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Abstract

In this paper we propose an efficient architecture
for selective image modeling. We give an erample
in which models of different scale are reconstructed in
parallel. We show that this redundant representation
can effectively be pruned using the criterion of Mini-
mum Description Length. Models that are selected in
the final description indicate the appropriate scale of
observation.

1 Introduction

It is becoming clear in the vision community that
a single, universal all-purposeful representation is not
feasible. Such a representation would have to be exces-
sively flexible with many parameters and hence com-
putationally unstable. Biological visual systems and
experiments are showing us that instead of one com-
plex model, several elementary models are better en-
coded in a behavior. Instead of a universal represen-
tation we should try to find a robust universal vision
architecture that consists of several modules, that can
combine different sources of information and readily
adapt itself to specific goals. These ideas are known in
literature as active [2] and purposive 1] vision. Hence,
a thorough (comprehensive) reconstruction of shape
and depth from different visual cues in a general pur-
pose vision system is neither necessary nor sensible,
and maybe not even possible to perform. Instead,
selective reconstruction or modeling should be made
which would use models tailored to the task at hand.

We would like to stress in particular the relation be-
tween the goal of the vision system and the selection
of appropriate models (i.e. mobile robot—even, flat
surfaces, free of obstacles; grasping—volumetric mod-
els relating to the construction and size of the grip-
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per). Reasoning about functionality in vision should
be achieved through usage of specific models adapted
to walking, driving, grasping, sitting etc. instead of a
general purpose representation.

Reconstruction should be selective in the sense that
it is made only (a) where models are applicable, (b) to
a degree that is necessary for accomplishing a particu-
lar task. To represent different aspects of an image we
need different models (for shape, texture, color, spec-
ularity, etc.). Besides, reconstruction must take into
consideration resource and time constraints. In real
situations a vision system must devote all its comput-
ing resources only to those parts of the scene that are
relevant for accomplishing its goals.
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Figure 1: Architecture for selective scene modeling.

As an ultimate goal we would want to have a vi-
sual architecture as shown in Fig. 1 where each task
(defined by an outside agent) determines a set of pre-
ferred models together with the appropriate image do-
main for each model type. The system then searches
for instances of those models in the respective image
domains where several instances of each type of model
start detection in their corresponding seed regions.
Several models of either parametric [7] or rigid [9] na-
ture can be chosen and searched for in parallel. Un-



like “classical” segmentation that attempts to describe
the whole image with a particular type of models, this
scheme recovers only those models that are applica-
ble in a specific task at hand (domain of applicabil-
ity). Parts of the image where no model is applicable
remain undescribed. Apparently, those parts of the
image are not important for accomplishing the task
of the system. On the other hand, some parts in the
image may be, at least partially, matched by multiple
models, resulting in a redundant description of the im-
age. To get a concise description information from all
recovered models, an efficient selective procedure has
to be designed. We described such a procedure for
selecting among overlapping models of the same kind
concurrently with the recovery process, where the only
difference between the models was their initial spatial
position in an image, in |7,8].

In general, models can possess a variety of mutu-
ally exclusive or inclusive pieces of knowledge. In this
paper we propose a novel idea on combining multiple
sources of information through MDL! (or a similar
measure) with a special emphasis on how this prinei-
ple automatically determines the scale on which phe-
nomena are (to be) observed. Models vary in the al-
lowable deviation from the model, which results in a
set of interpretations that encompass different scales?.
An example is presented that demonstrates how both
the type of the models and the design of a criterion
function determine the outcome of the selection pro-
cedure,

2 Selection of Models Operating on
Multiple Scales

Consider, for example, Fig. 2. How many dots in
a line does one perceive as individual dots and when
does the perception switch to a representation of a
line (a)? How strong must the directional disconti-
nuity of connected straight line segments be to per-
ceive it as a whole (one line) or as individual line
segments (b)? When do we consider a checkerboard
pattern as a unity and when as an explicit compo-
sition of squares of different colors (¢)? The impor-
tance of various representations (models) of an object
has been emphasized by Bobick and Bolles [3], how-

!Minimum Description Length

2This notion of multiple scale modeling is different from the
standard multiresolution which is normally based on filtering
the original image with a set of different spatial operators to
obtain a hierarchy of images of different resolutions. Here the
original image remains intact, only the extent and allowable
deviations of models are changed.

88

. AVAVAN.~

—— B

(a) (b) {©)

Figure 2: When does the representation switch from
modeling single elements to modeling the overall struc-
ture?

ever the prescribed decision mechanism that is respon-
sible for switching between different representations is
based on an absolute criterion, namely, only when a
currently used model fails, a different model is tested.
In our paradigm the complexity of individual descrip-
tions are taken into account—multiple representations
are compared on a relative basis.

The task of combining and selecting among recov-
ered models is a problem of selecting the final inter-
pretation among several hypothetical descriptions of
the data and is solved on the level of models rather
than on the level of their constituent elements (data).
The goal is to minimize an objective function which
has a general form:

M@=Zm%mm (1)

where m; denotes a presence variable having the value
1 for the presence of the particular model and 0 for the
absence of the model in the final description. £,,,(m)
denotes the weight of a particular model, which in-
volves the complexity of the model, its spatial extent,
its goodness-of-fit to the data, and the interaction of
the model with the models that (partially) extend over
the same domain.

The core of the problem is in defining criteria for
optimality of the selected set of models. Beside de-
pendency of models on the task we believe that there
are mechanisms that operate on a more general level in
order to reduce the number of redundant descriptions.
Since there are computational constraints on what in-
formation can be computed in finite time and mem-
ory the available resources must be used to extract
the most important information for further processing
(bounded rationality—Simon [11]). Intuitively, this
reduction in complexity of a representation coincides
with a general notion of simplicity (Gestalt principles,
i.e. law of Pragnanz—the visual field will be organized



in the simplest or the most likely possible way [5]). In
information science Shannon [10] revealed the impor-
tance of relation between the probability theory and
the shortest encoding (simplicity). Recently, simplic-
ity in terms of MDL principle has found its applica-
tions in computer vision [9,6,4].

Thus, our goal is to select a description that mini-
mizes Equation (1) under the condition that portions
of the image that can be described (at least one of
the models is applicable) must be described (with at
least one model).

An Example

Let us illustrate the MDL principle with an exam-
ple. Consider a one-dimensional signal g(t) which was
formed by a uniform sampling of a piecewise-constant
function f(t) corrupted by additive independent iden-
tically distributed (IID) Gaussian noise N(0,0) Let
N denote the number of samples. The amplitude of
each sample is quantized to one of the integer values
between 0 and A, and Gaussian noise is rounded to
the nearest integer—the precision of the signal values.
Two out of an infinite set of possible descriptions of
the signal are:

1. A pointwise description. Since any integer [
can be encoded with about log, [ or 1g! bits, the total
length of encoding equals approximately to Nlg A.

2. Description in terms of a language L. The
language® £ involves two components: a deterministic
one which specifies the n intervals with a constant
amplitude (4,...,A,), and a stochastic one which
encodes the residuals between the model and the data.
The encoding necessary to describe the model requires

(2)

where the interval boundaries are quantized between
0 and B. The lowest bound on the number of bits that
is required to describe data generated by a stochastic
process is the negative lg of the probability of observ-
ing that data. Assuming that the residuals are mod-
eled by an independent identically distributed (IID)
Gaussian noise, N(0,c), the obtained optimal code
will be of length

Ly=mn-1)1gB+nlgAxnlgAB bits ,

1
LNI‘D%N(lgO'—FEngTFG) . (3)

The total length to encode both the model and the
data is thus
1
Ly +Lyp ®nlgAB+ N(lgo + 51g27re) . @

3The terms language and model mean the same in this case.
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For this particular example, minimizing Equation 1
would answer the question which model (language) is
better in the MDL sense?

e L, =NIgA or

o Ly, =nlgAB+ N(lgo + 11g2me) .

The solution of this optimization problem will sup-
port our intuitive thinking that encoding is efficient
if the number of data points described by a model is
large, standard deviation low, while at the same time
keeping the complexity of the model small.

Using Models of Different Scales

Let us now apply this theory to the problem of se-
lecting models that operate on different scales. For
the sake of simplicity we will assume only two types
of models.

1. Model M; involves two components: param-
eter v; which specifies the constant amplitude of the
corresponding signal and the deviations from the value
v1. The model can describe only those intervals, which
do not contain data points with a deviation exceeding
A (let A — 0)

2. Model M, involves two components: param-
eter vy which specifies the constant amplitude of the
corresponding signal and the deviations from the value
ve. The model can describe only those intervals, which
do not contain data points with a deviation exceeding
§ (let 6 — o0).

Original
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(a)

Vi
Model M1
(b)

V2

Model M2
©

Figure 3: (a) Original 1-D signal, (b) My, (c)

For example, if we have a 1-D signal shown in Fig. 3
we can show that the above defined criteria can decide
whether this 1-D signal should be represented as a
piecewise composition of small segments, or as a single
segment:

1. The description of the signal in terms of the
model M;: The signal is partitioned into n intervals.
Each of them is modeled by a constant value (V; or
V3). The encoding necessary to describe the signal
involves only the cost of specifying the amplitude since
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Figure 4: Relation between MDL, signal length (N),
6, and the type of the models.

there are no deviations from the model.

Li=Ly=(n-1)IgB+nlgV ~nlgVB. (5)
B denotes the resolution of the interval boundaries.
2. The description of the signal in terms of the
model Ms: In this case we have to specify both the
amplitude of the signal V and the deviations from its
value. The total length to encode both components is

(6)

Fig. 4 shows the relation between the length (N) of the
signal and the corresponding number of bits required
to properly encode the signal for different deviation
(6) from the constant amplitude. The thicker lines
correspond to the piecewise model. The dashed line
denotes the number of bits required to model the sig-
nal as a single line plus deviations in each segment.
Several dashed lines are shown for different values of
8. Interestingly enough, the results are in accordance
with the intuitive expectations and can be summarized
as follows:

¢ For no deviations or small deviations (6, ), the
signal is represented as a single straight line, regardless
of the number of points (length of the signal).

e When deviations are significant (65) the signal
is always described piecewise.

¢ In between (3, 64), we see that the optimal se-
lection of the model (in the MDL sense) depends on

Lo ZLA/[—FLM’D:lgVB-I-ngé .

90

the length of the signal. For greater lengths, the signal
is treated as a single model, whereas for shorter the
optimal description is piecewise.

If a different encoding system (language, models) is
chosen the result can change accordingly.

3 Conclusion

We propose selective image modeling on different
scales in parallel. Such redundant representation can
be efficiently pruned using the criterion of Minimum
Description Length. Models that are selected in the
final description indicate the appropriate scale of ob-
servation according to the principle of bounded ratio-
nality.
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