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Povzetek

Naslov: Ugotavljanje kognitivne obremenjenosti človeka z uporabo brezžičnih

signalov

Z vsestranskim računalnǐstvom in njegovo interakcijo z ljudmi bi lahko

izbolǰsali uporabnǐsko izkušnjo, če bi naprave lahko razbrale kognitivno obre-

menjenost uporabnikov. Trenutni načini ocenjevanja kognitivne obremenitve

človeka so, z nekaj izjemami, zasnovani na metodah, ki zahtevajo fizični stik

merilnih oprem in uporabnika. V tem delu predstavimo sistem Wi-Mind za

ocenjevanje kognitivne obremenjenosti človeka z uporabo brezžičnih signa-

lov. Wi-Mind temelji na programsko definiranem radijskem radarju, ki meri

zelo majhne gibe človeka, ki so rezultat dihanja in srčnega utripa. Le-to nam

omogoča ocenjevanje kognitivne obremenjenosti osebe. Sistem smo preizku-

sili in testirali na triindvajsetih prostovoljcih, ki so reševali naloge različnih

težavnosti. Rezultati kažejo, da Wi-Mind do neke mere lahko ugotovi ali se

oseba ukvarja z reševanjem naloge. Ocenjevanje direktne kognitivne obre-

menjenosti, s katero bi lahko ugotovili uporabnikovo zagnanost v problem,

ostaja izziv.

Ključne besede

življenjski znaki, procesiranje signalov, podatkovno rudarjenje, kognitivna obre-

menjenost, brezžično zaznavanje, programsko definirani radio





Abstract

Title: Inferring cognitive load using wireless signals

From not disturbing a focused programmer, to entertaining a restless

commuter waiting for a train, ubiquitous computing devices could greatly

enhance their interaction with humans, should these devices only be aware

of the user’s cognitive load. However, current means of assessing cognitive

load are, with a few exceptions, based on intrusive methods requiring phys-

ical contact of the measurement equipment and the user. In this thesis we

propose Wi-Mind, a system for remote cognitive load assessment through

wireless sensing. Wi-Mind is based on a software-defined radio-based radar

that measures sub-millimeter movements related to a person’s breathing and

heartbeats, which, in turn allow us to infer the person’s cognitive load. We

built the system and tested it with 23 volunteers being engaged in different

tasks. Results show that while Wi-Mind manges to detect whether one is

engaged in a cognitively demanding task, the inference of the exact cognitive

load level remains challenging.

Keywords

vital signs, signal processing, data mining, cognitive load, wireless sensing,

software-defined radio





Razširjeni povzetek

I Uvod in sorodna dela

Z napravami, s katerimi opravljamo dnevna opravila, delamo tako koristne

opravke, kot tudi tiste, ki nas zmotijo in odvrnejo od pozornosti pri trenutni

aktivnosti. Razna opozorila na telefonu in podobne motnje, ki pogostokrat

prekinejo naše trenutno delo, lahko privedejo do nezbranosti, slabšega učinka

pri delu [1] in k stresu [2]. Prekinljivost pri delu bi lahko zmanǰsali s tem,

da bi tovrstne naprave avtomatično prepoznale trenutno uporabnǐsko aktiv-

nost oziroma kognitivno obremenjenost človeka. Kognitivna obremenjenost

se lahko ugotovi s subjektivno samooceno, ki se reši po opravljeni nalogi

(na primer NASA-TLX testi [3]). Drug način za oceno kognitivne obre-

menjenosti, ki pa je bolj primeren za uporabo v realnem času, je merjenje

fizioloških signalov, ki korelirajo z mentalnim naporom in so rezultat avtono-

mnega živčevja ter kardiovaskularnega sistema. Signale teh sistemov se lahko

zaznava z meritvijo srčnega utripa [4], dihanja [5], aktivnosti v možganih [6],

velikostjo zenic in s podobnimi signali, ki jih zavestno težko kontroliramo.

Večino teh signalov lahko merimo z opremo, ki zahteva fizični stik naprave z

osebo.

Razvoj tehnologije je privedel do zaznavanja življenjskih znakov, ki kore-

lirajo s kognitivno obremenjenostjo, brez kakršnegakoli stika med človekom

in napravo. Bodisi so to pristopi, ki izkorǐsčajo kamero [7, 8], bodisi pri-

stopi s katerimi s pošiljanjem brezžičnih signalov lahko ugotovimo dihanje in

srčni utrip človeka [9, 10, 11, 12, 13, 14, 15]. V našem delu se osredotočimo

i
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na Vital-Radio [9], ki omogoča merjenje minimalnih gibov človeka, ki so

rezultat dihanja in srčenga utripa. Vital-Radio deluje z radarsko FMCW

(angl. frequency modulated carrier wave) metodo. Z omenjeno tehnologijo,

ki brezžično zajema življenjske znake uporabnika, bomo raziskali možnost

ugotavljanja trenutne kognitivne obremenjenosti osebe.

II Wi-Mind sistem

Wi-Mind sistem je zgrajen na predpostavki, da življenjski znaki, kot so di-

hanje in srčni utrip, korelirajo s človekovo kognitivno obremenjenostjo. Naša

implementacija vsebuje dva glavna modula, in sicer modul za brezžično zaje-

manje signala in modul strojnega učenja. Ideja pri modulu za brezžično za-

jemanje signala je osnovana na že omenjenem Vital-Radiu [9], ki uporablja

radarsko FMCW tehnologijo. Omenjeni radar se v našem primeru poganja

na programsko definiranem radiu (angl. software defined radio) – konceptu,

ki omogoča visoko fleksibilnost pošiljanja/zajemanja brezžičnih signalov z

ustrezno strojno in programsko opremo na navadnem osebnem računalniku.

Radar zajema signal, ki potuje do človeka (primarno do prs), se odbije in

potuje nazaj do sprejemne antene – na ta način vidimo razdaljo, ki jo pre-

potuje signal. S periodičnimi minimalnimi gibi človeka (dihanjem in srčnim

utripom – pojav, ki nam omogoča brezžično zajemanje srčnega utripa, se

imenuje balistokardiografija) lahko nato izločimo koristne informacije in jih

uporabimo v algoritmih strojnega učenja.

Surov signal razbijemo na časovna okna ter na vsakem od teh oken iz-

vedemo filtriranje oziroma izločevanje značilk. Ker je radar zelo občutljiv,

lahko vsebuje veliko šuma in posledično negativno vpliva na rezultat, je do-

bro tovrstne šume izločiti. Šum je lahko posledica hitrih gibov (na primer

premik roke) ali zelo počasnega gibanja, ki se jih da izločiti s pasovnim fil-

trom (za dihanje uporabimo pasovni filter med 0.083 Hz in 1 Hz). Nato iz

signala dobimo frekvenco dihanja, spremembo frekvence dihanja, energijo v

posameznih frekvenčnih pasovih in variabilnost dihanja. Na podoben prin-



iii

cip lahko dobimo informacije o bitju srca – tokrat uporabimo pasovni filter

med 0.83 Hz in 2.5 Hz. S pretvorbo časovnega okna v frekvenčni prostor

nato izločimo frekvenco srčnega utripa, z merjenjem posameznih utripov v

časovnem prostoru pa lahko dobimo variabilnost srčnega utripa (HRV, angl.

heart rate variability). Le-ta je posledica avtonomnega živčevja, ki regulira

podzavestne telesne funkcije.

Z vsemi potencialno koristnimi informacijami nato zaženemo algoritme

strojnega učenja, ki ocenijo trenutno kognitivno stanje. Kognitivno stanje

se lahko definira kot zvezna spremenljivka, ali pa kot lažje določljiva dis-

kretna spremenljvika, ki določa dva, tri, ali več vrednosti. Temu primerno

se izvede tudi reševanje oziroma napovedovanje, ki je bodisi regresijski ali

klasifikacijski problem. Algoritmi, ki smo jih uporabili za napovedovanje so:

k-najbližjih sosedov (k-NN, angl. k nearest neighbours), metoda podpornih

vektorjev (SVM, angl. support vector machine), naključni gozdovi (RF, angl.

random forest), naivni Bayes in globoke nevronske mreže. Slednje, za razliko

od ostalih, lahko delujejo na surovem signalu, torej brez izločevanja značilk.

To omogoča ustrezna zgradba nevronske mreže po nivojih – v našem pri-

meru sta primarna nivoja sledeča: konvolucijski nivo in LSTM nivo (angl.

long-short term memory).

III Eksperiment

Cilj našega dela je ugotoviti kognitivno obremenjenost človeka z uporabo

brezžičnih signalov. V okviru dela smo izpeljali študijo, kjer je triindvajset

prostovoljcev individualno reševalo naloge različnih težavnosti, medtem ko je

Wi-Mind sistem brezžično zajemal njihove življenjske znake. Naloge so bile

prirejene iz že podobno izpeljane študije [16], ki pa je temeljila na intruzivnih

merilnih metodah. Tipov nalog je bilo šest, vsaka pa je bila dana v treh

težavnostnih stopnjah. Po vsaki nalogi je uporabnik izpolnil NASA-TLX

vprašalnik, s katerim je ocenil svoje stanje med reševanjem naloge. Pred

vsako nalogo je uporabniku predstavljen napis, pri katerem naj bi uporabnik
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šel v stanje sprostitve. Ta faza naj bi določala časovno okno, ki razpolavlja

časovni okni reševanja nalog pred in po pavzi - na ta način se fiziološki signali

med sosednimi nalogami naj ne bi prekrivali.

Vsakemu prostovoljcu je bil na začetku predstavljen celoten potek študije,

s katero so se morali tudi strinjati in privoliti v uporabo podatkov za namen

naše raziskave. Med študijo je vsak na roki imel tudi Microsoft Band (pa-

metna zapestnica), s katero smo merili srčni utrip, ki je služil kot referenca

in smo ga uporabili za primerjavo utripa iz Wi-Mind sistema. Med študijo

smo spremljali ekran, ki je prikazoval trenutno stanje ter v primeru težav

odgovorili na vprašanja uporabnika.

Študije se je prostovoljno udeležilo triindvajset ljudi, starih od 20 do 38,

sedemnajst moškega in šest ženskega spola. Povprečen čas za dokončanje

študije enega prostovoljca je bil okoli 45 minut. Ključni korak je bil najti

vsaj dvajset prostovoljcev, ki pa smo jih pridobili prek osebnih kontaktov.

IV Rezultati

Prva točka rezultatov je primerjava srčnega utripa pridobljenega z Wi-Mind-

om in Microsoft Band-om. Primerjave kažejo različne rezultate pri različnih

uporabnikih, saj razni človeški gibi prinesejo veliko šuma pri brezžičnem si-

gnalu in ga posledično ustvarijo neberljivega. Pri primerjavi se vidi trend

naraščanja in padanja utripa, kar kaže na pozitivne rezultate izločanja utripa

iz Wi-Mind-a. Opomniti je treba tudi, da Microsoft Band nima 100-odstotne

točnosti. V našem primeru je bil za uporabo najbolj primeren Microsoft

Band, zaradi njegove nizke cene, dosegljivosti in kompletom za razvoj pro-

gramske opreme, ki nam je omogočil pisanje aplikacije za Android OS.

Statistike reševanja nalog kažejo na dalǰsa reševanja nalog, ki so jih obli-

kovalci označili kot težje, kar pa ne drži za tip naloge iskanje A-jev. Podoben

rezultat je viden tudi pri samooceni, ki kaže, da je samo pri temu tipu naloge

najvǐsja težavnost bila ocenjena vǐsje kot pa srednja težavnost. Samoocene

kažejo tudi na različne razpone na lestvici, ki so jih uporabniki uporabljali
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za samoevalvacijo. Zaradi tega je težko direktno primerjati in napovedovati

TLX (angl. task load index ) vrednost, lahko pa izločimo ekstremne vrednosti.

Ugotovili smo, da uporabniki v povprečju dihajo počasneje med pavzo, kot

pa med reševanjem naloge, kar je bilo ugotovljeno tudi v drugih študijah [5].

Za evalvacijo Wi-Mind sistema smo uporabili orodji Orange [17] in Ke-

ras [18]. Slednji se v našem primeru uporablja za učenje z nevronskimi

mrežami na surovih podatkih. Želimo preizkusiti sistem za ugotavljanje

kognitivne obremenjenosti človeka, zato za validacijo uporabimo leave one

person out validacijo. Ker pa imamo podatke, ki so neenakih razponov (na

primer različni TLX razponi, različne frekvence dihanja), poizkušamo tudi

grupirati podobne ljudi skupaj in nato šele izvedemo evalvacijo sistema.

Osnovni problem, ki smo ga poskušali ugotoviti, je razlikovanje med sta-

njem sproščanja in stanjem reševanja naloge. Z metodo naključnih gozdov in

naivnim Bayesom smo dobili klasifikacijsko točnost okoli 70%, z nevronskimi

mrežami in surovim signalom pa 75%. Personalizirani testi pri nekaterih

osebah pokažejo bolǰse rezultate.

Naslednji klasifikacijski problem je ločevanje med tranzicijama v stanje

sproščanja in iz stanja sproščanja. Naša glavna predpostavka je ta, da ljudje

začnejo dihati počasneǰse oziroma hitreǰse, zato smo kot značilko iz signala

vključili tudi spremembo frekvence dihanja (t.j. razlika med frekvenco diha-

nja druge polovice časovnega okna in frekvenco dihanja prve polovice okna).

Z naključnimi gozdovi smo prǐsli do klasifikacijske točnosti 66.4% oziroma

68% (prva vrednost predstavlja podatkovno množico brez filtriranja šumnih

časovnih oken, druga pa brez omenjenih časovnih oken). Pristop z nevron-

skimi mrežami pride do podobne točnosti, in sicer 68.1%. Ker uporabniki

dihajo z različnimi frekvencami, smo jih nato grupirali v skupini, kjer je ena

predstavljala tiste, ki imajo manǰso razliko v frekvenci dihanja med stanjem

sproščanja in reševanjem naloge ter v skupino, kjer so imeli večje spremembe

dihanja. Pri skupini, ki je imela večje spremembe dihanja smo prǐsli do

večje klasifikacijske točnosti (69.5%), saj algoritem lažje zazna spremembe v

dihanju.
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Naslednji izziv je ugotavljanje težavnosti naloge iz brezžično zajetih si-

gnalov. Brez razdelitve celotne podatkovne množice, kjer imamo več tipov

nalog in težavnosti, je težko napovedati trenutno težavnost naloge. Do pozi-

tivneǰsih rezultatov pridemo, če naredimo modele po posameznih tipih nalog

in, če odstranimo srednjo težavnost nalog, ki se včasih očitno prekriva s sose-

dnjima težavnostnima stopnjama. Pri tipu naloge primerjanje številk lahko z

naključnimi gozdovi s 65.4% klasifikacijsko točnostjo napovedamo težavnost

naloge (lahka ali težka), kar je za dobrih 15% bolǰse od naključnega klasi-

fikatorja. Značilka, ki najbolj prispeva k temu rezultatu, je HRV visokih

frekvenc (izračunano po information gain vrednosti).

Z regresijskim problemom za napoved TLX vrednosti, se zelo težko pri-

bližamo pozitivnim rezultatom. Najbolǰsi rezultat dobimo pri testu sledenja

črti, kjer pa najbolj vplivajo značilke povezane z dihanjem.

V Diskusija in zaključek

Cilj dela je bil ugotoviti kognitivno obremenjenost človeka z uporabo brezžičnih

signalov. Izpeljali smo študijo na triindvajsetih prostovoljcih, ki so reševali

naloge različnih težavnosti, medtem pa smo brezžično zajemali njihove življenjske

znake (t.j. dihanje in srčni utrip). Iz brezžičnih signalov smo nato poskušali

izločiti srčni utrip, vendar nismo bili pri vseh uporabnikih tako natančni kot

so bili avtorji Vital-Radia [9]. Eden od razlogov je ta, da se pri premiku rok

signal zelo popači in ga ustvari neberljivega. Zanima stvar je ta, da smo s

ceneǰso opremo, v primerjavi z avtorji Vital-Radia, lahko z razdalje izločali

dihanje in bitje srca. Slednje pa je bilo tudi temu primerno, vendar še zmeraj

primerljivo.

Izbolǰsave evalvacije sistema bi lahko vključevale vǐsje število udeležencev

študije, saj večji vzorec predstavlja bolj reprezentativne rezultate. Različne

težavnosti so bile pri posameznih tipih nalog premalo jasne, zato bi ena od

izbolǰsav lahko vključevala le dve težavnosti, ki bi imeli večji težavnostni

razpon. Nekatere naloge so bile s strani uporabnikov rešene zelo hitro (na
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primer manj kot pol minute), kar postane težko za povezavo teh časovnih

oken s kognitivno obremenjenostjo. Ena od možnih izbolǰsav bi lahko imela

naloge, ki se jih rešuje dalj časa (na primer pet minut), ker se HRV frekvenčne

značilke izrazijo oziroma so bolj razvidne na dalǰsih časovnih oknih.
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Chapter 1

Introduction

As our reliance on ubiquitous computing devices grows, so does the need

for seamless interaction with these devices. The postulates defined by Mark

Weiser in 1991 call for “calm” technology that blends in with the environ-

ment, understands the user, and works towards fulfilling the user’s needs [19].

Unfortunately, almost thirty years later we are surrounded by a plethora of

devices that remain completely oblivious to our needs, and that contradict

Weiser’s vision by getting in the way of our actual intents. Mobile commu-

nication devices are a prime example of such a conflicting technology, as an

average smartphone user receives around 100 push notifications per day, most

of which are disruptive [20]. Through these notifications and other disturbing

signals users attention is fragmented, which reduces work performance [1] or

induces stress [2]. Bringing experiences from the field of cognitive perception

closer to ubiquitous computing developers is a difficult task and we have to

be aware that machines do not understand us or have difficulties to do so.

Understanding a human user encompasses multiple aspects of human con-

sciousness, from sensing one’s emotions, over inferring one’s goals, to perceiv-

ing one’s fatigue. Recent research, however, has shown the link between a

user’s interruptibility and her immersion in a task at hand [21, 22], mak-

ing the inference of mental effort a promising potential enabler of improved

human-computer interaction (HCI). Attention management system might

1



2 CHAPTER 1. INTRODUCTION

control users attention in case of interruptions by choosing suitable environ-

ment change or postponing interrupting notifications to a later time [23].

The core of these systems are sensors (to acquire users current physiological

signs), machine learning algorithms (to learn users interruptibility or mental

effort) and actuators (to make suitable action regarding users cognitive load

level).

Inferring someones cognitive load is challenging and can be done in mul-

tiple ways, e.g. by subjective self-evaluation after completing some task or

by observing the person’s performance on the task. One example for such

measurement is NASA-TLX (Task Load Index), where participants report

their load after completing a task [3]. However, these highly subjective evalu-

ations can be also correlated with more objective physiological signals, which

are results of a human autonomic nervous system and cardiovascular system

reaction. Some of these signals include heart rate blood pressure [24], heart

rate variability [4], respiratory changes [5], brain activity [6], galvanic skin

response (GSR) [25, 26], eye movement [6], pupil size, and facial expression

[27]. These can be measured with special equipment, e.g. nasal thermis-

tor, chest respiration strap, ECG (Electrocardiogram), sphygmomanometer

(blood pressure monitor), smart watch, electroencephalography (EEG), etc.

One thing in common for all these monitors is – they are intrusive, i.e. they

require a body contact.

While to date research in understanding one’s mental effort has been

tested mostly on intrusive methods, with notable exceptions of camera-based

approaches [7, 8], here we explore the prospects of devising a wireless non-

intrusive vital sign radar monitor to infer a user’s cognitive load. We design

and implement a software-define radio-based wireless system prototype and

through real-world experiments on a group of 23 volunteers evaluate its abil-

ity to sense physiological signals and through machine learning connect these

to a user’s mental effort. The contributions of our work are the following:

• we identify and adapt radar technology for the purpose of vital sign

monitoring using software-defined radio concept;
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• we extract vital signs (related to breathing and heart activity) from

the raw signal and evaluate heartbeat detection accuracy;

• we conduct a user study to collect vital signs using our system while

the users are solving tasks of different types and complexities;

• we use machine learning algorithms to determine users cognitive load

engagement with the acquired wireless signal data.

Our system for wireless cognitive inference is called Wi-Mind and includes a

software-defined radio-based frequency modulated carrier wave radar, data

processing and feature extraction, and a machine learning pipeline.

This thesis is structured as follows. In Chapter 2 we present related

work on the topic of cognitive load inference using non-intrusive methods. In

Chapter 3 we describe our proposed system for wireless cognitive load infer-

ence, where some of the main concepts, such as radar type, used hardware,

software and wireless signal processing are described in detail. In Chapter 4

we describe our experiment approach, where we used our system to per-

form the study. Chapter 5 shows heartbeat benchmark, descriptive statistics

about user study and machine learning accuracies using different algorithms

to determine different cognitive load engagement. In Chapter 6 we discuss

our approach and limitations and finally, in Chapter 7 we conclude our work.

Preliminary results of Wi-Mind system were presented at the “3rd Inter-

national Workshop on Smart & Ambient Notification and Attention Man-

agement” [28]. In this thesis we describe this system and the whole study in

detail and introduce more approaches to evaluate the whole system.
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Chapter 2

Related work

HCI technology is focused on the interfaces between people and computers

and enables improved interaction with computing devices. This interaction

can be thought of as a dialogue; computer and people alike can handle only

a limited amount of information. Exceed the ability to handle huge amounts

of information can lead to worse task performance, miss important data or

even abandoning some tasks [29]. Human cognitive processing capabilities are

limited by our physical resources. These resources include, e.g. visual, aural,

motor resources, but also procedural and declarative memory resources. Even

simple tasks require multiple kinds of resources, and many tasks can bring

complex patterns of interferences between such resources [23]. Resources are

independent and can be accessed in parallel, yet, are exclusive, and a single

resource can be assigned to a single task at a time [30].

While a task competes for resources, interruptions arise when a stimulus

signals a new task. Interruptions can be considered as new tasks (i.e. sec-

ondary tasks) on top of the main current activity (also called the primary

task), which results in loss of attention in the current task [31]. The pri-

mary task has to be stored in declarative memory (i.e. one of the long-term

human memory types which is used to recollect previous experiences and

concepts [32]) and will be retrieved after the interruption is handled. The

complexity of the interrupted task influences the perceived disruption and

5
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the ability to successfully retrieve the task. This can be reflected in delayed

task completion and task errors [30, 33]. One way to quantify the task com-

plexity is through cognitive load measurements. Term cognitive load is by

Paas and van Merriënboer defined as “a multidimensional construct repre-

senting the load that performing a particular task imposes on the learner’s

cognitive system” [34].

In cognitive load research users’ performance on the secondary task is of-

ten used as a measure of cognitive load elicited by the primary task [23, 34].

Cognitive load can be assessed by measuring mental load (interaction be-

tween task and subject characteristics), mental effort (allocated capacity to

accommodate the demands imposed by the task) and performance (users

achievements) [34]. Some of the cognitive load measurement methods gather

data on the subjective perception of task difficulty, performance data using

primary and secondary task techniques and psychophysiological data [34].

Measuring subjective data is performed using surveys (e.g. NASA-TLX [3]

and SWAT – Subjective Workload Assessment Technique [35]) which are

solved by user at the end of a task. While subjective rating scales are rela-

tively unintrusive, they cannot be used in real time. Physiological techniques

measure physiological variables, such as heart rate variability, brain activity

and eye activity. Measuring interruptibility using biometric sensors, such as

headband and wristband, has been conducted by Zücker et al. [36]. They

discovered that EEG signals, eye blinks, skin conductance, heart rate and

inter-beat interval features show positive correlation between interruptibility

and mental load. Gjoreski et al. conducted a study to detect stress, using

commercial wristband and extracting various heart rate features [37]. Their

findings show that the approach is quite reliable on a two-class problem (i.e.

stress versus no stress class), however, it has still some room for improvement.

The authors of the mentioned articles show that cognitive load correlates with

changes in vital signs. However, vital signs monitoring in those studies were

made with intrusive methods.

Recent advancements in technology enabled non-intrusive vital signs’
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monitoring, such as camera-based approaches to measuring heart rate vari-

ability (HRV) [8] and detecting pulse from head motions in a video [38]. In

2015, Adib et al. introduced Vital-Radio [9], a wireless sensing technology

for monitoring breathing and heart rate without body contact that exploits

the fact that wireless signals are affected by the motion in the environment.

More specifically, chest movements due to human inhaling/exhaling and skin

vibrations due to heartbeats (a process of inferring heartbeats using chest

movement is called ballistocardiography – BCG) can be captured by observ-

ing reflected radio waves’ phase variation. Similar wireless-based vital signs

monitoring systems include TensorBeat [10], which employs channel state

information (CSI) phase difference data to estimate breathing rates for mul-

tiple persons with commodity WiFi devices, WiBreathe by Ravichandran et

al. [11], an ultra-wideband (UWB) radar by Huang et al.[12], and impulse-

radio (IR) UWB Doppler radar-based solutions [13, 14]. Another similar

approach was introduced by Nandakumar et al., where they transformed

smartphone into an active sound signal emitter/listener to detect sleep ap-

nea [15].

In terms of applications, Zhao et al. used a technology similar to Vital-

Radio, called EQ-Radio, for analysing radio frequency (RF) reflections off a

person’s body to recognize the emotional state [39]. To infer cognitive load

unobtrusively, Abdelrahman et al. use thermal imaging cameras focused on

a persons forehead and nose [7], while McDuff et al. use a five-band digital

camera to detect cognitive stress [8]. The latter is using the concept that

cognitive tasks have an impact on breathing and HRV. While promising, the

need for frontal camera placement might limit the applicability of the above

approaches (e.g. for inferring a car driver’s engagement). Urh and Pejović use

smartphone sensing to infer task engagement, however, their work remains

at a coarser granularity as it, among other features, concentrates on location,

time, and calendar events [40].

As mentioned, experiments with measuring vital signs, such as heart rate

and heart rate variability, have shown that they correlate with users work-
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load. However, measuring vital signs with wireless signals to assess users

cognitive load, has not, at least to our knowledge, been attempted before.

The goal of our work is to explore and implement a radar-based monitor to

infer cognitive load wirelessly.



Chapter 3

Wi-Mind System

We implemented Wi-Mind system, which is based on the premise that a per-

son’s vital signs, such as respiratory rate and heart rate, correlate with that

person’s cognitive load. The system consists of two main modules: wireless

monitoring module and machine learning module/feature extraction module

(see Figure 3.1). Wireless monitoring module collects raw vital signs data

and machine learning module extracts and infers one’s cognitive load based

on the collected data. A user is stationary (seated) in an office setting and

engaged in a mental task. One antenna of the wireless module is placed on

the right, the other on the left side of the person, and are used to unob-

trusively obtain data corresponding to the users movement, which in turn

conveys into vital signs. The data is further filtered and processed, and for-

warded to the machine learning module that then makes the final inference

about the person’s cognitive load.

In the following sections, we describe the methods, hardware and soft-

ware used in this work. While focusing on the ideas behind each method, we

also try to describe our approach from a practical point of view. The exper-

iment setup and study details is described in Chapter 4. Wireless vital sign

monitoring accuracy and results are discussed in Chapter 5. The code, that

was used to implement and evaluate our system is available on our Github

repository [41].

9
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Figure 3.1: Wi-Mind scheme - wireless cognitive load inference system that

relies on a software-defined radio-based FMCW radar and a machine learning

data-processing pipeline.
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Figure 3.2: Wi-Mind system and its antennas, marked with yellow ellipses.

3.1 Wireless monitoring module

The idea for unobtrusive vital signs data collecting was taken from the al-

ready mentioned Vital-Radio system [9]. Recent advancements in central

processing unit (CPU) capabilities and signal processing algorithms have led

to software defined radio (SDR) – a concept that enables highly customiz-

able transmission/reception through a symbiosis of radio front-end hardware

and signal processing on a general purpose computer. The core of Wi-Mind

is an SDR implementation of a radar that is based on a slightly modified

gr-radar [42] FMCW module running on top of the GNU Radio SDR frame-

work [43]. Radar allows us to filter out large multipath interference and then

perform a fine-grain movement analysis of the user’s body (predominantly

chest), which may correspond to breathing and heartbeats. The phenomenon

that allows this system to detect heart rate from signal reflections is called

ballistocardiography (BCG), which can represent repetitive motions of eject-

ing blood into vessels caused by heart. Figure 3.2 depicts hardware, used by

Wi-Mind system.
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Figure 3.3: Frequency modulated carrier wave ranging example. The red

line presents transmitted signal and the green line the received and delayed

echo signal.

3.1.1 FMCW radar

Radar is a device capable of determining distance. FMCW radar is a type

of continuous-wave (CW) radar operated on a frequency-modulated waves.

It changes its operating frequency periodically during the measurement and

has some advantages versus similar CW radars by providing increased relia-

bility for distance along with speed measurement. In the FMCW method, a

signal is transmitted and a delayed echo signal is received, which translates

into frequency shift in comparison to the currently transmitted wave (see

Figure 3.3). The difference in time between the transmitted and received

signal can be estimated due to constant frequency-change slope and can tell

us distance to the object, from which the signal was reflected.

FMCW transmits a narrowband signal, whose frequency changes linearly

in time [44]. The frequency can either change with sawtooth (see Figure 3.3)

or triangular modulation. The distance to the reflecting object can be deter-
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mined with the following equation:

R =
c×∆t

2
=
c×∆f

2× df
dt

(3.1)

where R stands for distance, c for speed of light, ∆t for time delay between

transmitted and reflected signals (s), ∆f frequency difference, also called

beat frequency (Hz) and df
dt

frequency shift per unit of time (or slope of the

frequency modulation, which can also be presented as df
dt

= B/tsweep, where

B is sweep bandwidth and tsweep sweep time). From Equation 3.1 we can

also distinguish distance resolution and see that it depends on the sweep

bandwidth [44]. Combining Equation 3.1, df
dt

= B/tsweep and ∆f = 1/tsweep

(frequency resolution of the FFT) gives us distance resolution:

∆R =
c

2×B
(3.2)

Resolution of a radar is defined as a minimum distance of two targets that

can be detected separately from the resolution of Fourier transform. From

the Equation 3.2 it is obvious that we would need a very large bandwidth to

detect small movements, say those corresponding to human heartbeat and

breathing. Having an SDR sweep over such a wide bandwidth is not feasi-

ble with the current state-of-the-art commodity equipment. While custom

solutions have been prototyped for increasing the sweeping bandwidth and

narrowing the resolution to a few centimeters [9], in our work we rely on

FMCW simply to filter out large multipath interference, and utilize further

signal processing to extract heartbeat and breathing.

Phase extraction and analysis

Locking the signal to the specific distance (i.e. take only one bin from Fourier

transform) and then taking the phase of the reflected signal, by analysing

phase variation, very small movements can be resolved. The phase of the

reflected signal is related to the distance traveled [9]:

Φ(t) = 2× π × d(t)

λ
(3.3)
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where λ is the wavelength and d(t) is the travelled distance.

Having center sweep frequency at 5.2 GHz gives wavelength of 58 mm

(from equation λ = c/f , where λ is wavelength). Theoretical minimum de-

tectable distance change with this frequency is 161 µm (according to Equa-

tion 3.3 and assuming that 1◦ change in phase can be detected). These sub-

centimeter variations in distance to the chest, which are caused by breathing

and heart beats should be enough to analyse periodic jitter in the wireless

signal [44]. Phenomenon, which allows us to detect heart beats, is called

ballistocardiography.

Theoretical minimum distance between different objects, in order to be

separated with FMCW radar, has to be larger than distance resolution (see

Equation 3.2). To acquire and analyse signal phase, Fourier transform has

to be calculated, where each FFT bin corresponds to different range. This

brings us to one drawback of analyzing signal phase – objects that fall in

the same FFT bin cannot be distinctly separated with signal phase [9, 45].

Thus, in our work we use directional antennas that are focused to a singled

out seated individual. In the future, we plan to adapt the system to be able

to infer cognitive load even in presence of other people.

3.1.2 SDR

Software-defined radio (SDR) is a concept for a programmable radio commu-

nication system and it usually consists of a personal computer with analog-

to-digital converter and RF front-end (see Figure 3.4). This functionality

produces general-purpose processor that introduces flexibility for signal pro-

cessing and makes special-purpose hardware somehow obsolete. The concept

is not new, however recent evolving capabilities have led to its popularity.

One of the most useful SDR advantages is its flexibility. Legacy radios are

constrained with RF front-end and, unlike SDRs, do not have the capabilities

to be arbitrarily programmed. If we look at smartphones and similar devices,

they currently have many different radios optimised for signals operating on

different frequency bands (WiFi, LTE, GSM, UMTS, GPS) [47]. Implemen-
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Figure 3.4: An example scheme of SDR receiver (from [46]).

tation of a single SDR in such devices could dynamically switch between

various frequency bands with a software code. Some of the most popular

commercially available SDR devices are USRP, HackRF and RTL-SDR.

Motivation

Because of its flexibility and our experimental nature of problem we decided

to use SDR. One of the reasons for SDR is also FMCW radar. SDR allows

us to do advanced signal processing that requires access to low-level radio

data.

In this work, we used an SDR front end called Ettus Research Universal

Software Radio Peripheral (USRP) B210. The product has RF coverage

from 70 MHz to 6 GHz and is able to use multiple antennas. The nature

of FMCW radar requires full-duplex transmission (radar receives the signal

at the same time as it is sending signal with another frequency) – this is

possible with the usage of multiple antennas. It is more reasonable in our

case to use directional antennas instead of omnidirectional antennas, as they

radiate and receive in specific direction, resulting in increased performance

and reduced interferences from unwanted sources. One of the most common

antenna type, which was also used for our system, is log-periodic antenna,

allowing us to operate over a wide band of frequencies. We used LP0965 log

periodic antennas.
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Figure 3.5: Simplified GNU Radio flowgraph for FMCW radar and phase

extractor.

3.1.3 GNU Radio

GNU Radio is a free and opensource development toolkit for SDR program-

ming [43]. Its applications are usually known as “flowgraphs” or connected

blocks. It comes with already pre-built blocks for signal processing, however

new custom blocks can be written either in Python or C++ programming

language. GNU Radio can either be used as a simulation environment or as

a real-time processing software with the suitable SDR hardware.

Implementation

As already mentioned, the most promising method for vital sign monitoring

in our case was radar that merges the ideas from FMCW and phase anal-

ysis (see Section 3.1.1). The core GNU Radio implementation of FMCW

radar was taken from the existing gr-radar module [42] (see Figure 3.5 for a

simplified GNU Radio flowgraph). Our main radar setup values are:

• center sweep frequency: 5.2 GHz

• sweep frequency bandwidth: 20 MHz

• frequency modulation pattern: sawtooth

• sampling frequency: 40 MHz

• decimation factor: 8 (decimator is used to reduce computational com-

plexity)
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Combining sweep frequency bandwidth and Equation 3.2 gives us distance

resolution of 7.5 meters (i.e. minimum distance of two targets that can be

detected separately) and center frequency returns sub-centimeter variations

in chest distance due to breathing, which are caused by sub-radian variation

in the phase [9]. Our distance resolution (7.5 meters) is in comparison with

Vital-Radio [9] resolution way smaller (8 centimetres). Our implementation

is not able to differentiate between multiple objects in e.g. range of 7.5 meters

from the antennas, but is enough to filter out large multipath interferences

and measure vital signs of one user, since all other reflections in the room

should be static (i.e. are the result of walls or other static objects). Originally,

the gr-radar ’s FMCW radar was implemented to calculate the actual distance

of the reflecting object (in meters). Minor changes in the original gr-radar

implementation were made:

• we locked the distance to specific range (i.e. FFT bin);

• we extracted only the phase of the signal and timestamps for each phase

sample.

The whole GNU Radio implementation (counting sampling frequency, deci-

mation factor, bandwidth, and other factors) gave us 43 samples per second

in the raw signal, which should be enough to analyse breathing and heart

rate.

3.2 Machine learning module

We are trying to predict users’ cognitive load based on their vital signs,

acquired with wireless radar monitor. Since we are dealing with raw signals

reflected of a human body (with radar technique described in Section 3.1.1),

we have to extract useful features out of them. In this section we describe

how we filtered the raw signal, extracted breathing and heartbeat features

and used this data in machine learning algorithms to estimate mental effort.

See Figure 3.6 for a preview of this module.
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Figure 3.6: Features extraction and machine learning module.

3.2.1 Data preprocessing

In our experimental Wi-Mind system, GNU Radio program saves the raw

signal phase shift and its sample timestamps into two separate files.

The reflected signal phase contains information about a users breathing

and heartbeats as the phase corresponds to the distance the wave has trav-

elled. But the phase in the output file is constrained to the interval (−π, π)

yielding so called wrapped phase. That means that when the next adjacent

value exceeds π, it continues on the other side (−π) and vice versa. Since

this results in switching signs and makes the breathing signal unrecognisable,

we have to make a continuous function out of this signal and this is called

unwrapped phase. The idea for phase unwrapping can be seen in Figure 3.7.

Now we can deal with breaking the signal into time frames and proceed

with filtering to extract breathing and heartbeat features.

3.2.2 Feature engineering

This section describes our approach towards extracting relevant features out

of raw signal. Since human breathing and heartbeat have different features,

we described them separately.

Breathing features

Raw signal contains low frequency and/or high frequency noise. The for-

mer can be caused by very slow (slower than average breathing rate) body
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Figure 3.7: Wrapped phase (top) and unwrapped signal phase (bottom).

Figure 3.8: High frequency noise at around 205 seconds and slow signal

drift through the whole time.
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Figure 3.9: An example of signal filtering (left) and its frequency domain

(right) on a 30 second time window, where maximum peak corresponds to

the current breathing rate. Each red dot presents one breath.

movements and the latter with very fast movements, limb motion or other

random noise (see Figure 3.8). To cope with this noise we use filters. To

remove slow signal drift and high frequency noise, we use a band-pass filter –

anything below 0.083 Hz (5 breaths per minute) and above 1 Hz (60 breaths

per minute) is eliminated (see Figure 3.9). This frequency range was cho-

sen because the average breathing rate of an adult human is around 12 to

20 breaths per minute and the filtered signal should “erase” non breathing

noise.

The most straightforward respiratory feature is the breathing rate. To

extract the breathing rate from a specific time window we calculate the Fast

Fourier Transform (FFT) of the signal and then single out the highest peak in

the frequency domain (see Figure 3.9). The position of the peak corresponds

to the breathing rate – i.e. if a person’s respiratory rate is 20 breaths per

minute, then the FFT will have the highest peak at the value 20.

Next frequency domain feature would be the difference between the av-

erage breathing rate at the first half and the average breathing rate at the
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second half of a time window. This could indicate the start or the end of

solving a mental task as people might speed up or slow down their breathing

rate. We can also look at spectral power features from the respiration signal

representing the energy in the following bands of: 0.1-0.2 Hz, 0.2-0.3 Hz,

0.3-0.4 Hz and 0.4-0.5 Hz. Some of these bands were found useful in [48].

With the calculated energy in the mentioned bands we could determine if

somebody is breathing with different breathing rates (i.e. if one is, in one

time window, breathing slow at first and then speeds up breathing rate, then

this would show in different band energies).

Time domain features can yield additional information. One possibility is

to get respiratory rate variability (RRV). The idea is to measure inter-breath

interval, i.e. intervals between each inhale or exhale. To detect times at which

inhales happen, we use a peak detector on a filtered signal (see Figure 3.9).

From marked timestamps we then calculate time differences between breaths.

One of possible extracted features for breathing is the average of these in-

tervals, but this highly correlates with the average breathing rate, calculated

from the frequency domain. Standard deviation of these intervals could tell

us if individual is breathing equally or is sometimes holding breath (medical

term for involuntary holding breath or cessation of breathing is called apnea).

Calculating some statistical measures from raw signal (not looking at

the frequency domain or calculating breath peaks) has also been considered:

mean, median, standard deviation and root mean square value (as seen in

[49, 50, 51]).

To deal with noise (e.g. limb motion) we introduce a meta-feature, which

is set to true if the time window does not contain too much noise and false

vice-versa. To determine the noise, we choose the FFT peak frequency (see

Figure 3.9 right) and calculate if the peak value is at least five times higher

than the average power in the remaining frequencies (as seen in [9]).

All of the respiration related features can be seen in Table 3.1. Our

implementation makes a new estimate, on a 30 second long time window,

each second. To additionally cope with noise we implemented the rolling
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Figure 3.10: A sliding time window approach to signal feature extraction

and averaging.

average of all features for last six sliding time windows (this number was

chosen empirically) – see Figure 3.10 for a visual idea of this process.

Heartbeat features

Similar to breathing features extraction, we again filter the raw signal with a

band-pass filter to extract heartbeat features, but this time with the cut-off

frequencies of 0.83 Hz and 2.5 Hz (50 to 150 beats per minute as an average

adults heart rate is in range of 60 to 100 beats per minute) – see Figure 3.11.

The average heart rate in a given time frame can again be calculated by

extracting the highest peak in the frequency domain (or the second highest

peak using filter to extract [40-200] beats per minute, as noted in [9], since

the highest peak is due to the leakage from the breathing) – see Figure 3.11.

Difference in heart rates between the beginning and the end of a time win-

dow has also been considered. Research has shown that heart rate increases

during stressful times [51, 52]. However, these metrics can not be directly

comparable as people can have different heart rates based on their current
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Figure 3.11: An example of signal filtering (left) and its frequency domain

(right) for heartbeat extraction on a 10 second time window. Each red dot

presents one heart beat and the maximum value in the frequency domain

graph presents the most probable heart rate.

state, fitness or physical condition. Somewhat more useful would be the heart

rate variability (HRV).

With HRV we have in mind the variability of time intervals between

successive beats (also called RR intervals or NN intervals) and this can relate

to emotional arousal, strain, attention and motor inhibition [53]. HRV can

either be low (constant intervals between heartbeats) or high (interval lengths

variate). High HRV is correlated with relaxed situations and low HRV is

correlated with stress situations. This is a result of the autonomic nervous

system, which unconsciously regulates body functions, such as heart rate,

digestion, respiratory rate etc. Timestamp for each heartbeat can be marked

a with peak detector (see Figure 3.11) and NN intervals can be calculated

as time differences between adjacent timestamps. To deal with outliers, we

removed all NN intervals that differed more than 25% from the preceding

NN intervals (as seen in [54]). Some of time domain measures, calculated

from NN intervals are:

• mean NN (mean value of the NN intervals, as seen in [55]);
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• SDNN (standard deviation of NN intervals);

• RMSSD (root mean square of successive differences)

• pNNx (proportion of the number of pairs of successive NNs that differ

by more than x ms; x = 50, 70).

HRV (variations between sequences of consecutive heart beats) can also be

calculated in frequency domain. Instead of using classical FFT, a more appro-

priate frequency estimation method is the Lomb-Scargle (LS) periodogram.

Although it is a slower than FFT, LS can produce more accurate estimates

for typical NN data, as it can work with unevenly sampled data. Some of

the typical frequency domain HRV features are ([55]):

• low frequency (LF) - 0.04-0.15 Hz;

• high frequency (HF) - 0.15-0.4 Hz;

• LF/HF ratio.

All of the heartbeat features can be seen in Table 3.1. Each second a

new estimate over a 10 seconds long time window is made for most of the

features. HRV frequency domain features require longer time window (100

seconds in our case). However, extracting heartbeat features is less reliable

than extracting breathing features, as heart beats are harder to detect, but

we still try to extract some additional information from the signal. To deal

with noise, we introduce a rolling average to all features for the last 10 sliding

time windows (the number was chosen empirically).

3.2.3 Modelling

Our goal is to predict a user’s cognitive load, which is in this work assessed

with the task load index metric (a continuous variable). However, as we are

tackling an extremely challenging problem with rather experimental equip-

ment, we need to examine the ability to solve a more coarse grain classifi-

cation problem, such as classification between busy/relax time frames and
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Table 3.1: All of the breathing and heartbeat features extracted from signal

and then later used in machine learning modelling.

breathing features feature label meaning

breathing rate br rate mean respiration frequency

breathing rate difference br rate difference change in respiration frequencies from first half of

time window and second half

spectral power in bands of area in normalized frequency domain between a

range of frequencies

0.1-0.2 Hz br freq 6 12

0.2-0.3 Hz br freq 12 18

0.3-0.4 Hz br freq 18 24

0.4-0.5 Hz br freq 24 30

mean inter-breath interval br IBI mean mean value of inter-breath intervals

STD of inter-breath interval br IBI std standard deviation of inter-breath intervals

mean of raw signal br raw mean mean value of raw signal

median of raw signal br raw median median value of raw signal

STD of raw signal br raw std standard deviation of raw signal

RMS of raw signal br raw rms root mean square value of raw signal

noise filter br ok meta feature to determine if the time window is

clean or noisy

heartbeat features

heart rate hr rate mean heart rate

heart rate difference hr rate difference change in heart rates from first half of time window

and second half

mean NN hr NN mean mean NN interval value

SDNN hr SDNN standard deviation of the adjacent NN intervals

RMSSD hr RMSSD the square root of the mean of the squares of the

successive differences between adjacent NNs

pNN50 hr pNN50 the proportion of NN50 (number of pairs of succes-

sive NNs that differ by more than 50 ms)

pNN70 hr pNN70 the proportion of NN70 (number of pairs of succes-

sive NNs that differ by more than 70 ms)

HRV frequency features

LF hr HRV lf heart rate variability in the 0.04–0.15 Hz band

HF hr HRV hf heart rate variability in the 0.15–0.4 Hz band

LF/HF hr HRV lf hf ratio of the low and high frequency of heart rate

variability
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transitions between them. In classification problems we attempt to deter-

mine the final class, which is in our case a variable of two or three categories,

from values of independent features (e.g. breathing and heartbeat features,

see Table 3.1). In regression analysis we try to estimate dependent variable,

which is a continuous function (e.g. cognitive load estimation). The results

and the validation accuracies were made offline, i.e. we collected data from

users (see Chapter 4) and then we evaluated the results in Chapter 5.

Classification and regression algorithms

Here we list some of the machine learning algorithms to evaluate Wi-Mind

system.

• k-NN (k nearest neighbours)

k-NN is a type of lazy learning algorithm, where the final prediction is

based on the k closest training examples in the feature space. It has a

k parameter, which has to be chosen in advance. Our choice for k was

10.

• SVM (support vector machine)

SVM translates set of features in a higher dimensional space, where

a better separation between features can be achieved. The optimal

hyperplane separates space so that distances to the nearest data points

are maximized.

• RF (random forest)

Random forest is a state of the art algorithm used for classification and

regression problems. It operates on the idea of multiple decision trees

construction. The main parameter is the number of trees, which was

in our case set to 100.

• NB (naive Bayes)

NB is based on the Bayes’ theorem that assumes strong independences

between features.
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• NN (neural networks)

Deep neural network, inspired by biological nervous systems, is an

emerging family of machine learning algorithms which have lately be-

came accessible due to CPU advancements. NN have the ability to be

arbitrarily constructed from various kinds of layers. In our context,

this method is an exception versus algorithms listed above, because it

does not require any feature engineering, as the NN can (with appro-

priate layers construction) find valuable hidden features by itself on a

raw signal.

More specifically in our case, these layers are 1-dimensional convolu-

tional layers and long short term memory (LSTM) layer. In this com-

bination, the NN work with sequence related problems in spatial inputs

(e.g. signal in time). An input to our implementation of NN is there-

fore signal phase over some time period (i.e. distance from antennas to

users body on e.g. 30 seconds long time window).

Our NN consists of the following layers (see Figure 3.12):

1. dropout

Dropout layers are used to reduce overfitting by randomly choos-

ing neurons and simply ignoring them in later processing. This is

a widely used neural network regularization technique to prevent

too much adaptation on the training dataset.

2. 1-D CNN & max pooling

This layer applies convolutional operation to the input, which

greatly reduces memory requirements and leads to more general

solutions to vision problems (note that our problem can be pre-

sented as 1-dimensional image). Max pooling combines multiple

neurons into a single neuron in the upcoming layer.

3. LSTM layer

LSTM is a type of recurrent neural network that remembers values

over time and it can make predictions based on time series data.
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4. fully connected layer & activation

Fully connected layer connects each neuron on the previous layer

to each neuron in continuing layer. Activation neuron outputs

final prediction, either to classification or regression problem, de-

pends on the given activation function.

Figure 3.12: Simple example of neural network with the main convolutional

and LSTM (long-short term memory) layers. Dropout, max pooling and fully

connected layers are presented just to show their positions between the other

layers.
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Experimental setup

The goal of Wi-Mind system is to infer cognitive load using wireless signals.

To test this system we conducted user study where 23 volunteers were solving

cognitive load related tasks in a quiet air-conditioned room while Wi-Mind

system was wirelessly acquiring their vital signs. With each participant we

collected their demographics, explained the experimental protocol, and had

them complete the tasks uninterrupted. Wi-Mind is geared towards seden-

tary mental task load inference, thus, we collect the data in an office setting

with an application Haapalainen et al. constructed to elicit different cogni-

tive load burden [16]. Study protocol diagram for each user can be seen in

Figure 4.1.

4.1 Cognitive load application

Cognitive load measurement software was prepared by Eija Haapalainen et

al. and tested in cognitive load study in [16]. Martin Frlin adapted this

software to Slovenian language. The application runs on a PC and presents

the user with six task types:

• Finding hidden pattern (HP) – find a given pattern in multiple images;

• Finding A’s (FA) – choose all words that have a letter “A” in them;

29
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Figure 4.1: User study protocol diagram to test Wi-Mind system.
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• Gestalt completion (GC) – from a partial image find out what would

the whole picture represents and write down the answer;

• Number comparison (NC) – in two parallel lists of numbers find those

that are equal;

• Scattered X’s (SX) – in a set of images find letters “X” and click on

them;

• Pursuit test (PT) – connect values on the left side to the corresponding

values on the right side following entangled lines connecting the two

sides.

Each of these tasks is presented three times, with three different difficulty

levels - easy, medium and hard. While we certainly expect that this objec-

tive label already correlates with a person’s cognitive load, we also rely on

the NASA-TLX questionnaire to infer a person’s subjective feeling about the

load. The questionnaire, an integral part of the Haapalainen et al.’s app, is

presented to users after each of the tasks. All in all there are 18 different

tasks (six different task types and three difficulty levels for each one). Each

time when a new task is presented, there is also “instructions” slide, for a

quick overview of the task. Each difficulty level for one task type has maxi-

mum three minutes to solve the task, otherwise the application automatically

switches to next slide (i.e. NASA-TLX questionnaire). When one minute is

left for solving the task, user is also informed about this with a sound signal.

Solving each task requires only a computer mouse, with exceptions of GC

and PT, where keyboard has to be used for writing down the answers.

As we can see from the study protocol diagram (see Figure 4.1), each

task procedure consists of three intervals - relax, task solving and already

mentioned self-evaluation. Just before starting each task, there is a “relax”

time frame. This break should be considered as a dividing line between tasks,

so that physiological signs between adjacent tasks do not intervene. At the

beginning of the first task, this is 1.5 minute long break and in the subsequent
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tasks this break is 30 seconds long. After finishing some task or running out

of time, NASA-TLX is presented.

NASA-TLX is subjective assessment tool for evaluating one’s cognitive

load in order to assess a task performance. Although it is a widely used

method for assessing mental effort [34], some studies do not consider the self-

reports reliable enough to assess cognitive load [56]. NASA-TLX is divided

into six subjective question for assessing the:

• mental demand;

• physical demand;

• temporal demand;

• performance;

• effort;

• frustration.

In our case, each of them could be answered with a 5-item scale (e.g. very

low, low, medium, high, very high).

Each time when a user or an application does some action, e.g. click on

a button, chooses answers, self-evaluates, runs out of time, timestamp and

event is saved to log file. A part of this log file can be seen below:

395 . . .

396 2 0 1 8 : 5 : 1 7 : 1 7 : 4 2 : 1 5 : 8 7 4 , Number Comparison Question S l ide ,

NumberComparison 2 . txt , Medium

397 2 0 1 8 : 5 : 1 7 : 1 7 : 4 2 : 2 1 : 3 5 4 , ’6312850395−6312850795 ’ s e l e c t e d

398 2 0 1 8 : 5 : 1 7 : 1 7 : 4 2 : 2 5 : 6 1 9 , ’1251373807−1251373307 ’ s e l e c t e d

399 2 0 1 8 : 5 : 1 7 : 1 7 : 4 2 : 3 0 : 8 1 0 , ’32018591670−32018691670 ’ s e l e c t e d

400 2 0 1 8 : 5 : 1 7 : 1 7 : 4 2 : 3 9 : 5 3 8 , ’38210435512−38210535512 ’ s e l e c t e d

401 2 0 1 8 : 5 : 1 7 : 1 7 : 4 2 : 4 3 : 6 8 2 , ’35789462806−35789562806 ’ s e l e c t e d

402

403 2 0 1 8 : 5 : 1 7 : 1 7 : 4 2 : 4 4 : 4 1 1 , Rating S l i d e

404 2 0 1 8 : 5 : 1 7 : 1 7 : 4 2 : 4 6 : 6 1 0 , Mental , Low

405 2 0 1 8 : 5 : 1 7 : 1 7 : 4 2 : 5 3 : 3 4 6 , Phys ica l , Low
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406 2 0 1 8 : 5 : 1 7 : 1 7 : 4 3 : 1 : 5 7 8 , Temporal , Low

407 2 0 1 8 : 5 : 1 7 : 1 7 : 4 3 : 4 : 6 3 4 , Temporal , Medium

408 2 0 1 8 : 5 : 1 7 : 1 7 : 4 3 : 5 : 9 1 5 , Temporal , Low

409 2 0 1 8 : 5 : 1 7 : 1 7 : 4 3 : 7 : 6 1 0 , Performance , Very good

410 2 0 1 8 : 5 : 1 7 : 1 7 : 4 3 : 1 4 : 4 5 0 , E f fo r t , Low

411 2 0 1 8 : 5 : 1 7 : 1 7 : 4 3 : 1 7 : 3 3 8 , Frust rat ion , Very low

412

413 2 0 1 8 : 5 : 1 7 : 1 7 : 4 3 : 1 8 : 7 0 7 , Break S l i d e

414

415 2 0 1 8 : 5 : 1 7 : 1 7 : 4 3 : 4 8 : 7 0 9 , Test Continues S l i d e

416

417 2 0 1 8 : 5 : 1 7 : 1 7 : 4 3 : 5 2 : 1 9 , I n s t r u c t i o n S l ide , Scat te r ed X’ s

Quest ions

418 . . .

Log files are later processed again and only relevant features are extracted:

. . .

235 2gu87 NC high 1526571422322 163432 4 0 4 27 True

236 2gu87 NC medium 1526571657466 106945 14 1 14 15 True

237 2gu87 SX low 1526571850374 26429 20 0 20 11 True

. . .

where each row presents data from one task and each column shows (from left

to right): task ID, user ID, task label, task complexity, start time (in Unix

epoch time), time on task (in milliseconds), number of correct answers, num-

ber of incorrect answers, number of all correct answers, TLX (from NASA-

TLX questionnaire - this value is calculated by combining/summing all six

answers) and boolean value if user finished task (i.e. did not ran out of time).

This data is later used in machine learning algorithms, either as meta features

or as target variable to predict cognitive load.

4.2 Protocol

In order to make as equal conditions as possible for all participants, we made

a brief protocol document. Each individual was stationed in a quiet air-

conditioned room. First, we explain what the study is about and briefly
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describe Wi-Mind system.

Then, we collect volunteers demographic data (see demographic data form

in Appendix A), such as:

• age;

• gender;

• dominant hand;

• level of education.

Finally, each user fills out the consent form. Consent refers mostly to in-

formation about the study, that the participation is completely voluntary,

that the collected data is used for scientific purposes and the assurance for

complete anonymity. Each volunteer is then given a unique ID.

After demographic data collection and ID selection, we setup our Wi-

Mind system. As mentioned in Chapter 3, Wi-Mind uses two antennas. As

the system is very sensitive, even small movements of the antenna locations

can greatly improve our signal accuracy. At this point we start GNU Radio

programme and try to improve signal by moving the antennas for a few

centimetres back and forth or adjusting the antenna height position.

Another thing, that was not yet mentioned, is Microsoft Band. Microsoft

Band (we used Microsoft Band 2) is a smart band for tracking users fit-

ness features, with sensors such as heart rate monitor, gyrometer, galvanic

skin response sensor, skin temperature sensor, and more smartwatch-like fea-

tures [57]. We tell the participants to put on the Microsoft Band on their

non-dominant hand (stated in the demographic data) and then we start our

custom application on the phone (running Android 4.4.4) to collect the heart

rate each second during the study. This is just a reference data to compare

this “ground truth” heart rate to heart rate acquired and extracted with Wi-

Mind. However, the band is not necessarily 100% accurate, but our decision

to use this band was due to its low cost and its software development kit
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(SDK), which is available on the internet and allowed us to make custom

application for the Android OS.

The last preparation point was made and then we continue with cognitive

load study starting our Wi-Mind system and tasks application at the same

time. We also tell the users not to make significant body movements or limb

motion, just to have clearer wireless signals. While users were solving the

tasks, we were in the same room looking at the second screen connected to the

same computer they were solving the tasks at. The second screen consisted

of the current information about acquired signal (signal phase) and a current

slide. If the signal was not clear enough or the user was moving too much,

we pointed that to him/her. We also answered all the questions referring to

the study tasks.

4.3 Study summary

The study was conducted among 23 volunteers, ageing from 20 to 38, 17 male

and 6 female (see Figure 4.2 to see an example of a participant performing the

experiment). The average time for completing the experiment was around

45 minutes. An example of the Wi-Mind system signal during the cognitive

load study can be seen in Figure 4.3. The crucial step was to find at least 20

volunteers for the study and we did that through personal contacts. All of

them participated the study completely voluntary and without any monetary

compensation.



36 CHAPTER 4. EXPERIMENTAL SETUP

Figure 4.2: Cognitive load study for testing Wi-Mind system in action.

Figure 4.3: Wi-Mind signal through cognitive load study. Red areas present

tasks (e.g. FA – finding A’s) with different difficulty levels, blue areas present

relax time frames and white areas present either solving the NASA-TLX

questionnaire or preparation for the task.
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Results

While we collected all the relevant data from our study users, here we present

our findings about users cognitive load engagement using wireless signals. In

this chapter we showcase the micro benchmark for heart rate accuracy, just

to see how accurate Wi-Mind system is in extracting heart rate during the

study, we present some of descriptive statistics regarding our study and show

prediction results for different cognitive load engagements.

5.1 Heart rate benchmark

In Chapter 4 we mentioned that we used Microsoft Band to measure “ground

truth” heart rate during the study. We used this data to compare Wi-Mind’s

extracted heart rate. Both of the time series (Wi-Mind heart rate and Mi-

crosoft Band heart rate, i.e. series of heart rates through the whole study)

were aligned in time and compared using mean absolute error (MAE) and

mean squared error (MSE) metrics (see Equations 5.1 and 5.2) for each user.

Some of the best and worst per-user metric values can be seen in Table 5.1.

MAE =

∑n
i=1 |Yi − Ŷi|

n
(5.1) MSE =

1

n

n∑
i=1

(Yi − Ŷi)2 (5.2)

37
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Table 5.1: Error metrics comparing extracted Wi-Mind and Microsoft Band

heart rate for some of the study users.

user ID MAE MSE

pmyfl 4.935 52.988

td5pr 5.218 57.331

fzchw 5.892 57.477

c24ur 6.155 73.143
...

...
...

62i9y 15.852 385.736

ctsax 15.929 408.712

1mpau 17.038 428.921

r89k1 20.935 555.897

Figure 5.1: Comparison of Wi-Minds extracted heart rate and Microsoft

Band heart rate for one of the study users.

An example of heart rate through time can be seen in Figure 5.1. In this

example we see some outlier heart rate values. The reason for this is usually

moving hands from and to the computer keyboard, which makes wireless

signal reflections almost indistinguishable, which produces wrong heart rate

extraction. Another comparison of the heart rate can be seen in Figure 5.2,

where each box plot shows heart rate for one user acquired or extracted with

band and Wi-Mind, respectively. Wi-Mind extracted heart rates are far from

perfect, however, trend on the right plot looks like it is sorted ascending by
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median values, similar as to left plot (box plots are sorted by median values

from the left plot and each user box plot on the right corresponds to the

same position box plot on the left). Note that third user from the right on

the band heart rate plot looks like it was static all the time. This is a result

of error in capturing the data from Microsoft Band, as there were missing

values and this does not correspond to the actual heart rate during the whole

study.

Figure 5.2: Box plot comparison of Microsoft Band acquired heart rate and

Wi-Mind extracted heart rate during the whole study for all users. Each user

on the right corresponds to the same user on the left.

5.2 Descriptive statistics

In order to better understand the data about the tasks and cognitive load

application in general, we examined descriptive statistics about the partic-

ipants’ performance. This information might help us to deal with outliers

and similar data separations in the learning/prediction phase.

As mentioned in Chapter 4, users in the study were exposed to three types

of task difficulties (low, medium and high). The most intuitive hypothesis

on the relationship between the task difficulty and the time a user spent on
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Figure 5.3: Bar plot presenting time to finish the task grouped by task

label and task complexity. Black lines present 95% confidence interval.

the task is that tasks of higher difficulties would need more time to finish the

task. This holds true in this study (see Figure 5.3), however, there is clearly

some overlapping between tasks of low and medium difficulty and minor

overlapping of medium and high difficulty tasks. Interestingly, on average

users took task FA of medium difficulty longer to finish than the highest

difficulty. Same findings can be seen for average TLX value in Figure 5.4.

Again, median TLX values do correlate with task difficulties, yet overlapping

in TLX between adjacent difficulties stays or even increase. Both overlapping

between task difficulties (in time and TLX) might indicate not so distinct

separations between the difficulties and that users did not really see the

difference between e.g. low and medium tasks. Another possibility would be

the task type being easy by itself (e.g. HP task is easier than NC, in theory).

HP task type has been found to be less difficult in overall than the other

task types. This tells us that using the same machine learning model for

all tasks is unlikely to be able to discern between tasks of different nominal

complexities.

To evaluate task difficulties, instead of looking at subjective TLX mea-

sure, we can also look at the more objective measure – the number of incorrect
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Figure 5.4: Box plot presenting task load index grouped by task label and

task complexity (outliers are not shown).

Figure 5.5: Box plot presenting an average number of incorrect answers

per task type.
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Figure 5.6: Box plot presenting task load index by user id.

answers per task type. This can be seen in Figure 5.5, where we can count

out the GC and SX task types, because we did not count incorrect answers,

as we did not have ground truth values. The easiest task types (looking at

this objective measure) are therefore FA and HP. This holds true for HP, as

HP was considered as the easiest (in overall) also with the subjective TLX

measure. Task type with the most incorrect answers overall is PT. This is

somehow expected, as answers in one task slide are interdependent with each

other, i.e. if you make one mistake, this can propagate to other mistakes.

Figure 5.7: Histogram showing overall task load index distribution.

Some of the users might find all tasks easy to solve (or difficult). This can

be seen in Figure 5.6, where box plot shows that some users were subjectively
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Figure 5.8: Box plot presenting each user breathing rates, extracted with

Wi-Mind, grouped by on task meta-feature – representing whether a user is

relaxing or solving a task (outliers are not shown). Each user on the right

corresponds to the same position on the left side. Blue and red line show

overall median value for a specific class.

evaluating at different span scale. E.g. user with ID 7swyk (far right) has, in

comparison to other users, far higher TLX values and span. This could be

a result of not understanding the questionnaire, having different personality

or even having different level of education, but in our case the latter can be

excluded since there were no extreme education level differences between the

users. To deal with this kind of “extreme” values, we can just cut out these

kind of users when predicting TLX, as a joint model is unlikely to work well

for all users. In Figure 5.7 we see the overall distribution of TLX values and

clearly most of the TLX values fall in the 5-20 range.

In Figure 5.8 we presented breathing rates, extracted with Wi-Mind while

relaxing and solving a task. Again, each user box plot on the right corre-

sponds to the same position box plot on the left and is sorted by ascending

median values from the breathing rates when relaxing (left). Overall, it does

look like breathing rates increase when solving a task, however, there are

still some exceptions, where extracted breathing rate does not change signifi-
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cantly when user is relaxing versus solving a task. Similar findings of multiple

studies were reviewed in [5], where they detected increase in breathing rate

while solving mentally demanding tasks.

5.3 System evaluation

To evaluate Wi-Mind system we used Orange [17] and Keras [18]. Orange

is a popular data mining toolkit, workflow based software, with predefined

widgets for preprocessing, evaluating, classification, regression, visualization

etc. Keras is a Python deep learning library for neural networks construction,

which is running on top of TensorFlow, an open source software for numerical

computation.

We are interested to build a general purpose cognitive load inference

system, i.e. no matter who is using the system. Because of this assumption,

the most appropriate way to evaluate Wi-Mind system is with the leave one

person out validation. This means that the learning phase is done on all users

data, except one. Testing/evaluating (accuracy calculation) is done on this

one user data. The whole procedure is then repeated for every person and

the final accuracy is averaged from the before-mentioned one user accuracies.

However, since we are dealing with diverse data (e.g. different TLX values –

see Figure 5.6, breathing rates – see Figure 5.8, etc.) and not so many user

instances, instead of leave one person out validation (on all users), we also

try to validate Wi-Mind system on a group of similar users.

Most of our results were tested with k-NN, SVM, RF, NB and majority

classifier/mean value as the baseline. Where mentioned, we also used the

deep NN (1-D CNN + LSTM). The latter was, instead of being done in

Orange as all the other approaches, evaluated in Keras. NN is being used

without the extracted features, instead it works directly on the raw data. As

mentioned in Chapter 3, we also introduced the meta-feature to see whether

some time window is too noisy or not. Where mentioned we used this meta-

feature to remove noisy data.
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5.3.1 Relaxation/task solving classification

In the preliminary step we were curious to see whether the acquired data can

be used to discern between a person being busy and resting. To evaluate such

a basic classifier, we divide the data into relaxing (intervals when a user is

instructed to relax) and busy (last 30 seconds while solving task) time frames

(see Figure 5.9 to get the idea for relax/busy intervals).

Figure 5.9: Raw signal with on task (red) and relax (blue) time frames.

Black rectangles present time windows that were used in classification be-

tween the two.

The relax/busy time frames classification results can be seen in Table 5.2.

Algorithms with the highest classification accuracies in non-filtered dataset

are RF and NB. Similar results can be seen in a noise filtered data, where

both of the algorithms still have the highest accuracies, just above 70%.

We see noise filtering meta-feature does not significantly improve accuracies.

Without directly extracting features (using deep neural network and raw

signal), we get even better results with a CA of 75.2%.
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Table 5.2: Leave out person out validation for relaxation/task solving clas-

sification. First half of the table uses all data time frames (without noise

filtering) with class instances ratio relaxed :on task 414:414 and second half

(with noise filtered data) ratio of 313:338. Last row shows NN accuracy.

Method AUC CA

k-NN (k=10) 0.703 0.668

SVM 0.651 0.571

Random forest 0.794 0.705

Naive Bayes 0.773 0.699

Majority 0.5 0.5

k-NN (k=10) 0.696 0.650

SVM 0.642 0.590

Random forest 0.788 0.704

Naive Bayes 0.779 0.707

Majority 0.5 0.519

1-D CNN + LSTM 0.752

Top three features, that contributed the most to these results, are breath-

ing rate, standard deviation of inter-breath intervals, and mean value of

inter-breath intervals (according to information gain scoring method) – see

Table 5.3. The first two are correlated, since they represent similar feature

calculated in two different domains (frequency domain and time domain).

Table 5.3: Top five information gain scores for busy versus relax classifica-

tion problem.

Feature Information gain

br rate 0.121

br IBI mean 0.116

br IBI std 0.097

br freq 6 12 0.075

br raw rms 0.051
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Personalized tests

If we take into consideration personalized tests (i.e. predicting classification

with only one user data) and validate them using leave one out validation,

we get the following results (see Table 5.4):

Table 5.4: Classification accuracies into relax/busy classes with personal-

ized modelling. Class instances ratio (busy:relax) for each user is 18:18 and

leave one out validation is used. Last column shows average values over all

user accuracies for specific method.

Method 1mpau 2gu87 3n2f9 . . . r89k1 td5pr tn4vl average

k-NN (k=10) 0.5 0.778 0.306 . . . 0.583 0.694 0.472 0.604

SVM 0.639 0.833 0.667 . . . 0.639 0.806 0.833 0.721

RF 0.694 0.861 0.611 . . . 0.667 0.833 0.694 0.721

NB 0.694 0.833 0.583 . . . 0.75 0.833 0.722 0.734

Majority 0.5 0.5 0.5 . . . 0.5 0.5 0.5 0.5

Overall it does look improved, but for each model we are dealing with

only 36 different time windows/instances, which can lead to small dataset

problem. More generalized results could be achieved with more instances for

each user.

Feature normalization

As we noticed, different users have different breathing rates at e.g. relax

time frames. Although there are differences at individual user when relax vs.

solving a task times (each user should have higher breathing rate when solving

a task), this cannot hold when comparing breathing rates from different

users, as people have different fitness levels and current states (e.g. one users’

breathing rate at task solving state can be similar as breathing rate of another

user at relaxing state).

This brings us to “feature normalization”, where we try to modify the

breathing rate feature in our dataset. The modification puts every users
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breathing rate at relax time frames to the approximately same rate. Since

we have only 23 users, we try to get better results with modifying such

features, without changing the ratios between each feature values.

Table 5.5: Leave out person out validation for relaxation/task solving clas-

sification with normalized breathing rate feature. Class instances ratio re-

laxed :on task is 414:414.

Method AUC CA

k-NN (k=10) 0.752 0.704

SVM 0.67 0.58

Random forest 0.806 0.746

Naive Bayes 0.78 0.723

Majority 0.5 0.5

From Table 5.5 we see that normalizing breathing rate feature does im-

prove classification accuracy, since in this case users have similar breathing

rate while relaxing.

5.3.2 Change in task engagement classification

Next, we try to predict the cognitive load increase/decrease. User should go

into the phase of decreasing task engagement while transitioning from the

task solving state into the relaxing state and vice versa (see Figure 5.10). As

this change does not happen suddenly, but gradually, we took multiple time

windows (more specifically 10 sliding time windows for each class). With

this method we also try to make our dataset more robust, as small datasets

might lead to wrong conclusions.
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Figure 5.10: Signal presentation of the sliding window idea for the change

in task engagement classification. First half presents decrease and second

one increase in task engagement. Each sliding window features are marked

as one instance and have suitable final class (i.e. decrease or increase).
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Table 5.6: Leave out person out validation for increase or decrease of

task engagement classification. First half of the table uses all data time

frames (without noise filtering) with class instances ratio decrease:increase

of 4301:4301 and second half (with noise filtered data) ratio of 3635:3719.

Method AUC CA

k-NN (k=10) 0.671 0.622

SVM 0.517 0.508

Random forest 0.724 0.664

Naive Bayes 0.716 0.643

Majority 0.5 0.5

k-NN (k=10) 0.668 0.622

SVM 0.538 0.530

Random forest 0.726 0.680

Naive Bayes 0.705 0.644

Majority 0.5 0.506

1-D CNN + LSTM 0.681

From Table 5.6 we see that RF slightly overtakes with CA of 66.4% and

68% in non-filtered data and filtered data, respectively. Bottom row in this

table shows classification accuracy using deep NN. It is comparable with

random forest classification with a value of 68.1%.

Top two features, that contributed to these results the most, are the

breathing rate difference (i.e. breathing frequency from the second half of

a time window substituted by breathing frequency from the first half) and

mean value of the inter-breath intervals (according to information gain score)

– see Table 5.7.
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Table 5.7: Top five information gain scores for task engagement increase

versus decrease classification problem.

Feature Information gain

br IBI mean 0.062

br rate difference 0.057

br rate 0.029

br freq 18 24 0.017

br raw std 0.010

Similar users test

Our assumption for task engagement increase/decrease was that people might

start breathing faster/slower when users are introduced to a new task or are

instructed to relax. But since users have different breathing rate changes (as

seen in Figure 5.8), we divided them into two groups, where one includes

users with small changes in extracted breathing rates (i.e. average breathing

rate difference between relax and on task time frames is less than five – group

1 ) and bigger changes in extracted breathing rates (average breathing rate

difference between relax and on task time frames is more than five – group

2 ) – this division makes two groups of approximately same number of users:

• group 1 : pmyfl, ef5rq, 62i9y, dkhty, 1mpau, e4gay, c24ur, td5pr, r89k1,

l53hg, f1gjp, 94mnx

• group 2 : hpbxa, 7dwjy, bd47a, 7swyk, tn4vl, ctsax, 2gu87, fzchw, gyqu9,

3n2f9, iz2ps

The classification accuracies for each group can be seen in Table 5.8. We see

that group 2 has improved accuracies overall, since algorithms detect bigger

changes in breathing rates more distinctly.
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Table 5.8: Classification accuracies into engagement increase/decrease

classes with grouped users modelling. Class instances ratio for group 1 is

2376:2376 and group 2 2178:2178. Leave one person out validation was used

for each group.

Method group 1 group 2 average

k-NN (k=10) 0.558 0.657 0.608

SVM 0.486 0.530 0.508

RF 0.563 0.695 0.629

NB 0.579 0.686 0.633

Majority 0.5 0.5 0.5

5.3.3 Task complexity classification

Another thing to consider is task complexity classification. We do not expect

good results, as a well trained user might find all of the given tasks easy thus

preventing us from distinguishing the nominal task difficulty merely on the

physiological signals. To evaluate such a multi-class classifier, we constructed

a dataset taking 10 instances of time frames from each task difficulty and

then removed too noisy instances with our meta feature. Instances ratio can

be seen in Table 5.9, as well as classification accuracies. RF again shows the

highest CA, but the accuracy is still close to baseline. If we take out the

medium difficulty from the dataset, we get no big improvement.

Slightly higher CA can be seen at RF classifier. The reason for this could

probably be small body movements/limb motion to reach out the mouse

or keyboard at some task types. As mentioned, Wi-Mind is very sensitive

and even the smallest irregular movement could be seen as higher amplitude

changes in the acquired signal. Because of this assumption we made per-

task models (see Table 5.10 and Table 5.11 for three and two class problem,

respectively).
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Table 5.9: Leave out person out validation classification for overall task

complexity (class instances ratio low:medium:high is 1111:1159:1134) on the

left and classification for low and high task complexities only on the right

(instances ratio low:high is 1111:1134).

Method AUC CA

k-NN (k=10) 0.513 0.343

SVM 0.521 0.328

Random forest 0.55 0.369

Naive Bayes 0.502 0.337

Majority 0.5 0.34

1-D CNN + LSTM 0.334

Method AUC CA

k-NN (k=10) 0.531 0.534

SVM 0.460 0.528

Random forest 0.533 0.520

Naive Bayes 0.517 0.5

Majority 0.5 0.503

1-D CNN + LSTM 0.501

The results show that per-task models give better results. The highest

classification accuracies can be seen at GC and NC task type. One assump-

tion for higher GC accuracy is that users may write on keyboard at different

speeds, while solving different task complexities (of the same task), which

results in different noise in signal. However, NC accuracy is not so straight-

forward. The feature, that influenced the most at the NC model, is HRV

high frequency (according to information gain score – see Table 5.12). HRV

high frequency value is usually decreased under time pressure [58] (note that

users took NC task at the highest difficulty the longest time to solve – see

Figure 5.3 earlier in this chapter). Another important thing to mention is

that HRV frequency features are calculated over a 100 second long time win-

dow, since shorter times for HRV frequency features are almost impossible to

calculate even with high precision equipment (note that we still use the same

number of time window instances as e.g. extracted heart rate – the difference

is only the extracted time window length). Since NC is the task that had

the longest time on task, these HRV frequency features could influence on

the results only on tasks with the highest time on task value.



54 CHAPTER 5. RESULTS

Table 5.10: Classification accuracies of task complexities by task (i.e. per

task models – each model was made on one task type). Class instances

ratio for each model is 230:230:230 (low:medium:high). Leave one person

out validation was used for each task type.

Method FA GC HP NC PT SX

k-NN (k=10) 0.365 0.368 0.29 0.442 0.301 0.339

SVM 0.322 0.294 0.356 0.281 0.374 0.301

Random forest 0.301 0.397 0.343 0.433 0.310 0.381

Naive Bayes 0.287 0.401 0.346 0.41 0.345 0.337

Majority 0.333 0.333 0.333 0.333 0.333 0.333

1-D CNN + LSTM 0.358 0.327 0.331 0.295 0.335 0.299

Table 5.11: Classification accuracies of task complexities by task (i.e. per

task models – each model was made on one task type) with only low and high

task complexities. Class instances ratio for each model is 230:230 (low:high).

Leave one person out validation was used for each task type.

Method FA GC HP NC PT SX

k-NN (k=10) 0.533 0.528 0.451 0.581 0.48 0.591

SVM 0.464 0.466 0.565 0.507 0.568 0.473

Random forest 0.429 0.601 0.575 0.654 0.577 0.556

Naive Bayes 0.441 0.57 0.541 0.534 0.504 0.501

Majority 0.5 0.5 0.5 0.5 0.5 0.5

1-D CNN + LSTM 0.541 0.492 0.532 0.52 0.495 0.51
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Table 5.12: Top five information gain scores for task complexity (low –

high) classification problem for NC task type.

Feature Information gain

hr HRV hf 0.129

hr HRV lf hf 0.068

br freq 24 30 0.062

hr RMSSD 0.061

br rate difference 0.060

5.3.4 Task load index regression

Instead of trying to predict task difficulty, we also try to predict subjective

label – TLX (see Table 5.13 for all and only low – high task difficulties error

metrics). MSE and MAE are larger that baseline errors, which indicates that

our models are not capable of predicting the TLX.

Table 5.13: Leave one person out validation regression on all user data for

overall task load index on the left (number of instances is 4140) and for low

and high task complexities only on the right (number of instances is 2760).

Method MSE MAE

k-NN (k=10) 52.556 5.527

SVM 60.718 6.171

Random forest 47.868 5.313

Mean 41.431 4.896

Method MSE MAE

k-NN (k=10) 59.295 5.941

SVM 58.951 5.921

Random forest 51.475 5.659

Mean 45.887 5.215
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Table 5.14: Leave one person out validation for task load index regression on

a group of similar users (group 1) without medium difficulty tasks. Number

of instances is 720.

Method MSE MAE

k-NN (k=10) 29.278 4.315

SVM 30.245 4.424

Random forest 29.013 4.395

Mean 25.119 3.958

1-D CNN + LSTM 28.254 4.241

Table 5.15: Leave one person out validation for task load index regression on

a group of similar users (group 2) without medium difficulty tasks. Number

of instances is 960.

Method MSE MAE

k-NN (k=10) 34.445 4.692

SVM 33.344 4.602

Random forest 37.106 4.796

Mean 25.863 4.085

1-D CNN + LSTM 24.881 4.149

To take into account similar users (i.e. users who evaluated some tasks

with the similar self-evaluation scores), we ran tests on two groups (see Ta-

bles 5.14 and 5.15). Groups consist of the following user IDs:

• group 1: 7dwjy, bd47a, f1gjp, hpbxa, l53hg, tn4vl ;

• group 2: 94mnx, fzchw, ef5rq, iz2ps, c24ur, td5pr, 3n2f9, r89k1.

To divide users in these groups, we helped ourselves with the box plot shown

earlier in this chapter (see Figure 5.6). Division does not include extreme

values. The results still do not show big improvement in error metrics. The

best method is still NN, which is the closest to the error of mean method,

but it does still have higher error that mean value.
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To simplify our problem, we made models on only GC, NC and PT task

types (each one separately) of difficulty levels low and high, as there is clearly

easier distinction between TLX values between the two (see Figure 5.4). The

results for each group can be seen in Table 5.16 and Table 5.17. Far from

perfect and a with a smaller dataset, we get expected results. One exception,

which can be seen in both tables, is at task type PT, where RF performs

slightly better than baseline regressor. The most decisive features at PT task

type are breathing related features – breathing rate and median value from

the raw signal.

Table 5.16: Leave one person out validation for task load index regression

(group 1) on specific tasks (left GC, center NC and right PT) with only low

and high task difficulties. Number of instances is 120.

Method MSE MAE

k-NN 30.33 4.727

SVM 38.672 5.079

RF 33.942 5.106

Mean 27.147 4.5

Method MSE MAE

k-NN 19.161 3.742

SVM 14.675 2.974

RF 21.504 3.818

Mean 16.142 3.467

Method MSE MAE

k-NN 61.617 6.718

SVM 41.16 5.261

RF 29.715 4.449

Mean 37.86 5.383

Table 5.17: Leave one person out validation for task load index regression

(group 2) on specific tasks (left GC, center NC and right PT) with only low

and high task difficulties. Number of instances is 160.

Method MSE MAE

k-NN 33.06 4.551

SVM 31.684 4.858

RF 28.094 4.417

Mean 21.12 4.0

Method MSE MAE

k-NN 42.634 5.784

SVM 31.295 4.855

RF 42.337 5.960

Mean 25.793 4.455

Method MSE MAE

k-NN 31.5608 4.577

SVM 30.689 4.812

RF 20.373 3.788

Mean 24.909 4.509

5.3.5 Neural network approach

Since neural network method requires some parameter tweaking, we intro-

duced this section, where we present our approach towards some of the classi-
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fication problems mentioned in previous sections using neural network. The

difference between this approach and the others (i.e. k-NN, SVM, RF, NB),

is that this works on a raw signal, whereas the rest of them work on extracted

features.

Parameters, that can be modified in our neural network are (see Fig-

ure 5.11)

• convolutional layer parameters

– kernel size

– number of filters

– stride

• pool size in max pooling layer

• number of units in LSTM layer

• dropout layer rate (set to 0.25)

In the following tables we were changing most of the above mentioned pa-

rameters in different scenarios, just to see how well does NN perform in the

given problems. We did not change dropout rate, as we think this is a core

layer to overcome overfitting and was set to an optimal value of 0.25.

First classification problem is relaxation/task solving problem (i.e. deter-

mine if user is solving a task or relaxing). Our static parameters values are

number of filter = 64, stride = 2, pool size = 4 and number of LSTM units =

256. Changing the kernel size parameter does improve CA in this problem.

In the Table 5.18 we see that lowering this parameter can bring us to CA of

75.2% in 100 number of epochs. Smaller kernel size also decreases time to

build such a network, as it reduces computational space with shorter “time

windows”.
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Figure 5.11: Overview of modifiable parameters in our neural network.

Table 5.18: Leave one person out validation with neural networks for re-

laxation/task solving classification through epochs. Class instances ratio

relaxed :on task is 358:358 (each instance presents 30 second long time win-

dow). Convolution layer parameter – kernel size is set to 200 (left), 20 (middle

table) and 10 (right).

# epoch average CA

10 0.612

20 0.653

30 0.674

40 0.674

50 0.672

# epoch average CA

20 0.676

40 0.702

60 0.718

80 0.727

100 0.726

# epoch average CA

20 0.676

40 0.715

60 0.724

80 0.748

100 0.752

Classifying into task engagement increase and decrease problem with

static values of kernel size = 10, number of filters = 64, stride = 4, and

number of LSTM units = 256 brings us to the Table 5.19. Increasing pool

size does not improve CA. However, changing the number of filters to 32 and

kernel size to 100 does improve our CA (see Table 5.20) and is comparable

with the CA calculated with previous methods (see Table 5.2).
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Table 5.19: Leave one person out validation with neural networks for task

engagement increase/decrease classification through epochs. Class instances

ratio increase:decrease is 3910:3910 (each instance presents 30 second long

time window). Pool layer parameter is set to 4 (left) and 8 (right).

# epoch average CA

10 0.682

20 0.67

30 0.665

40 0.65

50 0.651

# epoch average CA

10 0.602

20 0.597

30 0.600

40 0.606

50 0.600

Table 5.20: Leave one person out validation with neural networks for task

engagement increase/decrease classification through epochs. Class instances

ratio increase:decrease is 3910:3910 (each instance presents 30 second long

time window). Pool layer parameter is set to 4, kernel size to 100 and number

of nodes in convolutional layer set to 32.

# epoch average CA

10 0.662

20 0.671

30 0.681
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Discussion

The goal of this work was to infer human cognitive load using wireless signal.

We conducted a study with 23 volunteers solving tasks of different complex-

ities. Our first idea was to extract heart beats from wireless signal as it

has been shown that heart beats or heart rate variability correlate with an

individual’s cognitive load. We attempted to extract heart beats from the

wireless signal, but were not as accurate as the Vital-Radio authors [9]. Our

error metrics (comparing Wi-Minds extracted heart rate with Microsoft Band

heart rate) were showing relatively high values. One difference between ours

and Vital-Radio article’s evaluation section article is that they used a chest

band as a reference for ground truth heart rate, where our reference point

for heart rate was acquired with Microsoft Band. In the article the authors

mentioned that the accuracy exceeded 98% for heart rate, even when users

were using a phone or a laptop with daily activities. However, in their exper-

iment users were engaged in daily activities, while extracting heart rates, for

5 minutes, where our user study lasted for cca. 45 minutes. Besides extract-

ing low accuracy heartbeats we also extracted breathing of a person. We

did not have ground truth respiratory measure, but were more self-confident

into acquiring and extracting these values, as breathing is significantly more

apparent in a visualised raw signal than heart beats are. Another compar-

ison of our system with Vital-Radio brings us to the cost of the system –

61
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Wi-Mind system uses USRP B210 connected with USB port directly to the

computer, whereas Vital-Radio uses additional hardware, allowing it to make

more precise vital sign monitoring and higher range resolution. We managed

to make similar vital sign monitor with cheaper hardware.

Evaluating the results of our system shows limitations of using this kind of

a radar for cognitive load inference. Previous work was relying into different

kinds of equipment, such as smart watches [37], ECG armband, eye tracker

and EEG head set [16]. It has been shown that ECG measures can indeed

correlate with differences in cognitive load. We did not achieve as accurate of

results, but we still got performance values above baseline for some problem

definitions. This was expected as we did not use highly accurate intrusive

equipment. One of the possible flaws of radar-based vital sign monitor is

that while it can measure vital signs when a person is not making excessive

limb motion, it has difficulties to do so when a user is moving a computer

mouse or produces even higher wireless signal noise when using a keyboard.

While we did manage to predict relax vs. busy states and transitions

between them, to some extent, we also tried to infer cognitive load while

comparing different tasks. Features, that contributed to most to the positive

results of our study, were mostly related to breathing (i.e. average breathing

rate, standard deviation of inter-breath intervals, mean value of inter-breath

intervals, difference between breathing rates from first and second half in one

time window). Breathing, however, is rarely used in cognitive load inference

research as it is difficult to measure with commodity wearable devices, such

as fitness wristbands. Using Wi-Mind in symbiosis with wearables is an excit-

ing avenue for future research. Per task modelling brought promising results,

where number comparison task type had the accuracy of 65% with the HRV

high frequency being the most influencing feature to distinct between two

task difficulties. Users required significantly more time to solve this type of

a task, which could join with the findings that HRV high frequency feature is

usually decreased under time pressure [58]. Immediate improvements could

include testing Wi-Mind with a higher number of volunteers or with users
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with different age/physical fitness, in order to make our dataset bigger and

more representative. Features we used are based on experienced intrusive

means of measuring vital signs. Collected wireless signal phase data might

hide additional features potentially related to cognitive engagement. Be-

ing feature oblivious, we also tried a convolutional neural network approach

which led to slightly better results in some cases, but was not showing major

improvement. To sum up – some of the possible future work improvements

could include:

• more study subjects;

• diverse study subjects (users from different generations and/or different

physical fitness);

• easier separation between the task complexity levels;

• longer tasks, so that HRV frequency features can be extracted more

confidently;

• use Markov chains to build a model for task engagement to see whether

the changes between different states happen.
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Chapter 7

Conclusion

Modern technology, although facilitating our daily tasks, can have nega-

tive consequences on our work by making inconsiderate interruptions, which

can reduce our work performance or induce stress. As we live in the world

of pervasive technology enabling always-on connectivity, improving human-

computer interaction is a critical issue. This interaction could be improved

with the machine knowing ones cognitive load by lowering the number of un-

necessary interruptions. Cognitive load correlates with humans physiological

signs, yet, inferring it requires advanced approaches in human monitoring,

signal processing, and machine learning.

In this thesis we investigate a wireless radar based technology to infer cog-

nitive load by observing users vital signs. We used an implementation of a

radar to build a Wi-Mind system that measures distance to users body, which

translates to vital signs, such as breathing and heartbeat signals. We engi-

neered features according to best practices from the literature and extracted

them from the collected wireless data. To test our system, we conducted

a study on 23 volunteers while solving tasks of different difficulties. With

the acquired wireless data and task features, we build multiple models to

evaluate users different task engagements. While we can distinct between

busy and relax time frames with an accuracy of just above 75% and 68% of

accuracy between the transitions of the two, predicting the actual level of
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task engagement proved to be too challenging for our system. Still, for cer-

tain task types, such as the number comparison task, we could differentiate

between two task difficulties with the accuracy of 65%. Using deep neural

network approach with a raw signal input (without extracting features) has

led to better results at some problem definitions. Apparently, while extract-

ing heartbeat and respiratory features manually, such as time domain and

frequency domain features, we did not manage to cover all of them and deep

learning has the advantage of finding these hidden features with a price of

higher computational power consumption.

Being optimistic at first, we came to a conclusion that assessing one’s

cognitive load using only wireless signal reflections is a challenging task. Be-

ing present while conducting a user study have led to interesting, yet not

surprising remarks. All users were told to make small movements (e.g. no

excessive limb motion), due to system sensitivity. Still, this was difficult

for some of the volunteers, as people have different habits, that they are

not even aware of (e.g. touching face with one of the hands while solving

a task). Still, some of the results of Wi-Mind could already be beneficial.

E.g. we noticed that we can predict when someone is starting of finishing

some task. This could be either doing homework, studying, reading some

article, etc. Applying Wi-Mind could in theory be able to detect start in

cognitive engagement and turn off all notifications until you finish your task

engagement. This does not only apply to computer related work, but also

on other stationary tasks, e.g. reading newspapers, watching television, lis-

tening to podcasts, etc. Another application domain could be improving

user engagement in studying, especially with interactive educational mate-

rials. Here, upon Wi-Mind detecting reduced engagement, the application

could pop up an interesting instructional video or a short quiz. Cognitive

load inference also raises ethical issues. A video game, for example, could

be adapted to manipulate a player’s arousal to their inferred cognitive load,

potentially leading to gaming addiction [59]. Similar usage could be applied

in social media, e.g. showing different posts to keep person engaged could
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waste more time from an individual user.

Finally, we should be aware that numerous factors “sit” between the ob-

jective complexity of the task and our physiological reaction. These include

our motivation to solve a task, our cognitive capacities, as well as our per-

sonality and skills. Furthermore, the cognitive load proxied through our

physiological reaction is a complex concept that reflects the task’s inherent

complexity (i.e. intrinsic load), the complexity of the task’s representation

(i.e. extraneous load), and the complexity of constructing the schema of the

task (i.e. germane load) [60]. The plethora of concepts involved and mul-

tiple levels of indirection make cognitive load inference a very challenging

problem. In this thesis we present a pioneering approach towards wireless

cognitive load inference, yet aware of the work’s limitations, we call for fur-

ther investigation of this exciting research field.
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APPENDIX A. DEMOGRAPHIC DATA FORM AND STUDY

CONSENT

Appendix A

Demographic data form and

study consent

Starost:               ____ 
 
Spol:                  M               Ž 
 

Moja dominantna roka je:                          LEVA                              DESNA 
 
Stopnja izobrazbe:  I.   II.   III.   IV.   V.   VI/1.   VI/2.   VII.   VIII/1.   VIII/2 
 

nedokončana OŠ I.  

OŠ II.  

nižje poklicno izobraževanje (2 letno) III.  

srednje poklicno izobraževanje (3 letno) IV.  

gimnazijsko, srednje poklicno -tehniško izobraževanje, srednje 
tehniško oz. drugo strokovno izobraževanje 

V.  

višješolski program (do 1994), višješolski strokovni program VI/1.  

specializacija po višješolskem programu, visokošolski strokovni 
programi 

VI/2. visokošolski strokovni in univerzitetni 
program (1. bol. st) 

specializacija po visokošolskem strokovnem programu, univerzitetni 
program 

VII. magisterij stroke (2. bol. st.) 

specializacija po univerzitetnem programu, magisterij znanosti VIII/1.  

doktorat znanosti VIII/2. doktorat znanosti (3. bol. st.) 

 
 
Izpolni raziskovalec: 
 
ID: __________________ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



71

Sporazum o zavestnem in prostovoljnem sodelovanju v raziskavi 
S svojim podpisom potrjujem naslednje: 

● Vsebina študije mi je bila razložena v celoti in sem jo razumel. 
● Na vsa moja dodatna vprašanja sem prejel odgovore, ki so v celoti zadovoljivi. 
● Strinjam se s sodelovanjem v študiji. 
● Zavedam se, da je sodelovanje v študiji prostovoljno. 
● Seznanjen sem, da lahko v kateremkoli trenutku tekom izvajanja eskperimenta prekličem           

sodelovanje. 
 
Izjava o varovanju podatkov 
Strinjam se, da se zbrani podatki uporabijo v znanstvene namene. Za vse zbrane podatke bo               
zagotovljena popolna anonimizacija. Prav tako se strinjam, da se zbrani podatki lahko uporabijo za to               
študijo in za naslednje študije ter publikacije. Anonimizirani podatki se lahko uporabijo s strani              
raziskovalcev in sodelavcev Fakultete za računalništvo in informatiko, Univerze v Ljubljani, ter            
zunanjih raziskovalcev, po dovoljenju Fakultete za računalništvo in informatiko. 
 
Umik sporazuma o uporabi zbranih podatkov 
Seznanjen sem, da lahko kadarkoli in brez razloga umaknem sporazum za uporabo podatkov. V              
primeru umika sporazuma se strinjam, da se podatki shranijo v kontrolne namene. Prav tako imam               
pravico zahtevati izbris podatkov. Zavedam se tudi, da v primeru izvedene anonimizacije nad podatki,              
zahtevan izbris ni mogoč. 
 
 
 
Ljubljana, dne  __________________ 
 
Podpis udeleženca  
 
_______________________________  
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