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Abstract. Appearance-based modeling of objects and scenes using PCA
has been successfully applied in many recognition tasks. Robust meth-
ods which have made the recognition stage less susceptible to outliers,
occlusions, and varying illumination have further enlarged the domain
of applicability. However, much less research has been done in achiev-
ing robustness in the learning stage. In this paper, we propose a novel
robust PCA method for obtaining a consistent subspace representation
in the presence of outlying pixels in the training images. The method
is based on the EM algorithm for estimation of principal subspaces in
the presence of missing data. By treating the outlying points as missing
pixels, we arrive at a robust PCA representation. We demonstrate ex-
perimentally that the proposed method is efficient. In addition, we apply
the method to a set of panoramic images to build a representation that
enables surveillance and view-based mobile robot localization.

1 Introduction

Appearance-based modeling of objects and scenes using subspace representations
has become very popular in the vision community. Most of the approaches have
used Principle Component Analysis (PCA) for building efficient representations
and for subsequent recognition. The approach has led to a variety of successful
applications, e.g., human face recognition [22, 2], visual inspection [25], visual
positioning and tracking of robot manipulators [15], illumination planning [14],
mobile robot localization [11], and background modeling [17]. However, the stan-
dard way to perform recognition, based on projections, is prone to errors in the
case of non-Gaussian noise, e.g., occlusions, varying illumination conditions, and
cluttered background in the input images. Therefore, different authors have pro-
posed robust procedures [18, 3, 12] to obtain reliable recognition also in these
cases.
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However, if the training images are taken under non-ideal conditions, the
obtained representations encompass various non-desirable effects, which cannot
be overcome at the recognition stage. Let us consider, for example, a case of a
view-based localization of a mobile platform using a set of panoramic images
to represent the environment [8, 9, 1, 11]. Due to the wide field-of-view, it is al-
most impossible to obtain training images without outliers (e.g., people moving
around). This problem gets even more pronounced in the cases when the training
has to be performed “in-vivo”, i.e., when the environment can not be specifically
tailored for the training phase. This clearly indicates that we need a method to
perform robust training in order to obtain parametric representations insensitive
to these effects. More specifically, we need a procedure which is able to detect
inconsistencies in the input data, eliminate them, and then calculate the repre-
sentation from the consistent data only. In the case of representations based on
the PCA, this requires a novel way of calculating the eigenimages from a subset
of data points.

In this paper we propose a novel robust PCA method to obtain a consistent
subspace representation in the presence of outlying pixels in the training images.
The method is based on the EM algorithm [19, 21], which enables the calcula-
tion of the eigenspaces, i.e., maximum likelihood solution of PCA, in the case of
missing data. The fact that we can calculate the PCA on a subset of pixels in the
input images, makes it possible to remove the outliers and treat them as missing
pixels, arriving at a robust PCA representation. The outliers are determined by
a consistency measure over the set of training images. We demonstrate experi-
mentally that the proposed method is computationally efficient and compare its
results to a recently proposed method [5]. In addition, we apply the method to a
set of panoramic images to build a representation that would enable surveillance
and view-based mobile robot localization, where it is essential to have a robust
training algorithm which is insensitive to people moving in front of the sensor.

The paper is organized as follows: In the next section we briefly review the
related work. In section 3 we present our robust PCA method. Then we show
the performance of the method on several experiments. Finally, we summarize
the paper and outline some work in progress.

2 Related Work

A variety of methods have been proposed to perform PCA on a set of data. For
an overview see, for example, [6, 16]. Recently, several new algorithms for PCA
have been proposed. Roweis [19] proposed an Expectation Maximization (EM)
algorithm for estimating principal axes. In [21], Tipping and Bishop proposed
a Probabilistic PCA algorithm, based on an isotropic error model. They have
also introduced an iterative EM algorithm for estimating the parameters. The
algorithm has also been used in a mixture model of principal component ana-
lyzers. Of particular interest is that these algorithms can be used in the case of
missing data (i.e., when we know which pixels are missing) to calculate a maxi-
mum likelihood solution for PCA. The major drawback of all these methods is



that they are not robust, because they are basically based on the least squares
minimization.

Several methods for estimation of principal axes in the presence of missing
data have been proposed. Wiberg [23] has proposed a method based on the
weighted least squares technique, which was later extended by Shum et al. [20].
Gabriel and Zamir [7] proposed a method for subspace learning with any choice
of weights, where each data point can have a different weight determined on the
basis of reliability.

Several methods to robustly extract the principal exes in the presence of
outliers have also been proposed in the statistical community; see [5] for a nice
overview. The major drawback of these methods is that either they rely on the
calculation of a “robust” covariance matrix, which is due to the high dimension-
ality of image data not feasible, or that they discard entire data vectors [24]. In
the later case, a whole image would be eliminated just because of a single out-
lying pixel. For the tasks we envision to tackle, this would mean that no images
would be usable since, in general, each of them might contain some outliers.

Only very recently De la Torre and Black [5] have presented a method which
is robust and suitable for high dimensional image data. They have presented a
robust PCA algorithm based on robust M-estimator. Their formulation yields a
high dimensional non-linear optimization problem which has to be solved in an
iterative manner. Therefore, the overall computational complexity of the algo-
rithm is very high. They have demonstrated the performance of their algorithm
on images contaminated with a few outliers and on temporal coherent image
sequences.

The method for performing PCA in the presence of missing pixels, which
is presented in this paper, is related to these methods [23, 20]. However, we
have paid a special attention to the high-dimensional nature of image data and
adapted the algorithms to avoid an ill-posedness of the problem. Together with
a procedure for detection of outliers, the proposed method enables efficient and
robust subspace learning.

3 Robust PCA Based on EM

Before we present the robust PCA algorithm, we briefly introduce the notation.
Let xi = [x1i, . . . , xmi]T ∈ IRm be an individual image represented as a vector,
and X = [x1, . . .xn] ∈ IRm×n. To simplify the notation, we assume X to be
normalized, having zero mean. The eigenvectors (principal axes) obtained from
X are denoted by ei = [e1i, . . . , emi]T ∈ IRm; E = [e1, . . . en] ∈ IRm×n. The
columns of E, i.e., eigenvectors, are arranged in decreasing order with respect
to the corresponding eigenvalues. Usually, only k, k < n, eigenvectors (those
with the largest eigenvalues) are needed to represent xi to a sufficient degree of
accuracy as a linear combination of eigenvectors ei:

x̃ =
k∑

i=1

ai(x)ei = Ea , (1)



where x̃ denotes the approximation of x. The entire set of images X can thus
be represented as X̃ = EA where A = [a1, . . . an] ∈ IRk×n consists of coefficient
vectors ai = [a1i, . . . , eki]T ∈ IRk.

Having an eigenspace encompassing the training images and being given an
input image y, recognition occurs as an estimation of the parameters ai(y).
These can be calculated by a standard projection

ai(y) = eT
i y =

m∑
j=1

ejiyj , i = 1 . . . k , (2)

or, as a robust procedure [12], by solving a system of linear equations

yri
=

k∑
j=1

aj(y)eri,j , i = 1 . . . q , (3)

evaluated at q ≥ k points r = (r1, . . . rq).
Now we can turn to the robust PCA algorithm. We will first present an

algorithm based on EM and Probabilistic PCA (PPCA) which can cope with
missing data. Based on that algorithm we will then present an efficient robust
PCA algorithm.

3.1 EM Algorithm for PCA

Most of the algorithms for building principal subspaces are based on the eigen-
decomposition of the covariance matrix of the input data. However, there ex-
ist other approaches, for instance a probabilistic approach, where PCA can be
considered as a limiting case of a linear Gaussian model, when the noise is in-
finitesimally small and equal in all directions [19]. From this observation one can
derive an algorithm for calculating principal axes, which is based on the EM
(expectation-maximisation) algorithm [4, 19, 21]. This algorithm consists of two
steps, E and M, which are sequentially and iteratively executed:

– E-step: Estimate coefficients A (unknown states in the context of EM) using
computed principal exes E.

– M-step: Compute new principal axes E which maximize expected joint
likelihood of the estimated coefficients A and the observed images X.

The EM algorithm for PCA proposed by Roweis [19] looks as follows:

– E-step: A = (ET E)−1ET X
– M-step: E = XAT (AAT )−1 .

At convergence, the columns of E span the space of the first k principal exes.
These vectors are, in general, not orthogonal, but, when desired, they can be
orthogonalized later. The PPCA algorithm in [21] is very similar except that an
isotropic noise model is used.

The convergence of the algorithm can be checked by looking at a difference in
the successive estimates of the average lost variance σ2 per discarded dimension.



As shown in [21], the maximum likelihood solution for σ2 is σ2 = 1
n−k

∑n
j=k+1 λj ,

which corresponds to the sum of the discarded eigenvalues. It can be conveniently
calculated by

σ2 =
1

n − k


VAR(X) −

k∑
j=1

λj


 , (4)

where VAR(X) is the variance of X which is defined as the sum of variances in
rows of X. Since in the EM algorithm we do not explicitly calculate eigenvalues
at each iteration, we can estimate σ2 by

σ2 =
1

n − k

(
VAR(X) − VAR(X̃)

)
. (5)

Roweis [19] has proposed also a generalized E-step for handling missing data.
He has proposed to treat missing data as additional hidden states and to estimate
them in the E-step simultaneously with estimating the coefficients by solving a
least squares problem. However, in the case of images with considerable amount
of missing pixels, this results in an ill-posed problem, which does not produce
satisfactory results. In the next subsection we propose a different algorithm for
handling missing data in the EM approach, which produces better results.

3.2 PCA in the Presence of Missing Data

It is important to note that in the case when we use all data points, the E-step
is equivalent to calculating the coefficients by the solution of the linear system
of equations (3). This can be easily seen by noting that ai = (ET E)−1ETxi =
E†xi. The least squares solution of (3) is equivalent to the pseudo-inverse. A
very similar observation holds also for the M-step. Therefore, we can perform
the EM-algorithm by iteratively solving the following systems of linear equations:

– E-step: Estimate coefficients in A in the following way: For each image j,
j = 1 . . . n, solve the following system of linear equations in the least squares
sense:

xij =
k∑

p=1

eipapj , i = 1 . . . m . (6)

– M-step: Estimate principal axes in E in the following way: For each pixel i,
i = 1 . . . m, solve the following system of linear equations in the least squares
sense:

xij =
k∑

p=1

eipapj , j = 1 . . . n . (7)

From these considerations we can also see how to compute the coefficients and
principal axes in the case of missing data. We only need to set up Eqs. (6) and
(7) with the known data points and compute the coefficients ai and the principal
axes ei. Similar solutions, but with different derivations and formulations, are
proposed in [20, 23].



Notice that in the case of missing pixels, we can no longer assume that the
data is mean normalized, however this can easily be achieved by estimating the
mean image over the known pixels.

When dealing with images containing a considerable amount of missing pix-
els, such a formulation results in an ill-posed problem. To alleviate this problem
we impose additional application dependent constraints to the minimization pro-
ces. When the images are ordered as it is the case of image sequences, we can
augment the algorithm to include also a smoothness prior to enforce that the
missing pixels are changing smoothly over time. Thus, in the M-step we min-
imize the second derivative of the reconstructed missing pixels. If M is a set
containing all missing pixels, the algorithm looks as follows:

– E-step: Estimate coefficients in A in the following way: For each image j,
j = 1 . . . n, solve the following system of linear equations in the least squares
sense:

xij =
k∑

p=1

eipapj , i = 1 . . . m | xij /∈ M . (8)

– M-step: Estimate principal axes in E in the following way: For each pixel i,
i = 1 . . . m, solve the following system of linear equations in the least squares
sense:

xij =
k∑

p=1

eipapj , j = 1 . . . n | xij /∈ M

0 = α

k∑
p=1

eip(ap,j−1 − 2apj + ap,j+1) , j = 1 . . . n | xij ∈ M , (9)

where α is the parameter which weights the influence of the smoothness
constraint.

The overall algorithm minimizes the following error function:

E =
n∑

j=1

∑
i∈Gj

(
xij −

k∑
p=1

eipapj

)2

+ α
n∑

j=1

∑
i∈Bj

(
k∑

p=1

eipa
′′
pj

)2

, (10)

where Gj denotes a set of indices of non-missing pixels in j-th image, while Bj

denotes a set of indices of the corresponding missing pixels.
Alternatively, the principal axes can in the M-step also be obtained by apply-

ing the standard PCA using all pixels provided that missing pixels are filled-in.
The question is how to optimally fill-in the values of the missing pixels. Since not
all pixels of an image are known, some coordinates of the corresponding point
in the image space are undefined. Thus, the position of the point is constrained
to the subspace defined by the missing pixels. Given the principal subspace E,
which models the input data, the optimal location is a point in the missing pixels
subspace which is closest to the principal subspace. This point is obtained by



replacing missing pixels with the reconstructed values, which are calculated by
(1) using the coefficients ai estimated in E-step of the current iteration and the
principal axes ei obtained in the previous iteration. Therefore, the new M-step
looks as follows:

– M-step: Estimate principal axes in E by applying the standard PCA on X
with the reconstructed missing pixels:

xij = x̃ij , i = 1 . . . m , j = 1 . . . n | xij ∈ M where X̃ = EA . (11)

What still remains to be determined is how to calculate an initial solution
for E. In fact, we could start with random values as the initial principal axes. A
more efficient approach is to calculate the principal axes E from an estimate of
A obtained by performing SVD on the inner product matrix S of the input set
X estimated from the non-missing pixels:

sij =
1
|P |

∑
p∈P

xpixpj ; P = {p | xpi /∈ M, xpj /∈ M} . (12)

To summarize, the algorithm missPixPCA looks as follows:

1: Estimate inner product matrix S from the known data, using (12).
2: Perform SVD on S yielding eigenvectors as an estimate for A.
3: Perform M-step according to (9) obtaining an estimate for E.
4: repeat
5: Perform E-step according to (8).
6: Perform M-step according to (9) or (11).
7: Replace missing pixels in X by reconstruction using (1).
8: Calculate σ2 from (4) or (5).
9: until change in σ2 is small.

3.3 Robust PCA

The basic idea of our robust PCA algorithm is to determine the outliers and
treat them as missing pixels, and then use the algorithm described above to
calculate PCA without these outliers. Based on the estimated principal axes
and coefficients we can again determine the outliers and repeat the process.
The crucial question is how to determine the outliers. We have investigated two
approaches, one giving a global threshold and another giving a local threshold:

1. Global threshold: Depending on the number of principal components we
choose to represent the images with, we expect that an average error per
image is equal to the discarded variance, which can be computed as σ2

img =∑n
i=k+1 λi. When we divide this number by the number of pixels, we get

an average expected error per pixel σ2
pix = 1

m

∑n
i=k+1 λi. We treat all those

pixels as outliers whose reconstruction error is larger than σ2
pix, multiplied by

a factor, which depends on the expected quantity of outliers in the images.
The problem with this method is that it assumes the same variability across
the whole image, which is in general not true.



2. Local threshold: De la Torre and Black [5] have proposed a method to com-
pute a local threshold for each pixel based on the Median Absolute Deviation
(MAD) of a pixel. They compute for each pixel p: σp = β(1.4826medR(|rp −
medR(|rp|)|), σmin) where medR is median taken over a region, R, around
pixel p, σmin is the MAD over the whole image, and β is a constant factor.
The initial error rp is calculated using standard PCA on the whole image
set. This method has the advantage that it takes into account the variability
within an image.

Based on this, we can outline our robust PCA algorithm robPCA as follows:

1: repeat
2: Compute principal axes and coefficients using standard

PCA on X.
3: Detect outliers using either global or local threshold.
4: Treat outliers as missing pixels and perform PCA by using

missPixPCA algorithm from subsection 3.2.
5: Replace missing pixels in X by reconstruction using esti-

mated E and A.
6: until the outlier set is empty.

Usually, only a few iterations (even only a single one) of this algorithm are
sufficient for convergence.

4 Experimental Results

In this section we demonstrate the performance of our proposed algorithm and
evaluate it on several examples. First, we illustrate the behavior of the algorithm
on a set of 1-D signals. Then we evaluate the results of applying our algorithm
to a set of panoramic images. Finally, we compare the results of our approach
to the ones obtained by a recently proposed method [5] on their set of input
images.

4.1 A 1-D Example

Let us consider a set of 1-D vectors which is formed of 10 shifted harmonic (sinus)
functions. Next, we randomly remove 20% of the elements, as depicted in the top
row of Fig. 1(a). Now, the goal is to find the optimal principal axes representing
these vectors which contain missing data by applying missPixPCA algorithm
from subsection 3.2. In this experiment, the estimation of the principal axes in
the M-step of the EM algorithm was performed by applying the standard PCA
on the input data with the reconstructed missing pixels.

Fig. 1 illustrates the performance of the proposed method. First, the initial
values of the principal exes are obtained from the covariance matrix estimated
from the non-missing values of the input vectors. Then, based on the E-step,
we calculate the coefficients and the reconstructed signals. The missing pixels
are then replaced with their reconstructed values from the previous iteration.



The initialization, the first, the third, and the tenth iteration of the algorithm
are shown in subsequent rows of Fig. 1. Note how the functions representing
estimated principal axes are getting smoother after every iteration. Finally, we
obtain a perfect reconstruction of the input vectors.
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(a) (b) (c)

Fig. 1. A 1-D example with missing pixels: (a) input data at each iteration, (b) esti-
mated principal axes, (c) reconstructed vectors.

Fig. 2 illustrates the performance of the algorithm robPCA proposed in sub-
section 3.3. Now, a set of 1-D vectors is formed from 40 shifted sinus functions
(only half of them are shown). 20% of the elements are contaminated with ran-
dom noise (Fig. 2(a)). Figs. 2(b-d) depict the reconstruction after the second
step in the first iteration of the proposed algorithm, and the reconstruction at
the end of the first, and at the end of the second iteration. One can observe,
how initially very noisy signals become more and more regular, converging to
the ground truth.
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Fig. 2. A 1-D example with noisy signals: (a) input data, (b) reconstruction after using
the standard PCA, (c) reconstruction after the first iteration, (d) reconstruction after
the second iteration of robPCA algorithm.

4.2 Robust PCA on Panoramic Images

First, we tested the performance of our method on the images with known ground
truth. We captured 30 panoramic images of the size 100 × 100 in the faculty
hall. Then, we synthetically applied gradual illumination changes and nonlinear
illumination changes (a shadow—the vertical “cloud”) to this set of images. In
addition, we added, as an outlier area, a square on a randomly chosen position
in every image. The goal is to learn the panoramic representation capturing the
illumination variations (linear and nonlinear) but discarding the outliers. Since
these images were captured in a sequence, they are temporally well correlated.
Therefore, we include the smoothness prior in the calculation of the principal
axes in the M-step of the EM algorithm.

The results are depicted in Fig. 3. In the images reconstructed from the first
principal component obtained with the standard PCA, one can clearly observe
that the linear illumination changes are modelled, but not the nonlinear. If the
model consists of the first 8 principal axes produced by the standard PCA,
then all illumination changes are captured in the reconstructions, however, the
model also contains the outliers (squares). On the other hand, using our robust
algorithm, one can observe from the reconstructions based on the first 8 principal



axes, that all illumination changes are captured in the model, while the outliers
are not, which is exactly what we want to achieve.

(a) (b) (c) (d)

Fig. 3. A comparison of our method with the standard PCA. (a) Input images (every
fifth image from the training set). (b) Reconstruction based on the first principle axis
(PA) using standard PCA. (c) Reconstruction based on the first 8 PA using standard
PCA. (d) Reconstruction based on the first 8 PA using robust PCA.

Since the positions of the outliers are known, we can calculate the mean
absolute reconstruction error in the outliers (squares) and in the inliers (back-
ground). The reconstruction error in the inliers should be as small as possible,
while the reconstruction error in the outliers should be large, enabling an effi-



cient detection of outliers. Table 1 compares the reconstruction errors with the
errors obtained using optimal principal axes, which were estimated from the data
without outliers (ground truth). It is evident that the robust PCA outperforms
the standard one since the errors obtained with the proposed algorithm are much
closer to the optimal ones.

Table 1. Comparison of the reconstruction errors obtained using the standard and the
robust PCA.

num. reconstr. error in
data method of PA inliers outliers

ground truth standard PCA 8 1 2805
with outliers standard PCA 1 146 2601
with outliers standard PCA 8 21 540
with outliers robust PCA 8 6 2608

We also applied the proposed method to a sequence of panoramic images,
which were captured at several locations in the laboratory. At each location a
sequence of 180 images of the size 100 × 100 was captured, of which 60 were
used in the training stage. During the acquisition, we varied the illumination
conditions and people were free to walk around in the laboratory. To enable
an efficient and robust appearance based localization of a mobile platform, a
representation has to be built which parametrically models the laboratory under
different illumination conditions but at the same time excludes randomly moving
subjects (objects) in the training images.

The results for one sequence are shown in Fig. 4. Since people appear in
most of the training images, the standard PCA incorporates them in the repre-
sentation. Consequently, they appear in the reconstructed images as undesirable
“ghost people”. In contrast, the images, which were reconstructed based on the
output of the robust PCA do not contain these effects since the outliers (peo-
ple) are eliminated from the representation during the process. Therefore, these
images represent solely the appearance of the location under different illumina-
tions. Robust representations obtained at different locations can be combined in
an overall appearance-based representation of the laboratory, suitable for mobile
robot localization and navigation, or for performing surveillance tasks.

4.3 Comparison with the Previous Work

We performed an experiment where we applied our method on the same image
sequence3 of 256 images of size 120×160 pixels as De la Torre and Black [5], who
recently proposed a method for robust learning of appearances based on PCA.
Some of the results obtained by our algorithm are presented in Fig. 5. By visually
3 Images were obtained from http://www.salleurl.edu/∼ftorre/papers/rpca2.html.



(a) (b) (c)

Fig. 4. (a) Four panoramic images from the sequence, (b) their reconstructions based
on the standard PCA, and (c) their reconstructions based on the robust PCA.

comparing Fig. 5 with Fig. 8 in [5], we can conclude that both algorithms produce
very similar results. However, as reported in [5], their algorithm takes three hours
on a 900 MHz Pentium III to produce these results, while our algorithm finishes
the task in 19 minutes on a 550 MHz Pentium III.

5 Conclusion

In this paper we presented a novel method which builds robust PCA represen-
tations in the presence of outlying pixels in the training images. The method is
based on the EM algorithm and its computational efficiency has been experimen-
tally demonstrated. We showed the utility of the method on a set of panoramic
images with immediate applications for view-based mobile robot localization and
surveillance.

In fact, robust building of representations is an unavoidable step in all real-
istic learning scenarios when the environment can not be specifically tailored for
the training phase. Since the method primarily exploits the temporal coherence
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Fig. 5. (a),(e) Original data from [5], (b),(f) standard PCA reconstruction, (c),(g) our
robust PCA reconstruction, (d),(h) outliers obtained by our method.

of the input image set to build a consistent subspace representation, it is best
suited for temporally well correlated inputs. While in these cases the non-robust
initialization, which has been used in the proposed method, does not pose a
problem, we are well aware that one issue that needs to be further explored is
robust initialization [10].

Future work will also focus on image sets containing several classes of dif-
ferent views of objects and scenes. In such cases, the presented method has
to be combined with an unsupervised clustering method of input images, such
as for example recently proposed [13], which would result in multiple robust
eigenspaces.
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