx.doi.org/10.1109/DEVLRN.2002.1011835
http://dx.doi.org/10.1109/DEVLRN.2002.1011835
http://dx.doi.org/10.1109/TNNLS.2012.2197827
http://dx.doi.org/10.1109/TPAMI.2008.277
http://dx.doi.org/10.1145/1015330.1015424
http://dx.doi.org/10.1.1.139.1778
http://dx.doi.org/10.1109/ICASSP.2010.5495734

Low-rank kernel approximation 

[] Vincent Y F Tan and Cédric Févotte. Automatic
relevance determination in nonnegative matrix
factorization with the 𝛽-divergence. IEEE trans-
actions on pattern analysis and machine intelligence,
():–, jul . ISSN -.
doi: ./TPAMI...

[] Jerome Friedman, Trevor Hastie, and Robert Tibshi-
rani. The Elements of Statistical Learning, volume .
Springer series in statistics Springer, Berlin, .

[] Gene H Golub and Charles F Van Loan. Matrix
Computations, volume . JHU Press, .

[] Megasthenis Asteris and Alexandros G Dimakis.
Orthogonal NMF through Subspace Exploration.
Advances in Neural Information Processing Systems
(NIPS), ():–, . ISSN .

[] Chris Ding, Xiaofeng He, and Horst D Simon. On
the equivalence of nonnegative matrix factorization
and spectral clustering. Proceedings of SDM’, pages
–, .

[] DD Daniel D Lee, HS Seung, Bell Laboratories,
Murray Hill, and H Sebastian Seung Ý. Algorithms
for Non-negative Matrix Factorization. In NIPS,
number , pages –, .

[] Chih-Jen Lin. Projected gradient methods for
nonnegative matrix factorization. Neural computa-
tion, ():–, oct . ISSN -.
doi: ./neco.....

[] Rafal Zdunek and Andrzej Cichocki. Non-negative
matrix factorization with quasi-newton optimiza-
tion. Artificial Intelligence and Soft Computing, pages
–, .

[] Stephen Boyd and Lieven Vandenberghe. Convex
optimization. Cambridge university press, .

[] Jiho Yoo and Seungjin Choi. Weighted nonnegative
matrix co-tri-factorization for collaborative predic-
tion. Advances in Machine Learning, pages –,
.

[] Ke Zhou, Shuang-Hong Yang, and Hongyuan Zha.
Functional matrix factorizations for cold-start rec-
ommendation. Proceedings of the th international
ACM SIGIR conference on Research and develop-
ment in Information - SIGIR ’, page , .
doi: ./..

[] Swapna Joshi, S. Karthikeyan, B. S. Manjunath, Scott
Grafton, and Kent a. Kiehl. Anatomical parts-based
regression using non-negative matrix factorization.
 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, pages –, jun
. doi: ./CVPR...

[] Jean-Philippe Brunet, Pablo Tamayo, Todd R Golub,
and Jill P Mesirov. Metagenes and molecular pattern
discovery using matrix factorization. Proceedings
of the National Academy of Sciences of the United
States of America, ():–, mar . ISSN
-. doi: ./pnas..

[] Julian König, Kathi Zarnack, Gregor Rot, Tomaz
Curk, Melis Kayikci, Blaz Zupan, Daniel J Turner,
Nicholas M Luscombe, and Jernej Ule. iCLIP re-
veals the function of hnRNP particles in splicing at
individual nucleotide resolution. Nature structural
& molecular biology, ():–, jul . ISSN
-. doi: ./nsmb..

[] T Hubbard, Daniel Barker, Ewan Birney, Graham
Cameron, Yuan Chen, L Clark, Tony Cox, J Cuff, Val
Curwen, Thomas Down, and Others. The Ensembl
genome database project. Nucleic acids research, ():
–, .

[] R B Denman. Using RNAFOLD to predict the
activity of small catalytic RNAs. Biotechniques, ():
–, .

[] Michael Ashburner, Catherine A Ball, Judith A Blake,
David Botstein, Heather Butler, J Michael Cherry,
Allan P Davis, Kara Dolinski, Selina S Dwight,
Janan T Eppig, and Others. Gene Ontology: tool
for the unification of biology. Nature genetics, ():
–, .

[] Hyunsoo Kim and Haesun Park. Sparse non-negative
matrix factorizations via alternating non-negativity-
constrained least squares for microarray data analysis.
Bioinformatics (Oxford, England), ():–,
jun . ISSN -. doi: ./bioinfor-
matics/btm.

[] Janez Demšar. Statistical comparisons of classifiers
over multiple data sets. The Journal of Machine
Learning Research, :–, .

[] Samprit Chatterjee and Ali S Hadi. Regression analysis
by example. John Wiley & Sons, .

[] Hilal Kazan, Debashish Ray, Esther T Chan, Tim-
othy R Hughes, and Quaid Morris. RNAcontext: a
new method for learning the sequence and structure
binding preferences of RNA-binding proteins. PLoS
computational biology, ():e, jan . ISSN
-. doi: ./journal.pcbi..

[] Xiao Li, Gerald Quon, HD Lipshitz, and Quaid
Morris. Predicting in vivo binding sites of
RNA-binding proteins using mRNA secondary
structure. RNA, pages –, .
doi: ./rna..sequence.

[] Yoichiro Sugimoto, Julian König, Shobbir Hus-
sain, Blaž Zupan, Tomaž Curk, Michaela Frye, and
Jernej Ule. Analysis of CLIP and iCLIP methods
for nucleotide-resolution studies of protein-RNA
interactions. Genome Biol, ():R, .

http://dx.doi.org/10.1109/TPAMI.2012.240
http://dx.doi.org/10.1162/neco.2007.19.10.2756
http://dx.doi.org/10.1145/2009916.2009961
http://dx.doi.org/10.1109/CVPR.2010.5540022
http://dx.doi.org/10.1073/pnas.0308531101
http://dx.doi.org/10.1038/nsmb.1838
http://dx.doi.org/10.1093/bioinformatics/btm134
http://dx.doi.org/10.1093/bioinformatics/btm134
http://dx.doi.org/10.1371/journal.pcbi.1000832
http://dx.doi.org/10.1261/rna.2017210.sequence

 Bibliography M. Stražar

[] Serena L Chan, Ina Huppertz, Chengguo Yao, Lingjie
Weng, James J Moresco, John R Yates, Jernej Ule,
James L Manley, and Yongsheng Shi. Cpsf and
wdr directly bind to aauaaa in mammalian mrna
� processing. Genes & development, ():–
, .

[] Marvin Jens and Nikolaus Rajewsky. Competi-
tion between target sites of regulators shapes post-
transcriptional gene regulation. Nature Reviews
Genetics, ():nrg, .

[] Martin Stražar, Marinka Žitnik, Blaž Zupan, Jernej
Ule, and Tomaž Curk. Orthogonal matrix factor-
ization enables integrative analysis of multiple RNA
binding proteins. Bioinformatics, page btw, .

[] Kathi Zarnack, Julian König, Mojca Tajnik,
Inigo Iñigo Martincorena, Sebastian Eustermann,
Isabelle Stévant, Alejandro Reyes, Simon Anders,
Nicholas M Luscombe, Jernej Ule, Julian Koenig,
and Isabelle Stevant. Direct competition between
hnrnp c and uaf protects the transcriptome
from the exonization of< i> alu</i> elements. Cell,
():–, jan . ISSN -.
doi: ./j.cell....

[] Alfredo Castello, Bernd Fischer, Katrin Eichelbaum,
Rastislav Horos, Benedikt M Beckmann, Claudia
Strein, Norman E Davey, David T Humphreys,
Thomas Preiss, Lars M Steinmetz, Jeroen Krijgsveld,
and Matthias W Hentze. Insights into RNA biol-
ogy from an atlas of mammalian mRNA-binding
proteins. Cell, ():–, jun . ISSN
-. doi: ./j.cell....

[] Jernej Murn, Kathi Zarnack, Yawei J Yang, Omer
Durak, Elisabeth A Murphy, Sihem Cheloufi,
Dilenny M Gonzalez, Marianna Teplova, Tomaž
Curk, Johannes Zuber, Dinshaw J Patel, Jernej Ule,
Nicholas M Luscombe, Li-Huei Tsai, Christopher A
Walsh, and Yang Shi. Control of a neuronal morphol-
ogy program by an RNA-binding zinc finger protein
Unkempt. Genes & Development, :–, .
ISSN -. doi: ./gad...

[] Erwin Kreyszig. Introductory functional analysis with
applications, volume . Wiley, New York, .

[] Bernhard Scholkopf and Alexander J Smola. Learning
with kernels: support vector machines, regularization,
optimization, and beyond. MIT press, .

[] Carl Edward Rasmussen. Gaussian processes for
machine learning. MIT Press, .

[] Milton Abramowitz and Irene A Stegun. Handbook
of mathematical functions: with formulas, graphs, and
mathematical tables, volume . Courier Corporation,
.

[] Sören Sonnenburg, Gunnar Rätsch, and Bernhard
Schölkopf. Large scale genomic sequence SVM classi-
fiers. In International Conference on Machine learning
(ICML), pages –. ACM, .

[] Corinna Cortes, Mehryar Mohri, and Afshin Ros-
tamizadeh. Algorithms for learning kernels based
on centered alignment. Journal of Machine Learning
Research, :–, mar .

[] Corinna Cortes. L- Regularization for Learning
Kernels. UAI, .

[] John Von Neumann. Uber ein {ö}konomisches
Gleichungssystem. In Ergebn. Math. Kolloq. Wein,
volume , .

[] Ahmed El Alaoui and Michael W. Mahoney. Fast
Randomized Kernel Methods With Statistical Guar-
antees. Stat, :–, nov .

[] Dino Oglic and Thomas Gärtner. Nyström Method
with Kernel K-means++ Samples as Landmarks.
Proceedings of the th International Conference on
Machine Learning, :–, .

[] Yanshuai Cao, Marcus Brubaker, David Fleet, and
Aaron Hertzmann. Efficient optimization for sparse
Gaussian process regression. IEEE Transactions on
Pattern Analysis & Machine Intelligence, pages –,
. ISSN -.

[] Francis Bach, Julien Mairal, Jean Ponce, and
Guillermo Sapiro. Sparse coding and dictionary
learning for image analysis. In IEEE International
Conference on Computer Vision and Pattern Recogni-
tion, .

[] Hui Zou and Trevor Hastie. Regularization and vari-
able selection via the elastic net. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 
():–, apr . ISSN -.

[] Carl D Meyer. Matrix Analysis and Applied Linear
Algebra. Siam, .

[] Corinna Cortes. Can learning kernels help perfor-
mance? In Invited talk at International Conference on
Machine Learning (ICML ). Montreal, Canada,
.

[] Pascal Vincent and Yoshua Bengio. Kernel matching
pursuit. Machine Learning, (-):–, .
ISSN . doi: ./A:.

[] Jean-Francois Ton, Seth Flaxman, Dino Sejdi-
novic, and Samir Bhatt. Spatial Mapping with
Gaussian Processes and Nonstationary Fourier Fea-
tures. Spatial Statistics, . ISSN -.
doi: https://doi.org/./j.spasta....

http://dx.doi.org/10.1016/j.cell.2012.12.023
http://dx.doi.org/10.1016/j.cell.2012.04.031
http://dx.doi.org/10.1101/gad.258483.115
http://dx.doi.org/10.1023/A:1013955821559
http://dx.doi.org/https://doi.org/10.1016/j.spasta.2018.02.002

Low-rank kernel approximation 

[] Jesús Alcalá-Fdez, Luciano Sanchez, Salvador Garcia,
Maria Jose del Jesus, Sebastian Ventura, Josep Maria
Garrell, Jose Otero, Cristóbal Romero, Jaume Bac-
ardit, Victor M Rivas, and Others. KEEL: a software
tool to assess evolutionary algorithms for data mining
problems. Soft Computing-A Fusion of Foundations,
Methodologies and Applications, ():–, .

[] John Blitzer, Mark Dredze, and Fernando Pereira.
Biographies, bollywood, boom-boxes and blenders:
Domain adaptation for sentiment classification.
In Association for Computational Linguistics (ACL),
volume , pages –, .

[] Mo Chen and James L Manley. Mechanisms of al-
ternative splicing regulation: insights from molecular
and genomics approaches. Nature reviews. Molecular
cell biology, ():–, . ISSN -.
doi: ./nrm.

[] Bin Tian, Jun Hu, Haibo Zhang, and Carol S
Lutz. A large-scale analysis of mRNA polyadeny-
lation of human and mouse genes. Nucleic acids
research, ():–, jan . ISSN -.
doi: ./nar/gki.

[] Marina M. Scotti and Maurice S. Swanson. RNA
mis-splicing in disease. Nature Reviews Genetics, nov
. ISSN -. doi: ./nrg...

[] Jonathan P Ling, Olga Pletnikova, Juan C Troncoso,
and Philip C Wong. TDP- repression of noncon-
served cryptic exons is compromised in ALS-FTD.
Science, ():–, .

[] Debashish Ray, Hilal Kazan, Esther T Chan, Lour-
des Peña Castillo, Sidharth Chaudhry, Shaheynoor
Talukder, Benjamin J Blencowe, Quaid Morris, and
Timothy R Hughes. Rapid and systematic analysis
of the RNA recognition specificities of RNA-binding
proteins. Nature biotechnology, ():–, jul
. ISSN -. doi: ./nbt..

[] Kate B Cook, Hilal Kazan, Khalid Zuberi, Quaid
Morris, and Timothy R Hughes. RBPDB: a database
of RNA-binding specificities. Nucleic acids research,
(Database issue):D–, jan . ISSN -
. doi: ./nar/gkq.

[] Xiang-Dong Fu and Manuel Ares Jr. Context-
dependent control of alternative splicing by rna-
binding proteins. Nature Reviews Genetics, ():
, .

[] Shatakshi Pandit, Yu Zhou, Lily Shiue, Gabriela
Coutinho-Mansfield, Hairi Li, Jinsong Qiu, Jie
Huang, Gene W Yeo, Manuel Ares, and Xiang-Dong
Fu. Genome-wide analysis reveals SR protein co-
operation and competition in regulated splicing.
Molecular cell, ():–, apr . ISSN -
. doi: ./j.molcel....

[] Julian König, Kathi Zarnack, NM Nicholas M Lus-
combe, Jernej Ule, and Julian Koenig. Protein–RNA
interactions: new genomic technologies and perspec-
tives. Nature Reviews Genetics, (February):–,
feb . ISSN -. doi: ./nrg.

[] William H Press. Numerical recipes rd edition: The
art of scientific computing. Cambridge university press,
.

[] Tim Hesterberg, Nam Hee Choi, Lukas Meier, and
Chris Fraley. Least angle and l- penalized regression:
A review. Statistics Surveys, :–, . ISSN
-.

[] Ali Rahimi and Ben Recht. Random features for
large-scale kernel machines. In Advances in Neural
Information Processing Systems (NIPS), pages –
, .

[] Yves-Laurent Kom Samo and Stephen Roberts.
Generalized Spectral Kernels. arXiv preprint
arXiv:., . ISSN .
doi: ./j.rinp....

[] Andrea Vedaldi and Andrew Zisserman. Efficient
additive kernels via explicit feature maps. IEEE
Transactions on Pattern Analysis & Machine Intelli-
gence, ():–, mar . ISSN -.
doi: ./TPAMI...

[] Edward Snelson and Zoubin Ghahramani. Sparse
Gaussian processes using pseudo-inputs. In Inter-
national Conference on Machine learning (ICML),
.

[] Joaquin Quiñonero-Candela and Carl Edward Ras-
mussen. A unifying view of sparse approximate
Gaussian process regression. Journal of Machine
Learning Research, :–, .

[] Philip J Uren, Suzanne C Burns, Jianhua Ruan,
Kusum K Singh, Andrew D Smith, and Luiz O F
Penalva. Genomic Analyses of the RNA-binding
Protein Hu Antigen R (HuR) Identify a Complex
Network of Target Genes and Novel Characteristics
of Its Binding Sites. Journal of Biological Chemistry,
():–, oct . ISSN -.
doi: ./jbc.C..

[] Minna-Liisa Aenkoe, Michaela Mueller-McNicoll,
Holger Brandl, Tomaz Curk, Crtomir Gorup, Ian
Henry, Jernej Ule, Karla M Neugebauer, Minna-
Liisa Änkö, and Michaela Müller-McNicoll. The
RNA-binding landscapes of two SR proteins re-
veal unique functions and binding to diverse RNA
classes. Genome biology, ():R, jan . ISSN
-. doi: ./gb----r.

http://dx.doi.org/10.1038/nrm2777
http://dx.doi.org/10.1093/nar/gki158
http://dx.doi.org/10.1038/nrg.2015.3
http://dx.doi.org/10.1038/nbt.1550
http://dx.doi.org/10.1093/nar/gkq1069
http://dx.doi.org/10.1016/j.molcel.2013.03.001
http://dx.doi.org/10.1038/nrg3141
http://dx.doi.org/10.1016/j.rinp.2015.06.002
http://dx.doi.org/10.1109/TPAMI.2011.153
http://dx.doi.org/10.1074/jbc.C111.266882
http://dx.doi.org/10.1186/gb-2012-13-3-r17

 Bibliography M. Stražar

[] Jérôme Saulière, Valentine Murigneux, Zhen Wang,
Emélie Marquenet, Isabelle Barbosa, Olivier Le
Tonquèze, Yann Audic, Luc Paillard, Hugues Roest
Crollius, and Hervé Le Hir. CLIP-seq of eIFAIII
reveals transcriptome-wide mapping of the human
exon junction complex. Nature structural & molecular
biology, ():–, .

[] Markus Hafner, Markus Landthaler, Lukas Burger,
Mohsen Khorshid, Jean Hausser, Philipp Berninger,
Andrea Rothballer, Manuel Ascano, Anna-Carina
Jungkamp, Mathias Munschauer, Alexander Ulrich,
Greg S Wardle, Scott Dewell, Mihaela Zavolan,
Thomas Tuschl, Manuel Ascano Jr, and Others.
Transcriptome-wide identification of RNA-binding
protein and microRNA target sites by PAR-CLIP.
Cell, ():–, apr . ISSN -.
doi: ./j.cell....

[] Shivendra Kishore, Lukasz Jaskiewicz, Lukas Burger,
Jean Hausser, Mohsen Khorshid, and Mihaela Za-
volan. A quantitative analysis of CLIP methods
for identifying binding sites of RNA-binding pro-
teins. Nature methods, ():–, jul . ISSN
-. doi: ./nmeth..

[] Ryan L Boudreau, Peng Jiang, Brian L Gilmore,
Ryan M Spengler, Rebecca Tirabassi, Jay A Nelson,
Christopher A Ross, Yi Xing, and Beverly L David-
son. Transcriptome-wide Discovery of microRNA
Binding Sites in Human Brain. Neuron, ():
–, .

[] Jessica I Hoell, Erik Larsson, Simon Runge, Jeffrey D
Nusbaum, Sujitha Duggimpudi, Thalia A Farazi,
Markus Hafner, Arndt Borkhardt, Chris Sander,
and Thomas Tuschl. RNA targets of wild-type and
mutant FET family proteins. Nature structural &
molecular biology, ():–, .

[] Jernej Ule, Mikhail s Gelfand, and Albrecht
Bindereif. Crosslinking-immunoprecipitation
(iCLIP) analysis reveals global regulatory roles of
hnRNP L. RNA biology, ():–, .

[] Cem Sievers, Tommy Schlumpf, Ritwick Sawarkar,
Federico Comoglio, and Renato Paro. Mixture mod-
els and wavelet transforms reveal high confidence
RNA-protein interaction sites in MOV PAR-CLIP
data. Nucleic acids research, ():e—-e,
.

[] Shobbir Hussain, Abdulrahim A Sajini, Sandra
Blanco, Sabine Dietmann, Patrick Lombard, Yoichiro
Sugimoto, Maike Paramor, Joseph G Gleeson, Dun-
can T Odom, Jernej Ule, and Michaela Frye. NSun-
mediated cytosine- methylation of vault noncoding
RNA determines its processing into regulatory small
RNAs. Cell reports, ():–, jul . ISSN
-. doi: ./j.celrep....

[] James R Tollervey, Tomaz Curk, Boris Rogelj,
Michael Briese, Matteo Cereda, Melis Kayikci, Ju-
lian Koenig, Tibor Hortobagyi, Agnes L Nishimura,
Vera Zupunski, Rickie Patani, Siddharthan Chan-
dran, Gregor Rot, Blaz Zupan, Christopher E Shaw,
and Jernej Ule. Characterizing the RNA targets and
position-dependent splicing regulation by TDP-.
Nature Neuroscience, ():–U, apr .
ISSN -. doi: ./nn..

[] Zhen Wang, Melis Kayikci, Michael Briese, Kathi
Zarnack, Nicholas M Luscombe, Gregor Rot,
Blaz Blaž Zupan, Tomaz Tomaž Curk, and Jernej
Ule. iCLIP Predicts the Dual Splicing Effects of TIA-
RNA Interactions. PLOS Biology, ():e,
oct . ISSN -. doi: ./jour-
nal.pbio..

http://dx.doi.org/10.1016/j.cell.2010.03.009
http://dx.doi.org/10.1038/nmeth.1608
http://dx.doi.org/10.1016/j.celrep.2013.06.029
http://dx.doi.org/10.1038/nn.2778
http://dx.doi.org/10.1371/journal.pbio.1000530
http://dx.doi.org/10.1371/journal.pbio.1000530

	Abstract
	Povzetek
	Acknowledgements
	Introduction
	Data integration by matrix factorization
	Low-rank approximation of multiple kernel matrices
	Summary of the scientific contributions
	Availability
	Overview of thesis structure

	Low-rank matrix approximation
	Notions of error
	Non-negative matrix factorization
	Constrained matrix factorization
	Simultaneous matrix factorization

	Integrative orthogonal nonnegative matrix factorization
	The iONMF model and algorithms
	Derivation of the iONMF optimization algorithm
	The prediction function
	Discovering relevant modules and features

	Experiments with iONMF
	Sampling of genomic positions
	Data matrices
	Analysis overview
	Predictive performance
	Effect of orthogonality
	Overlap between modules
	Estimated importance of data sources
	Identified factors associated with RBP binding
	iONMF identifies biologically relevant binding patterns
	Orthogonality constraints demultiplex binding patterns

	Summary on biological results
	Summary on orthogonal matrix factorization

	Kernel methods
	Kernel functions
	Output function spaces
	Multiple kernel learning
	Making new kernels from old
	Multiple kernel learning algorithms

	Gaussian processes
	Kernel matrix approximations
	Kernel-specific approximations

	Approximate multiple kernel learning
	Initial definitions and overview
	Simultaneous Incomplete Cholesky decompositions
	Pivot selection based on Least-angle regression
	Look-ahead decompositions
	The Mklaren algorithm
	Out-of-sample prediction
	Computing dual coefficients
	L2 norm regularization
	Computational complexity
	A function space view

	Experiments with Mklaren
	A note on compared methods
	Robust selection of inducing points
	Inducing points location distributions
	Matching pursuit versus Least-angle regression

	Time series
	String kernels
	Experiments on synthetic data
	Predicting RNA-binding protein binding affinities

	Compactness of approximations
	Comparison of MKL methods on rank-one kernels
	Empirical execution times
	Summary of the results on approximate MKL

	Conclusion
	A brief introduction to RNA biology
	Details on derivations and algorithms
	Low-rank matrix approximation
	Notions of error
	Principal component analysis

	Linear regression
	The relation between dual and primal regression weights
	Least-angle regression

	Kernel methods
	Inner product spaces
	A simple example of (kernel) linear regression
	Kernel-specific approximations
	Translation-invariant kernels and explicit feature maps
	Optimization of differentiable kernels

	Supplementary Information on iONMF
	Detailed information on analyzed RBP experiments
	Details on models inferred from subsets of data sources
	Importance of different data sources
	Prediction accuracy of data source subsets
	Mutual information within individual data sources
	Clustering of RBPs based on individual data sources

	Razširjeni povzetek
	Bibliography

