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Povzetek

Vizualno učenje mora biti robusten in kontinuiran proces. Vsi razpoložljivi

vizualni podatki niso enako pomembni; v primeru prekrivanj in ostalih nezaželenih

motenj v vidnem polju so lahko nekateri celo zavajajoči. Človeški vizualni sistem

obravnava vizualne podatke selektivno in zgradi učinkovite predstavitve opazovanih

predmetov in scen tudi v neidealnih pogojih. Te predstavitve lahko nato še po-

sodablja z na novo pridobljenimi informacijami in jih tako prilagaja spremembam.

V doktorski disertaciji proučimo ta načela in predlagamo več metod, ki uvedejo

podobne principe tudi na področje strojnega vizualnega učenja in razpoznavanja.

Vizualno učenje je realizirano z modeliranjem osnovanim na izgledu predmetov

in scen. Gradnja modelov temelji na metodi glavnih komponent (PCA), ki pa ima

v svoji standardni izvedbi nekaj pomanjkljivosti, ki onemogočajo uveljavitev prej

omenjenih načel. Za premostitev teh pomanjkljivosti je v disertaciji predlaganih več

razširitev standardne metode glavnih komponent.

Standardna metoda PCA obdeluje vse učne slike hkrati in tako zahteva, da

so vse slike podane vnaprej. Ker to ne ustreza zahtevam kontinuiranega učenja,

predlagamo metodo za inkrementalno učenje, ki obdela slike zaporedno drugo za

drugo in na vsakem koraku ustrezno posodablja zgrajeni model. Vsako sliko lahko

takoj po posodobitvi modela zavrže, zaradi česar je ta metoda še posebej primerna

za aplikacije, ki zahtevajo sprotno obdelavo podatkov.

Osnovna metoda za analizo glavnih komponent ravno tako ne upošteva, da imajo

lahko različni deli slik kot tudi celotne posamezne slike različen vpliv na proces

učenja, čeprav je to v praksi zelo pogosto. Zato v disertaciji predlagamo posplošeno

metodo za analizo glavnih komponent, ki omogoča različno utežitev posameznih

slikovnih elementov in slik ter jih tako selektivno obravnava. Uteženo metodo nato

še nadgradimo v metodo za učenje iz delnih podatkov, ki zgradi model predmeta

tudi, če del vhodnih podatkov manjka.
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Slike, ki jih zajamemo z različnimi vizualnimi senzorji, pogosto niso idealne in

vsebujejo različne moteče dodatke, kot so odbleski in delna zakrivanja. PCA je v

svoji standardni izvedbi zelo občutljiva na tak ne-gaussov šum. Bilo je predlaganih

že več metod za robustno razpoznavanje, zelo malo pa je bilo narejenega na po-

dročju robustnega učenja. V disertaciji je predstavljen nov pristop k robustni grad-

nji na osnovi podprostorov. Predlagani paketna in inkrementalna metoda zaznata

nekonsistentnosti v vhodnih slikah in zgradita predstavitve samo iz konsistentnih

podatkov. Zgrajeni modeli so tako bolj robustni ter učinkoviti, kar omogoča bolj

zanesljivo vizualno učenje in razpoznavanje tudi, ko učni pogoji niso idealni.

V disertaciji so izpeljane vse zgoraj omenjene metode in predstavljeni ustrezni

algoritmi. Vsi predlagani algoritmi so tudi eksperimentalno ovrednoteni na različnih

slikovnih domenah. Iz rezultatov je razvidna uporabnost metod za vizualno učenje

in razpoznavanje v različnih primerih.

Ključne besede: vizualno učenje, robustno učenje, robustno razpoznavanje, uteženo

učenje, manjkajoči podatki, inkrementalno učenje, podprostorske metode, analiza

glavnih komponent, na izgledu osnovano modeliranje, gledǐsčno-osredǐsčen pristop,

računalnǐski vid.
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Abstract

In the real world, visual learning is supposed to be a robust and continuous

process. All available visual data is not equally important; in the case of occlu-

sions or other undesirable intrusions in the field of view some visual data can even

be misleading. Human visual system treats visual data selectively and builds effi-

cient representations of observed objects and scenes even in non-ideal conditions.

Furthermore, these representations can afterwards be updated with newly acquired

information, thus adapting to the changing world. In this dissertation we study

these premises and propose several methods, which introduce similar principles in

the machine visual learning and recognition as well.

We approach visual learning by the appearance-based modeling of objects and

scenes. Models are built using principal component analysis (PCA), which has

several shortcomings with respect to the premises mentioned above. In order to

overcome these shortcomings, we propose several extensions of the standard PCA.

PCA-based learning is traditionally performed in a batch mode, thus requiring all

training images to be given in advance. Since this is not admissible in the framework

of continuous learning, we propose an incremental method, which processes images

sequentially one by one and updates the representation at each step accordingly.

Each image can be discarded immediately after the model is updated, which makes

the method perfectly well suited for real on-line scenarios.

In addition, in the standard PCA approach all pixels of an image receive equal

treatment. Also, all training images have equal influence on the estimation of prin-

cipal subspace. In this dissertation, we present a generalized PCA approach, which

estimates principal axes and principal components considering weighted pixels and

images. We further extend this weighted approach into a method for learning from

incomplete data, which builds the model of an object even when the part of input

data is missing.
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Images of objects and scenes are not always ideal and as such they may contain

various deceptive additions like reflections or occlusions. PCA in its standard form

is intrinsically non-robust to such non-gaussian noise. Several methods for robust

recognition have already been proposed, however robust learning has been tackled

very rarely. In the dissertation we introduce a novel approach to the robust subspace

learning. The proposed batch and incremental methods detect inconsistencies in

the training images and build the representations from consistent data only. As

a result, the obtained models are more robust and efficient enabling more reliable

visual learning and recognition even when the learning conditions are not ideal.

In the dissertation we derive all the methods mentioned above and present suit-

able algorithms. We also experimentally evaluate all the proposed algorithms on

different image domains and determine the applicability of the methods in different

scenarios.

Key words: visual learning, robust learning, robust recognition, weighted learn-

ing, missing pixels, incremental learning, subspace methods, principal component

analysis, appearance-based modeling, view-centered approach, computer vision.
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Chapter 1

Introduction

1.1 Learning, representation, recognition

Vision is the most important and informative human sense. It provides us a lot

of information about our surroundings; about the encircling environment, nearby

objects and subjects, their interplay, and the events that are happening. However,

the visual data, which is acquired by our retina, is meaningless until some significant

descriptions are inferred; thus until these particular parts of our surroundings are

recognized to a certain extent. Recognition is hence an essential part of the human

perception.

Recognition itself implies learning. The prefix ‘re-’ in the expression indicates a

repetition, meaning that we can only re-cognize something that we have already seen.

Therefore, we first have to learn how an object looks and store its representation in

our memory to be able to recognize it in the future. Learning, representation and

recognition are thus three inseparable parts of visual perception.

Visual recognition seems to be an easy task for humans. We can recognize most

(previously seen) objects almost immediately without any particular effort. On the

other hand, visual learning and recognition is one of the most difficult tasks in

computer vision. Why is that so? How does the human brain learn and store visual

information? How is recognition performed? Can these principles be utilized in

computer vision as well?

These questions have been raised in the fields of psychology, psychophysics, and

neuroscience as well as in computer vision. In the eighties, computer vision scientists

mainly followed the Marr’s paradigm [43], also known as inverse optics paradigm.

It advocates that objects (or scenes) are represented as 3-dimensional models. The

1
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main requirement of this paradigm is thus the reconstruction of 3-D models from

2-D images. Such representation is also referred to as object-centered representation.

It models the object only and is viewpoint and illumination invariant. Once such a

3-D model is stored in the memory, the object can be recognized from an arbitrary

viewpoint under a wide range of illumination conditions.

This approach to visual learning and recognition roughly includes two steps

which have proven to be difficult: first, building a consistently registered 3-D object-

centered model, and second, extracting features on an image of an unknown object

and matching these features to the features in the objects representation. This

principle is depicted in Fig. 1.1.

It turns out that these two steps, which may be unnecessary for recognition,

can be circumvented. This can be achieved by modeling objects as a set of views

captured during a systematic observation of each object. Recognition can then be

performed by directly matching an unknown 2-D view with the stored 2-D views.

This approach is depicted as the shortcut in Fig. 1.1. It is known as viewer-centered

approach, since the representation depends on the position of the viewer, i.e., it

depends on the views, from which an object was observed during the learning. Once

such a view-based model is stored in the memory, the object can be recognized

only from similar views and under similar illumination conditions. When the model

is based on a set of images of object’s appearances from a number of views, this

approach is sometimes also referred to as image-based or appearance-based approach.

matching

matching
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Figure 1.1: Object-centered and viewer-centered visual learning and recognition.



1.2. Appearance-based approach 3

A big advantage of this approach is that it does not require any 3-D recon-

struction. In this regard, it seems very unlikely that the human brain, which

is the ultimate learning system, performs the complete 3-D reconstruction of the

observed scene. Indeed, since the viewer-centered images are given as input to

human visual system, it would not be surprising, if visual recognition was based

on similar view-based mental representations [73]. In fact, in the nineties, sev-

eral psychophysical, neurophysiological and behavioral studies provided a strong

evidence that the human object recognition performance is strongly viewpoint de-

pendent [73, 77, 15, 35, 72, 42]. The viewer-centered approach may seem very

impractical, since each distinct view of an object necessitates a separate representa-

tion. However, due to the generalization capability, only a small number of viewer-

centered representations, which provide enough information to enable generalization

to the other unfamiliar views, are required.

Since 2-D images are given as input in computer vision systems as well, it would

be convenient to apply the image-based approach to machine visual learning and

recognition as well. Actually, a lot of research has been carried out in this direction.

The fact that 3-D reconstruction is circumvented alleviates the process of learning

significantly. What is essential for an effective image-based approach is an efficient

representation, which is easy to build, does not require a huge amount of memory,

enables generalization across views and is suitable for fast recognition (matching).

Providing that an image-based method fulfills these requirements, it can be a good

foundation for a powerful computer vision system for general object recognition.

1.2 Appearance-based approach

The appearance of an object is the combined effect of its shape, reflectance prop-

erties, pose in the scene, and illumination conditions [55]. It proves to be very

difficult to differentiate all these factors from a set of images in order to obtain a

view and illumination-invariant representation. In the appearance-based approach,

the extraction of these physical properties is circumvented. However, in order to

obtain a complete model of an object, one has to acquire all possible appearances

of the object. The object has to be shown to an image sensor in several orientations

and under various illuminations. Of course, there are infinitively many possible

appearances of an object, if we consider all possible orientations and illumination

conditions. However, only a number of images taken from distinct viewpoints un-
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der certain illumination conditions, coarsely encompassing all possible appearances,

can model an object sufficiently well. Other images can then be obtained using

generalization capabilities of the representation.

Nevertheless, the result of the systematic observation of the training object is

a rather large set of images. Since all images represent the same object, they are

usually highly correlated, therefore they contain a lot of redundant information. By

reducing this redundancy, a set of images can be very efficiently compressed, without

a considerable loss of significant information.

1.2.1 Principal component analysis

The most commonly used technique for compression of training images is based

on principal component analysis (PCA) [34]. An image is considered to be a vec-

tor in high-dimensional space of all possible images. The basic idea of PCA is to

efficiently map a high-dimensional input data to a low-dimensional subspace by re-

ducing the redundancy and preserving as much information as possible. To achieve

this goal, the directions with the largest variance of input data are found in the

high-dimensional input space. The dimension of the space can be reduced by dis-

carding the directions with small variance of the input data. By projecting the input

data into this subspace, which has the principal directions for the basis vectors, we

obtain an approximation with an error, which is minimal (in the least squares sense)

among all linear transformations to a subspace of the same dimension.

Thus, learning is performed by estimating the principal directions considering all

training images. Since these directions are usually obtained using the eigendecompo-

sition, they are commonly referred to also as eigenvectors. An object is represented

with the projections of the training images into the principal subspace (eigenspace)

determined by the principal directions. It turns out that the correlation between

two images can be approximated by the distance between their projections in the

principal subspace. Thus, the recognition can be carried out by projecting an image

of an unknown object into the principal subspace and finding the nearest projected

training image [55].

Such representation fulfils all previously mentioned requirements for an efficient

representation. First of all, the representation is easy to build. Well known statistical

and algebraic methods for principal component analysis can be employed. It is

very effective in terms of compression, since it requires an amount of memory as

small as possible to represent input images to a certain degree of accuracy. Next,
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by interpolating between the projected points in the principal subspace, training

images can be generalized to unfamiliar views as well. And lastly, the recognition

can be performed very quickly, since it is reduced to the search for the closest point

in a low-dimensional principal subspace.

Nevertheless, PCA is not the only subspace method that can be used to map

high-dimensional images to a low-dimensional subspace. There exist several other

techniques, each with its own properties and goal applications. In the next subsec-

tion we will briefly outline some of them.

1.2.2 Other subspace methods

PCA is an unsupervised method, which means that no additional information about

the training images is necessary to build a representation. If, for instance, PCA

is used for classification, no information on classes is used, thus the discriminant

information might be lost. In this case, rather than maximizing the variance of

all projections, one would prefer to maximize the distance between the projected

class means, which increases the discriminant power of the transformation. This is

the goal of linear discriminant analysis (LDA) [44]. Furthermore, next to maximiz-

ing the distance between the classes, fisher’s linear discriminant [8] minimizes the

distances within classes by minimizing within-class variance of the projections. It

has been a popular tool in the field of pattern recognition, where it is frequently

used to reduce the dimensionality of the input signal to alleviate the subsequent

classification step.

For regression tasks canonical correlation analysis (CCA) [47, 46] is better suited.

It relates two sets of observations by determining pairs of directions (canonical fac-

tors) that yield maximum correlation between the projections of these sets. Thus,

it is suitable, for example, for estimation of orientation, where one set of observa-

tions consists of observed images, while the observations in the second set are object

orientations from which the corresponding images were acquired.

Recently, another subspace technique became very popular — independent com-

ponent analysis (ICA) [36, 6]. It is a powerful technique from signal processing

known also as blind source separation. It finds a linear transformation so that the

projections are as independent as possible. It can be seen as an extension of PCA,

where the projections of the input data into the subspace are not only uncorrelated

but also independent.

Another subspace technique is the non-negative matrix factorization (NMF) [39].
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It finds factors with non-negative elements only. It tends to decompose the input

images into parts (e.g., learn from a set of faces the parts a face consists of, i.e.,

eyes, nose, mouth, etc.).

All these methods are linear. They can be, however, extended to nonlinear fea-

ture extractors [20, 65, 48, 47]. This can be done by first mapping input vectors using

a nonlinear mapping into a high-dimensional feature space and then performing a

linear method on the obtained high-dimensional points. This procedure is equal to

the employment of a non-linear method in the original space. To avoid computing a

nonlinear mapping into a space of a very high (possibly infinite) dimension, the so

called kernel trick can be applied [20]. It can be applied whenever it is possible to

formulate the algorithm in such a way that it uses only dot products of the trans-

formed input data. The dot products in feature space are then expressed in terms of

kernel functions in input space, thus all operations can be performed in the original

lower-dimensional input space.

All the methods mentioned above can be used for dimensionality reduction

since they all find a transformation from a high-dimensional image space to a low-

dimensional subspace. However, due to its superior reconstruction properties, PCA

is by far the most popular and most frequently successfully applied method for the

appearance-based learning and recognition. For that reason, in this dissertation we

will focus on PCA and its extensions.

1.2.3 Applications and open problems

The appearance-based modeling of objects and scenes using subspace representa-

tions has become very popular in the vision community and has led to a variety of

successful applications, e.g., object recognition [55], human face characterization [68]

and recognition [76, 9], visual inspection [80], visual positioning and tracking of robot

manipulators [54], illumination planning [51], mobile robot localization [37, 4], back-

ground modeling [57] and many more.

The main advantage of the appearance-based approach is that it does not require

any knowledge about the shape and reflectance properties of objects. It uses raw

image data directly without any extraction of geometric features. Since no signif-

icant preprocessing is required, the recognition is very efficient and can be usually

accomplished in real-time.

However, this simplicity poses several limitations. The most notorious drawback

of view-based approaches in general is a “combinatorial explosion” of the number of
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images required to model an object. Since every object is modeled with a number

of images, which should roughly encompass all possible appearances, the number of

required images can become prohibitive. The appearance of an object depends on a

number of factors (i.e., view-points in 6 degrees of freedom, various illumination con-

ditions, possible deformations). The number of required images grows exponentially

with the number of factors that are considered.

However, in several practical applications the number of these factors can be

reduced. If the recognition is performed in a controlled environment with restricted

illumination conditions and constrained object orientations, there may be only one

or two parameters that have to be considered, which can be reliably accomplished.

The other approach to constrain the number of parameters that have to be modeled

is to make subspace representations or recognition methods invariant to some factors

(e.g., to illumination conditions [11]).

One solution is also to increase the capabilities for generalization across slight

variations in appearance. However, although the representation should enable gen-

eralization across different appearances of an object, at the same time it has to

discriminate between visually similar objects. Even more pronounced problem is

classification of objects, thus class-level recognition. Since the recognition is based

on appearance, which may vary significantly for different objects from the same

perceptually-defined class, the appearance-based generalization from familiar class

objects to unfamiliar ones is typically unfeasible. It seems that such problems can

only be solved by using the combination of pure appearance-based approach with

geometrically oriented methods, where the parts (regions, lines, corners, edges) of

the object as well as structural relationships between them are detected and used

for matching [73].

Since the appearance-based recognition is based on a simple template matching

technique, the training and test images have to be aligned in the same manner. The

basic appearance-based approach is rather sensitive to shift and scale. If the images

can be segmented from the background, they can be re-scaled and pre-aligned to

match the training images. Otherwise, a scale invariant recognition [10] can be used

in conjunction with exhaustive search by moving a window of interest over the entire

test scene.

The appearance-based method is also sensitive to occlusions and other non-

gaussian noise. Several methods have been proposed to increase the robustness in

the recognition stage, while the robust learning has been tackled very rarely. Since
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this is the main focus of the dissertation, we will discuss this and related problems

more in detail in the next section.

1.3 Problem statement

In the real world, learning is usually a continuous, never-ending process. After we

have acquired some knowledge about an object, we continuously update this knowl-

edge every time when a new instance, or a new view of the object is encountered.

The representation of the object in our memory becomes richer and the recognition

more reliable. It is important to note that the representation of an object is not

static; it changes through time adapting to the newly acquired information. A com-

puter vision system for visual learning and recognition should be flexible as well. A

learning method should be incremental, thus enabling the updating of the previously

learned representations. An incremental approach would facilitate the representa-

tions to adapt to the newly encountered images. In this way, the new information

would be incorporated into the existing representation and the recognition would

become more reliable. In addition, in an incremental approach the training images

are allowed to enter the learning process individually at different time instances. If

the algorithm is not incremental, all the training images have to be given in advance,

which is inadmissible in many realistic on-line scenarios.

The previous experience, prior knowledge, and the information obtained by other

cognitive processes affect the level to which the newly acquired information is in-

corporated in the representation. One can also expect that more recent (or more

reliable, or more informative, or more noticeable) experiences can have a stronger

influence on the model than others. The psychophysical studies suggest that human

perception is more tuned to some (e.g., more experienced) views than to others [60].

Therefore, a learning algorithm should enable a selective influence of individual

training images to the process of learning. It should enable a selective treatment

of individual pixels as well. In real world applications, it is often the case that not

all data is available. The values of some pixels are missing or are totally unreliable.

The recognition algorithm should be able to reliably recognize objects or scenes in

spite of incomplete data. Furthermore, the learning algorithm should compensate

the missing data as well and build the consistent representation, which would enable

reliable recognition.

One has to be also aware that images of objects and scenes are not always ideal
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and as such they may contain noise, occlusions, reflections or other undesirable

effects. A recognition method should be able to recognize an object under such con-

ditions, providing that a consistent model of the object is available. However, if in

the learning stage incorrect information is encoded into the representation, it may

not be overcome in the recognition stage and the recognition may fail. The recogni-

tion can be performed reliably only if the representations are reliable. Therefore, an

ultimate system for visual learning and recognition should be able to determine the

objects of interest in the learning stage already, and include in the representation

relevant information only.

Unfortunately, if we take a view-based approach to visual learning and recogni-

tion using PCA for building representations, the requirements mentioned above are

not adequately met. The standard PCA approach is usually performed in a batch

mode, i.e., all training images are processed simultaneously, which means that all of

them have to be given in advance. The obtained representation is static and cannot

be updated with new images. To make updating of the previously learned repre-

sentation possible, one has to take an incremental approach to principal component

analysis.

Next to that, in the standard PCA approach all pixels of an image receive an

equal treatment. Also, all the training images have equal influence on the estimation

of principal axes. To enable a selective influence of individual images and pixels,

PCA can be generalized into a weighted approach, which considers individual pixels

and images diversely, depending on the corresponding weights.

PCA in its standard form is also intrinsically non-robust to non-gaussian noise.

The recognition method can be extended such that non-gaussian noise in test images

is detected, and the recognition is performed by considering relevant parts of the

image only, providing that a consistent representation is given. However, if the

training images are taken under non-ideal conditions, the non-desirable effects should

be detected in the learning stage already and not included into the representation.

Thus, we need a method for robust learning, which is able to detect inconsistencies

in the training images and build the representations from consistent data only.

In the following sections we will first review some existing extensions of the

standard PCA approach, which cope with the problems mentioned above. Then we

will outline our approach to the solution of these problems, which will be described

in detail in this dissertation.
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1.4 Related work

In this section we will review the most relevant work related to the problems, which

will be discussed in the dissertation, namely incremental, weighted, and robust ap-

proaches to PCA. The most related algorithms will be further compared with our

algorithms in the corresponding chapters.

1.4.1 Incremental PCA

Batch algorithms for PCA are usually based on eigenvalue decomposition or singular

value decomposition of the covariance or the inner product matrix of the input data

(these approaches will be described in detail in Chapter 2). Given many big images

for input data, the covariance matrix as well as the inner product matrix become

very large. Since the spatial and the time complexity of SVD of such large matrices

are rather big, some problems cannot be solved using the batch method. This was

the main motivation for some authors to propose incremental methods for PCA,

which process images sequentially requiring singular value decomposition of low-

dimensional matrices only [19]. Some other authors were motivated by the problems

where not all training images were given in advance, thus requiring an algorithm for

incrementally updating the principal subspace [32].

The first algorithm for incremental PCA in the computer vision community was

proposed by Murakami and Kumar [50]. Then, Chandrasekeran et al. proposed an

algorithm, which is based on SVD updating [19]. Very recently, Brand proposed a

method for incremental singular value decomposition [14] as well. Also in the past

several methods for SVD updating were proposed [16, 31]. All these methods keep

the origin of the principal subspace in the origin of the image space, assuming that

the mean of the input images is always zero. This is not true in general and this

assumption may degrade the results of the classification [32].

By noting this problem, Hall et al. proposed a method for eigenspace updating,

which sequentially shifts the origin of the eigenspace according to the new images,

which are being added [32]. Furthermore, they extended their work by proposing

a more general algorithm for merging and splitting eigenspaces of arbitrary dimen-

sions [33] in contrast to all other methods, which are able to add only one new image

at each update.
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1.4.2 Weighted PCA

Basis vectors of the principal subspace, i.e., the principal directions in the input

space, can also be estimated by minimizing the reconstruction error of all recon-

structed input vectors. Also, one can tackle the principal component analysis using

a probabilistic approach. PCA can be considered as a limiting case of the linear

gaussian model, where the noise is infinitesimally small and equal in all directions

[63]. From this observation Roweis derived an algorithm for calculating principal

subspace [63], which is based on EM (expectation-maximization) algorithm [25].

Tipping and Bishop independently proposed a very similar Probabilistic PCA algo-

rithm, based on an isotropic error model [75].

The EM algorithm for estimation of the principal subspace is composed from

E-step and M-step, which are sequentially and iteratively executed. In E-step the

new coefficients are computed using the estimated basis vectors, while in M-step the

new basis vectors are estimated using the computed coefficients. This structure of

EM algorithm allows us to introduce weights in order to perform weighted learning

or learning from incomplete data.

Several methods for weighted learning with different derivations but very sim-

ilar realizations have already been proposed. Wiberg [78] has proposed a method

for subspace learning when data are missing based on the weighted least squares

technique. This method was later extended by Shum et al. [66]. Gabriel and Za-

mir [30] proposed a method for subspace learning with any choice of weights, where

each data point can have a different weight determined on the basis of reliability. A

similar approach was also used in the work of Sidenbladh et al. [67] and De la Torre

and Black [24].

Recently, Brand proposed a method for incremental singular value decomposition

of data with missing values [14]. In the framework of eigenspace learning, a drawback

of this algorithm is that it assumes that the mean is always zero. Liu and Chen

proposed a method for incremental PCA with temporal weighting [41]. However,

their method considers only a special case of temporal weights.

1.4.3 Robust PCA

A severe limitation of the basic approach to the subspace visual modeling is its non-

robustness to noise, occlusions, and cluttered background. If the background in the

recognition stage differs from the background in the learning stage, or if an object
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in an image is occluded by some other object, or some other type of noise is present

in the image, then the basic recognition method does not produce satisfying results.

In theory, the breakdown point of the standard approach is 0%, which means that

even a single erroneous data (pixel) can cause an arbitrary wrong result.

Different approaches have been proposed to improve the robustness of the recog-

nition: modular eigenspaces [59], eigenwindows [56], search-window [52], adaptive

masks [27], M-estimation [12, 22], and hierarchial approach [61]. The best results are

produced by the method proposed by Leonardis and Bischof [40], which, instead of

computing the coefficients by a projection of the data into the eigenspace, extracts

them by a robust hypothesize-and-test paradigm using subsets of image pixels.

All methods mentioned above introduce the robustness in the recognition stage.

They assume that the images in the learning stage were ideal and that the visual

model is correct. Consequently, the outlying pixels in the recognition stage have

a large reconstruction error. Therefore, considering the reconstruction error in a

particular image pixel, the reliability of that pixel can be estimated. The robust

learning is a much more difficult problem. Since in the learning stage the model of

the object or the scene is being built, there is no previous knowledge, which could

be used to estimate outliers.

Some authors have tackled also the problem of the robust visual learning. Xu

and Yuille proposed an algorithm [79], which introduced robustness on the image

level. During the learning stage, they discard images, which are inconsistent with

the others. However, in practical applications this is not satisfactory. The robust-

ness on the pixel level should be assured. Only single pixels should be discarded and

not entire images. Gabriel and Zamir tried to solve this problem using a weighted

singular value decomposition [30]. Recently, De la Torre and Black proposed a

method for robust principal component analysis based on M-estimation [23, 24],

which performs well on images with sufficient temporal correlation, but is very time

consuming. Very recently, Aanæs et al. [3] proposed a method for robust factoriza-

tion, which is tailored for different type of problems, however some of its principles

are relevant for robust eigenspace learning as well.

1.5 Our approach

Our goal is to propose solutions to overcome the deficiencies of the standard PCA

approach, which were stated in the Section 1.3. With this purpose, we have de-
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veloped novel methods for incremental learning, weighted learning, learning from

incomplete data and robust learning. In this section we will list these methods, and

expose their similarities and dissimilarities with existing related work.

The incremental algorithm, which we will propose in this dissertation, estimates

the identical principal subspace as the method proposed by Hall et al. [32]. However,

the subspace is obtained in a different way. A significant advantage of our method

is that it is able to treat different images differently, which enables to advance it

into a weighted incremental method. Furthermore, our method maintains the low-

dimensional representations of the previously learned images throughout the entire

learning stage, meaning that each training image can be discarded immediately after

the update.

Our basic batch algorithm for weighted learning, which we will derive by mod-

ifying EM algorithm [63], is closely related to some of the already proposed meth-

ods [30, 67], since in principle they all minimize the same error function – the

weighted squared reconstruction error. Like in [24], we also present different batch

algorithms, which are specialized for different types of weights (temporal, spatial).

In addition, we adapt the EM algorithm for learning from incomplete data and fur-

ther extend this algorithm with the regularization term, which adequately constrains

the reconstructed values in missing pixels. Furthermore, we present a new approach

to learning from incomplete data by iterative reconstruction of missing pixels. To

enable continuous updating, we also extend our incremental method into a weighted

version. Our weighted incremental approach considers temporal and spatial weights,

thus it is more general than the method proposed in [41]. The incremental method

is also adapted for learning from incomplete data, which in contrast to the method

presented in [14], considers also the mean and updates its value at each step ade-

quately. This method is in spirit related to a method for robust factorization [3].

What is common to both methods is that for each individual pixel a spatial weight

is considered, which balances the influence of the value yielded by the current model

and the influence of the pixel value of the input image.

The method for robust learning, which we will propose in this dissertation, is

related to [23], however it is simpler and faster while still producing similar results.

The proposed method iteratively detects outliers in all images, estimates the repre-

sentation from inliers only and reconstructs outlying values. We will also propose

a method for incremental robust learning, which sequentially determines consisten-

cies in the input images and reconstructs inconsistent pixels using the previously
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acquired knowledge.

In the following chapters, we will theoretically derive all the methods mentioned

above and present the algorithms suitable for implementation. We will experimen-

tally evaluate all the proposed algorithms on different image domains and determine

the applicability of the methods in different scenarios.

1.6 Organization of dissertation

In this chapter we gave the introduction to the dissertation and described the mo-

tivation for our work. Then we defined the problems, which are discussed in the

dissertation, reviewed the related work and outlined our approach to the solutions

of the problems.

In the next chapter we will discuss the basic PCA. We will derive PCA and

present two algorithms for the calculation of the principal subspace. We will also

present the main properties of PCA and show how they can be exploited for visual

learning and recognition in the field of computer vision.

In Chapter 3 we will propose a method for incremental subspace learning. First

we will present the algorithm and demonstrate its behavior on a simple 2-D exam-

ple. Then the properties of the incremental learning will be derived by thorough

experimental testing and theoretical explanations.

The weighted methods for subspace learning will be presented in Chapter 4.

First we will present a batch algorithm for weighted PCA, where the weights can

be set to arbitrary values. Then we will discuss the algorithm for learning from

incomplete data, which can be considered as a special case of the algorithm for

weighted learning. Both algorithms will then be incorporated in the incremental

framework and evaluated in various experiments.

In Chapter 5 we will present robust algorithms for eigenspace learning, which

are able to detect outliers in the training images and build the robust eigenspace

representations. First, we will present a batch method for robust learning. Since the

initial step of this method is still non-robust, a robust initialization of this algorithm

based on a subsampling approach will then be discussed. Next, we will present

the robust incremental algorithm for eigenspace learning. Finally, all presented

algorithms will be evaluated in a number of experiments.

Chapters 3, 4, and 5 include a section where the experimental results, which

serve for evaluation of the individual presented methods, are shown. In addition,
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in Chapter 6 we will present further experimental results, which will clarify some

aspects of the proposed methods and will give a global view to all algorithms. Fur-

thermore, we will compare the performance of the methods on various types of

images and determine their applicability in different scenarios.

In Chapter 7 we will summarize our work, outline the contributions of the dis-

sertation and give directions for future work.

In addition, we will give some useful supplements in Appendices. We will sum-

marize the notation, which is used in the dissertation, overview some related topics

from linear algebra and present more detailed comparison of several presented meth-

ods with related work. Finally, we will conclude the dissertation with the extended

summary in Slovenian language.
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Chapter 2

Basic PCA

2.1 Chapter overview

The appearance-based visual learning of objects and scenes is commonly realized

using principal component analysis. PCA is a classic technique in statistical data

analysis, feature extraction, and data compression. PCA was first formulated by

Hotelling [34] in 1933 and since then it has been used in various applications in

many areas.

In this chapter we will discuss the basic PCA to make the foundations for the

extensions of this standard approach, which will be presented in the following chap-

ters. Although it is primarily a statistical tool, we will approach PCA mainly from

the algebraic perspective. First we will outline its properties considering a simple

introductory example. Then we will derive PCA and present two algorithms for the

calculation of the principal subspace. We will also present the main properties of

PCA and show how they can be exploited in the field of computer vision for visual

learning and recognition.

2.2 What is PCA?

Principal component analysis is a linear transformation from a high-dimensional in-

put space to a low-dimensional feature space, which among all linear transformations

guarantees the best possible representation of the high-dimensional input vectors in

the low-dimensional feature space. It rotates the coordinate frame in a data-driven

way, such that the variability of the input data can be efficiently described using

only a small number of basis vectors.

17
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This principle is illustrated in a simple 2-D example in Fig. 2.1. Consider eight

2-D points depicted as black dots. The goal of PCA is to find a new coordinate

frame in which these eight points can be represented using only one basis vector as

well as possible. This coordinate system is depicted with blue lines in Fig. 2.1 and its

axes are referred to as principal axes (also principal vectors or principal directions).

Due to the correlation between the elements of the input vectors, the first principal

axis encompasses most of the variability of the input points. Thus, by projecting

the input points onto the first principal axis we obtain 1-D principal components

which are the best possible 1-D representations of the input points. The principal

components (also referred to as coefficients) are depicted as cyan dots in Fig. 2.1.

The principal axes are obtained in such a way that they minimize the squared

reconstruction error between the input points and their representations and they

maximize the variance of the principal components. If we consider Fig. 2.1, the

goal is to rotate the long blue line in a such direction, which yields the red lines as

short as possible and the green lines as long as possible. It turns out that these two

critera, namely the minimization of the reconstruction error and the maximization

of the variance, are equivalent and can be uniquely satisfied using PCA.

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

Figure 2.1: Principle of PCA.

PCA produces very good results, if the high-dimensional input vectors are cor-

related. This means that they contain redundant information. PCA removes the

redundancy by decorrelating the input vectors; the new coordinates of the input

vectors (principal components) are uncorrelated. As a consequence, the correlated
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high-dimensional input vectors can be efficiently represented as the uncorrelated

low-dimensional vectors of principal components making PCA a very powerful tool

for data compression.

2.3 Derivation and properties of PCA

After the initial informal outline of PCA, we will now derive and describe PCA more

formally.

2.3.1 PCA by maximizing variance

First we will derive PCA by maximizing the variance in the direction of principal

vectors.

Let us suppose that we have N M -dimensional vectors xj aligned in the data

matrix X ∈ IRM×N . Let u be a direction (a vector of length 1) in IRM . The

projection of the j-th vector xj onto the vector u can be calculated in the following

way:

aj = 〈xj,u〉 = u�xj =
M∑
i=1

uixij . (2.1)

We want to find a direction u that maximizes the variance of the projections of all

input vectors xj , j = 1 . . . N .

It follows that the mean of the projections is

ā =
1

N

N∑
j=1

aj =
1

N

N∑
j=1

M∑
i=1

uixij =
M∑
i=1

uiµi (2.2)

and the variance is1

σ2 =
1

N

N∑
j=1

(aj − ā)2 =
1

N

N∑
j=1

(
M∑
i=1

uixij −
M∑
i=1

uiµi

)2

=

=
1

N

N∑
j=1

(
M∑
i=1

uix̂ij

)2

=
1

N

N∑
j=1

M∑
i=1

M∑
l=1

uix̂ijulx̂lj =

=
M∑
i=1

M∑
l=1

uiul
1

N
〈x̂i:, x̂l:〉 =

M∑
i=1

M∑
l=1

uicilul = u�Cu . (2.3)

1Subscript xi denotes i-th column vector in the matrix X, while xi: denotes i-th row vector in
the matrix X. See Appendix A for details on the notation.
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Here, µi is the mean of the i-th row in the data matrix X and x̂ij is the value of xij

with subtracted µi. If the vector µ contains all row means, thus

µ = [µ1, . . . , µM ]� =
1

N

N∑
j=1

xj , (2.4)

then2

X̂ = X− µ11×N (2.5)

and C is the covariance matrix of X, thus

C =
1

N
X̂X̂� . (2.6)

Our goal is to maximize σ2 under the constraint that ‖u‖ = 1. Therefore, by

using the technique of Lagrange multipliers, we have to maximize the function

F (u;λ) = u�Cu− λ(u�u− 1) =
M∑
i=1

M∑
j=1

uicijuj − λ

(
M∑
i=1

u2
i − 1

)
. (2.7)

A closed form solution of this maximization problem can be obtained in the following

way:

∂F

∂ul

=
M∑

j=1

cljuj +
M∑
i=1

uicil − λ2ul = 0 ; l = 1 . . .M

M∑
i=1

cliui = λul ; l = 1 . . .M

Cu = λu . (2.8)

Therefore, to find u and λ that maximize (2.7) we have to compute the eigenvectors

and the eigenvalues of the covariance matrix C. The largest eigenvalue equals the

maximal variance, while the corresponding eigenvector determines the direction with

the maximal variance.

By performing eigenvalue decomposition (EVD) or singular value decomposition

(SVD) of the covariance matrix C (see Appendix B.2 for details) we can diagonolize

C

C = UΛU� (2.9)

in such a way that the orthonormal matrix U = [u1, . . . ,uN ] ∈ IRM×N contains the

eigenvectors u1, . . . ,uN in its columns and the diagonal matrix Λ ∈ IRN×N contains

21M×N denotes a matrix of the dimension M × N , where every element equals 1.
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the eigenvalues λ1, . . . , λN on its diagonal. We will assume that the eigenvalues and

the corresponding eigenvectors are arranged with respect to the descending order

of the eigenvalues, thus λ1 ≥ λ2 ≥ . . . ≥ λN . Therefore, the most of the variabil-

ity of the input random vectors is contained in the first eigenvectors. Hence, the

eigenvectors are called principal vectors (also principal axes or principal directions).

This approach to calculation of principal vectors is very clear and widely used.

However, if the size of the data vector M is very large, which is often the case in

the field of computer vision, the covariance matrix C ∈ IRM×M (2.6) becomes very

large and eigenvalue decomposition of C becomes unfeasible. If the number of input

vectors is smaller than the size of these vectors (N < M), PCA can be sped up

using the following method proposed by Murakami and Kumar [50].

Instead of the covariance (outer product) matrix C ∈ IRM×M the inner product

matrix C′ ∈ IRN×N (divided by the number of the input vectors) is calculated:

C′ =
1

N
X̂�X̂ . (2.10)

The eigenvalues and the eigenvectors of the covariance matrix C can then be deter-

mined from the eigenvalues λ′i and eigenvectors u′
i of the matrix C′ as:

λi = λ′i (2.11)

ui =
X̂u′

i√
Nλ′i

, i = 1 . . . N . (2.12)

Note thatC′ is much smaller thanC whenN �M . Thus, the eigendecomposition of

theM×M matrixC has been reduced to the much more feasible eigendecomposition

of the N ×N matrix C′.

Considering the derivations above, the standard approach to PCA is outlined in

Algorithm 1.

2.3.2 Properties of PCA

The orthonormal matrix U containing the principal vectors can serve as a linear

transformation matrix for projection from the high-dimensional input space to the

low-dimensional feature space and vice versa. The columns ofU are the basis vectors

of the new low-dimensional coordinate frame expressed with the high-dimensional

coordinates. Thus an input vector can be projected into the principal subspace using

the transformation matrix U� : IRM → IRN :

a = U�x̂ . (2.13)
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Algorithm 1 : BPCA – batch PCA

Input: data matrix X

Output: mean vector µ, eigenvectors U, eigenvalues λ.

1: Estimate the mean vector: µ = 1
N

∑N
j=1 xj .

2: Center the input data around the mean: X̂ = X− µ11×N .

3: if M ≤ N then

4: Estimate the covariance matrix: C = 1
N
X̂X̂� .

5: Perform SVD on C. Obtain the eigenvectors U and the eigenvalues λ.

6: else

7: Estimate the inner product matrix: C′ = 1
N
X̂�X̂ .

8: Perform SVD on C′. Obtain the eigenvectors U′ and the eigenvalues λ′.

9: Determine the principal vectors U: ui =
X̂u′

i√
Nλ′

i

, i = 1 . . . N .

10: Determine the eigenvalues λ = λ′ .

11: end if

Thus, the coefficients aj are computed as the projections of the input image onto

each principal vector:

aj = 〈x̂,uj〉 =
M∑
i=1

uijx̂i , j = 1 . . . N . (2.14)

All the input vectors contained in the input matrix X̂ can thus be projected as

A = U�X̂. Since A is an orthonormal transformation of the mean centered X̂, the

principal components are also centered around zero:

µA =
1

N

N∑
j=1

aj =
1

N

N∑
j=1

U�x̂ = U� 1

N

N∑
j=1

x̂ = 0 . (2.15)

Now, let us calculate the correlation matrix of A:

CA =
1

N
AA� =

1

N
U�X̂(U�X̂)� = U� 1

N
X̂X̂�U =

= U�CU = U�UΛU�U = Λ . (2.16)

Here, we replaced C with its diagonalized form (2.9) and considered the orthonor-

mality of U (thus U�U = I). Therefore, the covariance matrix of the transformed

data is the diagonal matrix Λ, which contains the eigenvalues on its diagonal. This

fact has two important implications. First, it proves that the transformed vectors

are uncorrelated. Thus the redundancy caused by the correlation between the input

vectors has been removed. Secondly, it shows that the variance in the direction of
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the i-th principal axis (the variance of the i-th principal components) is equal to the

i-th eigenvalue λi, thus
1
N

∑N
j=1 a

2
ij = λi.

An important property of the diagonalization (2.9) is that it preserves the trace of

the matrix which is being diagonalized [46]. Since the sum of the diagonal elements

of the covariance matrix is the sum of variances of the input vectors, this implies

that the total variance of the input data has been preserved and equals the sum of

all eigenvalues:

VAR(X) =
M∑
i=1

1

N
x̂i:x̂

�
i: =

M∑
i=1

cii =

=
N∑

i=1

λi =
N∑

i=1

1

N
ai:a

�
i: = VAR(A) . (2.17)

Now we will explain how can U serve as a transformation matrix for projection

of the coefficient vector back into the input space. This operation is called recon-

struction. The coefficient vector a is reconstructed using the transformation matrix

U : IRN → IRM :

ŷ = Ua =
N∑

j=1

ajuj . (2.18)

Since N eigenvectors composing U ∈ IRM×N span the same subspace in IRM as

allN input images composingX ∈ IRM×N , each input image fromX can be perfectly

reconstructed without any reconstruction error. What is more interesting to us, is

how well an input image is reconstructed from a subset of principal components

only.

To realize this, we first consider how the variance is distributed across the prin-

cipal axes. This distribution is called the eigenspectrum and it is practically a plot

of eigenvalues sorted in the decreasing order. A typical eigenspectrum is depicted in

Fig. 2.2(a). As one can observe, most of the variance is contained across the first few

eigenvectors. This can also be measured with energy, which is defined as a fraction

of the total variance. The energy contained in the first k eigenvectors can thus be

calculated as

enk =

∑k
i=1 λi∑N
i=1 λi

. (2.19)

The energy plot obtained from the eigenvalues depicted in Fig. 2.2(a) is shown in

Fig. 2.2(b). Again, it is evident that most of the energy is contained in a first few

eigenvectors already.
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Figure 2.2: Typical (a) eigenspectrum, (b) energy.

From this we can conclude that we can obtain a good approximation of the

input images by considering only a subset of eigenvectors associated with the largest

eigenvalues. Therefore, from now on, we will consider only k, k � N , principal axes,

thus U = [u1, . . . ,uk] ∈ IRM×k.

Now, an input vector is projected into the k-dimensional principal subspace using

the transformation matrix U� : IRM → IRk:

a = U�x̂ = U�(x− µ)

aj = 〈x̂,uj〉 =
M∑
i=1

uijx̂i =
M∑
i=1

uij(xi − µi) , j = 1 . . . k (2.20)

and reconstructed using the transformation matrix U : IRk → IRM :

ŷ = Ua =
k∑

j=1

ajuj

y = ŷ + µ . (2.21)

Thus, an input image is approximated with a linear combination of the first k

principal vectors.

The reconstruction error (residual vector) is equal to the difference between the

input and the reconstructed vector:

e = x̂− ŷ =
N∑

j=1

ajuj −
k∑

j=1

ajuj =
N∑

j=k+1

ajuj . (2.22)
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The most commonly used error measure is the squared reconstruction error, which

is defined as a square of the length of the residuum. Considering the orthonormality

of the eigenvectors uj we obtain

e = ‖e‖2 =

∥∥∥∥∥∥
N∑

j=k+1

ajuj

∥∥∥∥∥∥
2

=
N∑

j=k+1

a2
j . (2.23)

Thus, the squared reconstruction error is equal to the sum of squared discarded

principal components. Since they are usually not known, the expected error can be

approximated with expected values of the variance across the discarded eigenvectors,

which are equal to the corresponding eigenvalues:

E(e) =
N∑

j=k+1

λj . (2.24)

The expected error is thus equal to the sum of the discarded eigenvalues. This

consideration confirms the fact that by maximizing the variance in the first (non-

discarded) eigenvectors, the squared reconstruction error is being simultaneously

minimized. These two assertions are indeed two main properties of PCA.

Therefore, for a given dimension of a subspace k, PCA finds such principal vectors

ul, l = 1 . . . k and coefficient vectors aj ∈ IRk, j = 1 . . . N that minimize the total

squared reconstruction error

e =
M∑
i=1

N∑
j=1

(
x̂ij −

k∑
l=1

uilalj

)2

. (2.25)

Thus, as an alternative to the maximization of the variance, the principal vectors and

the principal components can be estimated by minimizing the squared reconstruction

error (2.25). This is a nonlinear minimization problem and can be solved using one of

the proposed algorithms, e.g., gradient descend algorithm [23] or neural networks [7,

26]. Alternatively, the minimization can be performed by iterating the two-step

procedure where first the coefficients are estimated and then the principal vectors

are computed. Such an algorithm [63], which was derived from the probabilistic

point of view, will be described in the next subsection.

2.3.3 EM algorithm for PCA

PCA can be considered as a limiting case of a linear gaussian model, when the

noise is infinitesimally small and equal in all directions. From this observation
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Roweis [63] derived an algorithm for calculating principal axes, which is based on

the EM (expectation-maximization) algorithm [25, 63, 75]. Here we will outline this

probabilistic derivation of PCA and discuss the algorithm. A more comprehensive

description can be found in [63].

A linear gaussian model assumes that an observedM -dimensional variable x was

produced as a linear transformation of some k-dimensional latent variable a plus an

additive gaussian noise. If we denote the transformation with U ∈ IRM×k and the

noise with v (with the covariance matrix R), the model can be written as

x = Ua+ v a ∼ N (0, I) v ∼ N (0,R) . (2.26)

Here, the latent variables a are assumed to be independent and identically dis-

tributed according to a unit variance spherical gaussian. Since the noise variables

v are also independent and normally distributed, the model reduces to a single

gaussian model for x:

x ∼ N (0,UU� +R) . (2.27)

If the model parameters U and R are known, then for an observed variable x

we can estimate the value of a hidden variable a using the posterior probability

P (a|x) =
P (x|a)P (a)

P (x)
=

N (Ua,R)|xN (0, I)|a
N (0,UU� +R)|x =

= N (βx, I− βU)|a , β = U�(UU� +R)−1 . (2.28)

If the model parameters are not known, they can be estimated by identifying

the matrices U and R that make the model assign the highest likelihood to the

observed data. This is usually achieved using the well known EM algorithm or one

of its derivatives, which is tailored for the specific covariance structure of the noise

(matrix R).

In the case of PCA, the covariance of the noise becomes infinitesimally small and

equal in all directions, thus

R = lim
ε→0

εI . (2.29)

Therefore, β from (2.28) becomes

β = lim
ε→0

U�(UU� + εI)−1 (2.30)

and considering that U�(UU�)−1 = (U�U)−1U� (2.28) reduces to

P (a|x) = N ((U�U)−1U�x,0)|a = δ(a− (U�U)−1U�x) . (2.31)
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Since the noise is infinitesimally small, the covariance of the noise becomes zero

and the posterior probability over hidden states collapses to a single point a =

(U�U)−1U�x.

After the covariance of the noise has been restricted a suitable EM algorithm can

be applied. This algorithm consists of two steps, E and M, which are sequentially

and iteratively executed:

• E-step: Estimate the unknown states a using the current model parameters

U.

• M-step: Compute the new model parameters U, which maximize the ex-

pected joint likelihood of the estimated latent variables a and the observed

variables x.

In the context of PCA, the model parameters U ∈ IRM×k are related to the first k

principal vectors, the latent variables (or hidden states) a are associated with the

vectors of the principal components aj ∈ IRk, j = 1 . . . N and the observed variables

x correspond to the mean-centered input vectors x̂j ∈ IRM , j = 1 . . . N . Considering

the derivation above, the two steps of the algorithm for PCA proposed by Roweis [63]

look as follows:

• E-step: A = (U�U)−1U�X̂

• M-step: U = X̂A�(AA�)−1 .

It has been proven that EM algorithms always converge to a local maximum of

the likelihood [25] and that the only stable local extremum is the global maximum

at which the true principal subspace is found [75, 74]. Therefore, the algorithm

converges to the correct result. The convergence can be checked by looking at a

difference in the successive estimates of the average lost variance per discarded di-

mension (σ2). As shown in [75] (and discussed in the previous section), the maximum

likelihood solution for σ2 is

σ2 =
1

N − k

N∑
j=k+1

λj , (2.32)

which corresponds to the average discarded eigenvalue. It can be conveniently cal-

culated by

σ2 =
1

N − k


VAR(X̂)−

k∑
j=1

λj


 , (2.33)
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where VAR(X̂) is the variance of X̂, which is defined as the sum of variances in rows

of X̂. Since in the EM algorithm we do not explicitly calculate eigenvalues at each

iteration, we can estimate σ2 by

σ2 =
1

N − k

(
VAR(X̂)− VAR(A)

)
. (2.34)

The initial solution for U can be determined using some other method or simply

by setting the elements of U to random values.

At convergence, the columns of U span the space of the first k principal axes.

However, they are not oriented in the directions of the principal axes nor they

are orthogonal. To obtain the real principal axes, we first have to orthogonalize

U. Then, the input vectors are projected into U and PCA is performed on the

obtained coefficients. Since the coefficient vectors aj ∈ IRk are low-dimensional,

a standard SVD-based approach is used. The obtained eigenvectors are the true

principal vectors expressed with the basis U. Thus to obtain the principal vectors

expressed in the input space coordinates, the vectors in U are rotated to match the

obtained principal vectors in the subspace coordinates. The variance of principal

components is not affected with the basis vectors, which are used for expressing

principal axes, thus the obtained eigenvalues are already the true eigenvalues that

we are looking for.

The EM algorithm for PCA is summarized in Algorithm 2. Neglecting the prob-

abilistic interpretation, this algorithm can be regarded as an iterative procedure

for solving a nonlinear optimization problem of minimizing the squared reconstruc-

tion error (2.25). The main advantage of this algorithm is that it does not involve

the calculation of the covariance matrix of the input data. This can be very ad-

vantageous when for a large number of high-dimensional vectors a low-dimensional

principal subspace has to be found. Furthermore, this algorithm can be adapted for

weighted minimization and for dealing with missing data, as we will describe in the

next chapter.

Finally, we present an example, which illustrates the behavior of the EM algo-

rithm. Fig. 2.3(a) depicts a cloud of 2-D points drawn from a gaussian distribution.

EM algorithm was used to estimate the first principal axis. The progress of the

algorithm is indicated with the solid lines whose directions indicate the guess of

the principal vector at each iteration, starting with the red line and ending with

the blue line, which is indeed the correct first principal axis. Fig. 2.3(b) plots the

value of σ2, which is used as a stopping criterion. As one can observe, the conver-
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gence is reached very fast. A very similar convergence behavior was observed also

in experiments presented in [63], as well as in our other experiments.

Algorithm 2 : EMPCA – EM algorithm for PCA

Input: data matrix X, number of principal axes to be estimated k.

Output: mean vector µ, eigenvectors U, eigenvalues λ.

1: Estimate the mean vector: µ = 1
N

∑N
i=1 xi .

2: Center the input data around the mean: X̂ = X− µ11×N .

3: Set elements of U ∈ IRM×k to random values.

4: repeat

5: E-step: A = (U�U)−1U�X̂ .

6: M-step: U = X̂A�(AA�)−1 .

7: until the change of σ2 = 1
N−k

(
VAR(X̂)− VAR(A)

)
≤ threshold

8: Orthogonalize U.

9: Project input data on U: A = U�X̂.

10: Perform PCA on A. Obtain U′ and λ′.

11: Rotate U for U′: U = UU′.

12: Determine the eigenvalues λ = λ′ .
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Figure 2.3: Illustration of EM algorithm on a simple 2-D example: (a) progress and

(b) convergence of the algorithm.
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2.4 PCA for visual learning and recognition

The main idea of the appearance-based visual learning and recognition is that a 3-D

object is represented as a set of 2-D images coarsely sampling all possible appear-

ances of the object. Then an image of an object to be recognized is compared to all

of the images of all training objects and the most similar training image is searched

for. The unknown object is recognized to be the object depicted in the found image.

Since a number of training images is very large and images contain a large number

of pixels PCA seems to be a perfect tool for reduction of data dimensionality. In this

section we will show, how PCA can be utilized for visual learning and recognition.

2.4.1 Theoretical issues

Let us assume that in the learning stage N training images of the same size were

acquired. To simplify the explanation and without losing generality we assume that

we are dealing with gray level intensity images. An image is thus represented as

a matrix of gray values. All the image pixels are then aligned into one vector of

the length M (by, for example, concatenating image rows). Thus, each training

image is represented as a vector xj = [x1j, . . . , xMj]
� ∈ IRM , j = 1 . . . N . Since

images are typically rather big, IRM is usually a very high-dimensional input space,

also called image space. All the input images (vectors) form the data matrix X =

[x1, . . . ,xN ] ∈ IRM×N .

The data matrix X is now in every respect regarded as it was in the previous sec-

tions. We perform PCA on X using one of the previously described algorithms and

obtain the mean vector µ, the principal axes (eigenvectors) U and the eigenvalues

λ. Since the input vectors represent images, the mean vector and the eigenvectors

can also be visualized as images and are usually referred to as the mean image

and the eigenimages. As the variance is mainly contained in the first eigenimages,

only k, k � N eigenimages are retained, thus U = [u1, . . . ,uk] ∈ IRM×k. All the

training images are then projected into the eigenspace and the coefficient vectors

aj = [a1j, . . . , akj]
� ∈ IRk j = 1 . . . N are obtained. Therefore, each image xj is

approximated with the linear combination of the eigenimages

xj ≈
k∑

i=1

aijui + µ . (2.35)

Now, let us consider two images xm and xn and their projections in the eigenspace

am and an. The similarity between two images is usually determined using the
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correlation or by finding the sum of squared distances (SSD) between the gray values

of the corresponding pixels in the images. By approximating the images with their

projections, the SSD between the images can be expressed as

‖xm − xn‖2 ≈
∥∥∥∥∥

k∑
i=1

aimui −
k∑

i=1

ainui

∥∥∥∥∥
2

=

=

∥∥∥∥∥
k∑

i=1

(aim − ain)ui

∥∥∥∥∥
2

= ‖am − an‖2 , (2.36)

where the last simplification results from the orthonormality of the eigenvectors.

This derivation has very important consequences [55]. It shows that the similar-

ity between images can be measured by the distance of their projections in the

eigenspace. SSD in the image space can be approximated with SSD in the eigenspace.

If the input images are normalized (‖xj‖ = 1), then SSD is related to the corre-

lation x�
mxn between images as

‖xm − xn‖2 = (xm − xn)
�(xm − xn) = 2− 2x�

mxn . (2.37)

Therefore, minimizing SSD corresponds to maximizing the correlation between im-

ages. If the images are similar, their correlation is large and SSD in the image space

as well as in the eigenspace is small.

In the recognition stage, an image of an unknown object is thus projected into the

eigenspace and the closest projected training image in this subspace is searched for.

Since the smallest distance between the projections in the eigenspace corresponds

to the minimal SSD, the test image is the most similar to the training image, which

corresponds to the closest projection. The problem of finding the most similar

image in the image space is thus transformed to the search for the closest point in

the low-dimensional eigenspace.

Since the appearance of an object changes slowly and smoothly by varying view-

point and/or illumination direction, the eigenspace projections of the images form

a continuous and smooth manifold. This manifold is defined in discrete points (co-

efficient vectors) only, however, by defining new points using spline interpolation

between the existing points, we can increase their density. In this way we approxi-

mate coefficient vectors, which would be obtained by projecting additional training

images into the eigenspace. By varying the values of the eigenspace coefficients we

can simulate the variation of the parameters, which are being used for acquiring

training images.
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This implicates that the eigenspace representation is suitable for regression tasks

as well. For example, in the learning stage we acquire a relatively small number

of images from sparsely sampled views. Then, the projections of these images are

interpolated in the eigenspace. After a new image of an unknown object is projected

into the eigenspace and the closest point is found, not only that the correct object

can be recognized, the orientation of the object can be determined as well, since the

orientations related to the training images (and projections) are known. And due to

the interpolated points, the resolution of the orientation, which can be estimated,

is much higher than the sampling resolution of the views, from which the training

images were acquired.

2.4.2 Usual procedure

A usual procedure for visual learning and recognition using PCA can be summa-

rized as follows [55]. In the learning stage, a set of training images of all objects

is obtained by varying the pose and the illumination conditions. Then an object is

segmented from the background on each training image and resized to the common

image size. In this way, the scale invariance is achieved. If we want to achieve

the invariance on the illumination intensity as well, each image should be normal-

ized (each pixel value should be divided by the norm of the image vector). Then,

the eigenspace is constructed from all training images and their projections in the

eigenspace are obtained. The projections of the images of each object lie on a man-

ifold that is parameterized by the pose and the illumination. The manifold can be

represented even more densely by interpolating the projected points. Thus, each

object is represented with a manifold in the eigenspace.

In the recognition stage, a novel image of an object, which is to be recognized,

is first segmented and normalized in exactly the same way as the training images

were processed during the learning stage. Then it is projected into the eigenspace.

The closest manifold reveals the identity of the object and the exact position of the

closest point on the manifold determines the pose and the illumination direction.

2.4.3 Example

We will demonstrate the principle of appearance-based learning and recognition on

a simple example. Let us assume that we want to model ten objects from the

COIL20 database [53] shown in Fig. 2.4(a). Each object is modeled using 36 im-
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ages, which were captured from the viewpoints evenly distributed around the object

(Fig. 2.4(b)). In this simple example only one degree of freedom for varying object’s

pose and uniform illumination conditions were considered.

(a)

(b)

Figure 2.4: Training set: (a) one image of each object and (b) all images of one

object.

Fig. 2.5(a) depicts the mean image and the first five eigenimages, which were

obtained by applying PCA on the training images. Each training image is then

approximated using a linear combination of eigenimages. Fig. 2.5(b) shows the

approximations of one image using varying number of principal components.

(a)

(b)

Figure 2.5: (a) Mean image and first five eigenimages. (b) Reconstructed images

using 1, 8, 15, 40, 100, 360 principal components.

As we can see a relatively small number of principal components is sufficient for a

relatively good reconstruction of an image. In this case 15 principal components are

enough to visually distinguish the object as well as for automatic recognition using

eigenspace approach. The reason for this is that most of the visual variability of the

images is captured using the first eigenvectors, as can be seen from the eigenspectrum

and the plot of the energy shown in Fig. 2.6. These plots are usually used for

determining what number of eigenvectors to use. This number can be found as

the index of the eigenvalue, where the eigenspectrum levels off and becomes near
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constant (scree test) [18]. Alternatively, this number can be found as the index of

the eigenvalue, where the energy exceeds some predefined threshold.
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Figure 2.6: (a) Eigenspectrum. (b) Energy.

Fig. 2.7(a) depicts the projections of the training images of three objects in the

three-dimensional eigenspace. As one can observe, the points representing different

objects (each object is represented with the points of the same color) are nicely sepa-

rated in three dimensions already. This is even more noticeable in Fig. 2.7(b) which

depicts the manifolds for the three objects, which were obtained by interpolating

the projected points.
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Figure 2.7: (a) Projections of training images of three objects shown using three

most significant principal axes. (b) Interpolated points; manifolds.
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In the recognition stage, a novel image is projected into the eigenspace and

its identity and orientation are identified by determining the closest point in the

eigenspace.

2.4.4 Discussion

Until now we were mainly discussing the recognition of objects. However, the same

principles can be used for the recognition of scenes and localization in an environ-

ment as well. The environment is modeled using a number of images, which are

usually taken with an omnidirectional sensor. An example of the panoramic image

is shown in Fig. 2.8. Then the model is built using PCA. Later, scene recogni-

tion and the localization of the sensor are performed in the same manner as object

recognition.

(a) (b)

Figure 2.8: Panoramic image: (a) original, (b) unwarped.

Furthermore, not only the intensity images, but also the images of various modal-

ities can be utilized using this method, ranging from color images [22], to range

images [69, 17, 2], infrared images [29], binary images [45], gradient images [11, 1],

and many others (some of them are depicted in Fig. 2.9). Since an image is treated

as a high-dimensional vector it can contain any values measured using some optical

(or even non-optical) device or obtained by image processing. The only requirement

is that the images are (possibly highly) correlated.

In this section only the basic PCA approach was discussed. It suffers from

several deficiencies, which were not discussed (sensitivity to shift, scale, rotation,

cluttered background, occlusions, noise, illumination changes). A lot of methods

were proposed to overcome some of these disadvantages. This is also the focus of

the dissertation; to increase the robustness of the PCA-based visual learning and

recognition.
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(a) (b) (c) (d) (e)

Figure 2.9: Different modalities: (a) color image, (b) range image, (c) infrared

image, (d) binary image, (e) gradient image.

2.5 Chapter summary

In this chapter we introduced the basic PCA. We presented this method from dif-

ferent viewpoints and gave two algorithms for estimation of principal subspaces.

We presented the main properties of PCA and showed how to utilize them for the

efficient appearance-based modeling and recognition of objects and scenes.

The main purpose of this chapter was to give to the reader the adequate knowl-

edge about fundamental principles of PCA. In the following chapters these basic

principles will be extended with the aim to increase applicability of PCA for the

appearance-based visual learning and recognition in the real world conditions.



Chapter 3

Incremental PCA

3.1 Chapter overview

As described in the previous chapter, most methods for subspace learning operate

in a batch mode, i.e., all training images are processed simultaneously in one step.

Incremental methods, on the other hand, take the training images sequentially and

update the current principal subspace step by step.

There are two deficiencies of batch methods that can be overcome using incre-

mental approach. The first deficiency is related to the computational and storage

issues. Images are usually not very small and if we operate with a large number

of images, the spatial and the time complexity of the estimation of the principal

subspace becomes unfeasible.

The second deficiency of the batch methods is that they require all of the training

images to be given in advance. This is inadmissible in an on-line scenario, where the

images to be processed are obtained sequentially. In such scenarios it is also often

required that the images are not kept in the memory and are discarded after being

processed.

In this chapter we propose a method for incremental learning that overcome

these two problems. It takes the training images sequentially and computes the new

eigenspace from the subspace obtained in the previous step and the current input

image.

First, we will present the algorithm and demonstrate its behavior on a simple

2-D example. Since the proposed method is highly related to the method proposed

by Hall et al. [32], we will make a comparison between both methods. Then the

properties of the incremental learning will be derived by thorough experimental

37
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testing and theoretical explanations.

3.2 Algorithm

Let us suppose that we have already built an eigenspace from the first n images. In

the step n + 1 we could calculate a new eigenspace from the reconstructions of the

first n input images and a new image using the standard batch method. The com-

putational complexity of such an algorithm would be prohibitive, since at each step

we would have to perform the batch PCA on a set of high-dimensional data. How-

ever, identical results can be obtained by using low-dimensional coefficient vectors

of the first n input images instead of their high-dimensional reconstructions, since

coefficient vectors and reconstructed images encompass the same visual variability,

i.e., they are the same points represented in different coordinate frames. Since the

dimension of the eigenspace is small, this algorithm is computationally very efficient.

In practice, this algorithm is realized in the following way (see Fig. 3.1 for illus-

tration). First, a novel image x is projected into the current eigenspace U(n) and the

obtained coefficient vector a is reconstructed (y)1. The difference between the input

image and its reconstruction is orthogonal to the current eigenspace, therefore if the

current eigenspace is enlarged with the residual vector r, a new basis U′ is obtained.

In this basis all the points from the current eigenspace and the new image can be

represented without any loss (A′). Now, the batch PCA is performed on these points

in the low-dimensional space and the principal axes U′′ are obtained. All the low-

dimensional points are then projected into the new eigenspace (A(n+1)). Finally, the

current basis vectors U′, expressed in the image space coordinates, are rotated to

match the new basis vectors expressed in the subspace coordinates (U(n+1)), and the

mean vector is updated (µ(n+1)). More formally, the necessary steps for updating

an eigenspace are given in Algorithm 3.

This algorithm increases the dimension of the subspace for one. After the update,

we can discard the least significant principal vector to preserve the dimension of the

subspace [4, 33].

The initial values of the mean image, the eigenvectors, and the coefficients can

be obtained by applying the batch PCA on a small set of images. Alternatively,

one can simply set the first training image as the initial eigenspace by assigning

1Superscript denotes the step which the data is related to. U(n) denotes the values of U at the
step n.
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µ(1) = x1, U
(1) = 0M×1, and A(1) = 0. In this way, the algorithm is completely

incremental, requiring only one image to be available at each time instant.

Algorithm 3 : IPCA – incremental PCA

Input: current mean vector µ(n), current eigenvectors U(n), current coefficients

A(n), new input image x.

Output: new mean vector µ(n+1), new eigenvectors U(n+1), new coefficients A(n+1),

new eigenvalues λ(n+1).

1: Project a new image x into the current eigenspace: a = U(n)�(x− µ(n)) .

2: Reconstruct the new image: y = U(n)a+ µ(n).

3: Compute the residual vector: r = x− y. r is orthogonal to U(n).

4: Append r as a new basis vector: U′ =
[
U(n) r

‖r‖
]

.

5: Determine the coefficients in the new basis: A′ =


 A(n) a

0 ‖r‖


 .

6: Perform PCA on A′. Obtain the mean value µ′′, the eigenvectors U′′, and the

eigenvalues λ′′.

7: Project the coefficient vectors to the new basis: A(n+1) = U′′�(A′−µ′′11×n+1) .

8: Rotate the subspace U′ for U′′: U(n+1) = U′U′′ .

9: Update the mean: µ(n+1) = µ(n) +U′µ′′ .

10: New eigenvalues: λ(n+1) = λ′′ .

U
(n)

A
(n)

A'

U'

U''

r

a y,

U
(n+1)

A
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� (n)
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x

Figure 3.1: Illustration of one update.
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This algorithm is perfectly well suited for continuous on-line scenarios, where

the training images enter into the system sequentially and eigenspace is updated at

each step accordingly. Since it maintains the low-dimensional representations of the

previously learned images throughout the entire learning stage, each training image

can be discarded immediately after the update.

3.2.1 Simple 2-D example

We will demonstrate the behavior of the proposed algorithm on a simple 2-D ex-

ample. The 2-D input space contains 41 points shown as black dots in Fig. 3.2.

The goal is to estimate 1-D principal subspace, i.e., the first principal axis. The

eigenspace is being built incrementally. At each step one point (from the left to

the right) is added to the representation and the eigenspace is updated accordingly.

Fig. 3.2 illustrates how the eigenspace evolves during this process. The principal

axis, obtained at every sixth step, is depicted. The points, which were appended to

the model at these steps, are marked with crosses. One can observe, how the origin

of the eigenspace (depicted as a square) and the orientation of the principal axis

change through time, adapting to the new points, which come into the process. In

the end, the estimated eigenspace, which encompasses all training points, is almost

equal to the eigenspace obtained using the batch method.
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Figure 3.2: Illustration of incremental learning.
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3.2.2 Comparison with related work

The proposed algorithm is similar to the algorithm introduced by Hall et al. [32].

Furthermore, both algorithms estimate an identical subspace. However, the sub-

space is obtained in different ways. The core of both algorithms is SVD of a covari-

ance matrix, which is obtained differently. Nevertheless, the estimated covariance

matrix is equal in both cases as we show in Appendix C.1. However, the diversity of

the calculation of the covariance matrix yields to some differences in the properties

of the algorithms.

In contrast to our method, which between the learning steps passes coefficient

vectors of all training images, the Hall’s method passes eigenvalues only. This can

be advantageous, since less data is being passed from step to step and calculation of

the covariance matrix is faster. However, this can also be disadvantageous, because

the coefficients are not estimated and maintained during the learning process, thus

less information is available.

Our algorithm calculates the coefficients at that time instant, when the particular

image is added to the model, and then maintains their values throughout the process

of incremental learning. This is slightly slower, however it has two advantages. The

first advantage is, that each image can be discarded immediately after it has been

used for updating the subspace. This is very appropriate (and possibly required) for

on-line scenarios. And finally, since more information is preserved, our method can

be advanced into a method for weighted learning of eigenspaces, which is impossible

for Hall’s method. This makes our method more suitable for application in a robust

framework as will be shown in the following chapters.

3.3 Experiments and discussion

Principal component analysis in its standard batch form is optimal in the sense of

the squared reconstruction error. Thus, its incremental version necessarily degrades

the results. But, how severe is this degradation? Are the results still usable? What

additional factors influence the results? To clarify these issues and to evaluate the

proposed algorithm we will answer the following questions:

• How much does the incremental method degrade the results in comparison

with the batch method?

• How does discarding of training images influence the results?
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• How does the order of the training images influence the results?

• How (when) to increase the dimension of the subspace?

• How does the amount of energy contained in the subspace influence the results?

• What is the relation between the number of training images, the dimension of

the subspace and the reconstruction error?

The answers will be corroborated by the results of extensive experiments. All

the experiments were performed using all the images from the COIL20 database

downsampled to the size 32 × 32 pixels. Half of the images (every second image)

were used as a training set, while the other half of the images composed the test

set. Thus, the training set consisted of 720 images; 36 images of each of 20 objects.

All the objects are depicted in Fig. 3.3.

Figure 3.3: Objects from COIL20 database.

The results will be presented as mean squared reconstruction errors. Since the

results on the test set were very similar to the results using the training images, we

will present only the results of the latter.

3.3.1 Discarding images

The model, i.e., the representation of objects, which is obtained at the end of the

learning process, consists of the estimated subspace (principal axes) and of the

coefficients (principal components) of the training images. The proposed method

estimates both – the subspace and the coefficients. The coefficients are estimated at

that time instant, when the particular image is added to the model, and only the low-

dimensional representation of the image is stored and then maintained throughout

the process of incremental learning, allowing the high-dimensional images to be

discarded immediately after the update. However, during the re-estimation of the

coefficients at each step of incremental learning, some information is lost. Therefore,
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one can expect that at the end of the learning stage these coefficients are not as good

as the coefficients, which are obtained by projecting the original training images into

the final principal subspace. Certainly, for the latter case, the images have to be

kept in the memory until the end of the learning stage. The question is, how does

the discarding of images influence the results? And how much does the incremental

method degrade the results in comparison with the batch method at all?

To answer these questions we performed the following experiment. We built

eigenspaces of various dimensions from all training images. The images were coming

into the learning process in a sorted sequential order, i.e., first all images of the first

object, then all images of the second object, and so on.

Fig. 3.4(a), depicts the mean squared reconstruction errors (MSRE) of the im-

ages reconstructed from the coefficients obtained by projecting the training images

into the eigenspaces, which were built using the batch method (in plots indicated as

batch) and the proposed incremental method (incX ). The results are very similar;

MSRE obtained using the incremental method is only 3.1% worse on the average.

The curve incA represents reconstruction errors of images obtained from the coef-

ficients, which were calculated at that time instant, when the particular image was

added to the model and then maintained throughout the process of incremental

learning. Using this approach, an image can be discarded immediately after the

model is updated. As one can observe, the squared reconstruction errors are still

quite similar. In this case, the degradation of the results is 8.6% on the average.

(a) (b)

Figure 3.4: Comparison of batch and incremental method with and without discard-

ing training images. MSRE produced by batch and incremental approach: (a) for

various dimensions of eigenspace, (b) for dimension 50.
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Fig. 3.4(b) shows the MSRE of all 720 images for the dimension of the eigenspace

50. One can observe, that the curves representing the incremental approach follow

the curve produced by the batch method very closely without large deviations over

the whole sequence of images.

All the results clearly indicate that the incremental method is almost as effective

as the batch. This assertion especially holds true when the training images are

not discarded. This means that the principal axes are estimated very accurately.

However, also when the training images are discarded during the learning stage the

squared reconstruction error is always below 10%, which means that the coefficients

are still estimated well enough for most applications.

3.3.2 Order of training images

In the second experiment we changed the training sequence by giving the training

images to the learning process in a random order. Thus, the eigenspace in the early

stage of the learning process already encompassed images of several objects. There-

fore, it was a good approximation of the final eigenspace. The incoming training

images in the later stages were just refining the current eigenspace.

Consequently, the results have improved. They are shown in Fig. 3.5. MSRE

produced by incArnd and incXrnd approaches, are only 3.1% and 1.3% worse than

the results of the batch method, respectively. For comparison, the results obtained

using the ordered sequence of the training images are also depicted (incAseq and

incXseq).

What really matters is the order of the training images in the early stages of the

learning process. To obtain optimal results, these images should be heterogeneous,

encompassing different objects and views. This assures that the evolving eigenspace

is rich and comprehensive enough in the beginning of the learning process already

and that it is not specialized for representing a specific object only. In this way, the

eigenspace can be adapted to the images of all objects more effectively.

3.3.3 Increasing subspace dimension

The proposed algorithm increases the subspace dimension by one. After the update

we can discard the least significant basis vector to keep the subspace dimension small.

The important issue is how (when) to increase the dimension of the subspace.

Here we present the results of three different strategies for increasing the subspace
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(a) (b)

Figure 3.5: Comparison of batch and incremental method using ordered and random

sequence of training images. MSRE (a) for various dimensions of the eigenspace,

(b) for dimension 50.

dimension; each of them produced a subspace of the dimension 20 at the end of the

learning process:

• inc20ni20 : First we built the 20-dimensional subspace from the first 20 images

using the batch method. The rest of the images were added using the incre-

mental algorithm without further increasing the dimension of the subspace.

• inc1ai20 : We started the learning process with the first image and added the

next 19 images using the incremental method keeping all basis vectors. The

rest of the images were then incrementally added without further increasing

the dimension of the subspace.

• inc1ci20 : We started the learning process with the first image. Then we were

adding the rest of the images using the incremental method. After each update

we decided to keep the least significant basis vector or not based on the error,

which would be produced by discarding it [4], with the goal to obtain the

dimension 20 at the end of the learning process.

All the results are given for the case when the training images are discarded (inc*A)

and preserved (inc*X ). They are also compared with the optimal results obtained

with the batch method on all training images keeping the first 20 principal vectors

(batch20 ). The results are presented in Table 3.1. They are given as absolute MSRE

and as the relative increase (in %) of MSRE with regard to the batch method (in

brackets).
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Table 3.1: MSRE for different learning strategies.

batch20 1079

inc20ni20A 1151 (6.67)

inc20ni20X 1110 (2.87)

inc1ai20A 1151 (6.67)

inc1ai20X 1110 (2.87)

inc1ci20A 1323 (22.61)

inc1ci20X 1152 (6.76)

We can observe that inc20ni20 and inc1ai20 strategies yield identical results.

This is expected, since inc1ai20 incrementally builds the 20-D eigenspace from the

first 20 images without discarding any basis vector thus without any loss of informa-

tion. Therefore the obtained initial 20-D subspace is exactly the same as obtained

by the batch method in inc20ni20.

We can also observe that inc1ci20 produced significantly inferior results despite

the fact that the subspace dimension at the end of the learning process was the same

in all cases. The reason for this is that the dimension of the evolving subspace was

smaller during the process of learning. This is evident from Fig. 3.6(a), which depicts

the growth of the dimension of the evolving subspace for inc1ai20 and inc1ci20.

For that reason, the reconstructions of the representations of the images from the

beginning of the training sequence are significantly worse as can be observed on

Fig. 3.6(b). The results are improved if we do not discard the training images

(inc1ci20X ), which indicates that the subspace is estimated reasonably well and

that the main cause for the reconstruction errors are inferior final approximations

of the coefficients of the initial training images.

Therefore, if we know what the dimension of the final subspace is supposed to be

(e.g., we know what compression ratio we want to achieve), we should keep increasing

the subspace until this dimension is achieved and then keep preserving this dimension

until the end of the learning process. However, if the final dimension is not known in

advance, some criterion for increasing/preserving the subspace dimension should be

used. To achieve better results, this criterion should be dynamic. It should be less

conservative at the beginning of the learning process to enable better reconstruction

of the initial images. Afterwards, this criterion should be more conservative to keep

the dimension of the evolving subspace small.
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Figure 3.6: (a) Growth of subspace dimension. (b) MSRE for different learning

strategies.

3.3.4 Energy of subspace

The next question we want to answer is how does the amount of the energy contained

in the subspace influence the results. To find out we run the algorithms nine times

producing eigenspaces of nine different dimensions containing different amounts of

the energy. The results are given in Table 3.2 and in Fig. 3.7.

Table 3.2: MSRE for various sizes of eigenspaces.

inc1ai20 inc1ci20

K en batch A X A X

5 55.3 2083 2195 (5.4) 2109 (1.2) 2344 (12.5) 2165 (3.9)

10 67.0 1538 1635 (6.3) 1570 (2.1) 1853 (20.5) 1601 (4.1)

15 73.1 1252 1330 (6.2) 1278 (2.1) 1506 (20.3) 1312 (4.8)

20 76.8 1079 1151 (6.7) 1110 (2.9) 1323 (22.6) 1151 (6.7)

30 81.6 855 922 (7.8) 882 (3.2) 1066 (24.7) 910 (6.4)

50 86.8 613 670 (9.3) 634 (3.4) 769 (25.4) 657 (7.2)

80 91.0 420 465 (10.7) 436 (3.8) 539 (28.3) 453 (7.9)

110 93.4 309 345 (11.7) 322 (4.2) 402 (30.1) 334 (8.1)

164 95.9 189 214 (13.2) 197 (4.2) 253 (33.9) 208 (10.1)

Fig. 3.7(a) depicts MSRE for five learning strategies with respect to the energy,

which was contained in the estimated subspaces. As expected, MSRE of the batch
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Figure 3.7: (a) Dependence of MSRE on energy. (b) Relative increase of MSRE

with regard to the batch method.

method decreases perfectly linearly. Similar trends can also be observed for the

incremental method. One can also observe that the absolute difference between the

batch and the incremental method is bigger when the dimension of the subspace is

small, since the errors themselves are bigger as well.

Fig. 3.7(b) is more interesting. It shows a relative increase of MSRE of the

incremental strategies with regard to the batch method. One can observe that the

percentage of the increase goes up slightly when the dimension of the subspace

grows. This trend is similar for all four strategies of incremental learning.

3.3.5 Number of training images

A very interesting question is also what is the relation between the number of train-

ing images, the dimension of the subspace and the reconstruction error. First we

will explore how does the number of training images influence the results, if the

encompassed energy is constant.

For that purpose we performed the following experiment. First we built the

principal subspace from the first 36 images (all the training images of the first

object), then from the first 72 images (two objects), and so on, until we have built the

principal subspace from all 720 images (20 objects). At each run we kept a number

of principal vectors, which encompassed 85% of the energy. We performed all these

runs in the batch mode and in the incremental mode using the strategy analogous

to inc1ai20. At the end of each run, both algorithms produced the eigenspace of
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the same size.

The results are shown in Fig. 3.8. The plot in Fig. 3.8(a) depicts an average

MSRE in all already learned objects (at each step one object more has been en-

compassed in the representation). One can observe that the relationship between

the batch and the incremental method is very similar throughout the entire process

of learning. This means that on average the number of images (objects) does not

significantly influence the degradation of the results in comparison with the batch

method.

However, in Fig. 3.8(b) we can observe that this assertion does not hold true

for individual objects. It shows MSRE throughout time for five individual objects.

We can see that using the incremental method the first objects are reconstructed

considerably better than rest of the objects. This is due to the strategy of the

incremental learning, which in the early stages operates with the subspace of the

same dimension as at the end. This means that the initial images were stored

encompassing more than 85% of their energy. Thus, the initial eigenspace was very

specialized for the initial objects enabling their excellent reconstruction at the end

as well. This effect is also clear from Fig. 3.8(c), which shows a relative increase of

MSRE with regard to the batch method for all objects at the end of the learning

process when all the objects have been encompassed into the representation.

Figs. 3.8(d) depicts a relative increase of MSRE for five objects after each run. It

confirms the findings from Fig. 3.8(b) that the relative increase of the error for the

individual objects does not grow when new objects are added to the representation.

We can conclude that the number of training images does not significantly in-

fluence the degradation of the results of the incremental learning, at least in the

performed experiments where the number of training images was not extremely

large. However, the objects from the beginning of the learning process are recon-

structed better, due to the strategy of the incremental learning. We could suppress

this effect by modifying the criterion for increasing/preserving the dimension of the

evolving eigenspace or by applying the weighted version of the incremental learning.

3.3.6 Compression ratio

The last question that we will answer is how does the number of the training images

(objects) influence the growth of the subspace dimension and reconstruction error.

How long should we keep increasing the subspace dimension? What compression

ratio can we achieve?
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Figure 3.8: (a) Average MSRE in already learned images. (b) MSRE for five objects

after various phases of the learning process. (c) Relative increase of MSRE for all

objects at the end of the learning process. (d) Relative increase of MSRE for all five

objects after various phases of the learning process.

Fig. 3.9(a) shows the number of principal vectors which are required to preserve

85% of the energy of various numbers of objects. It is very interesting to observe

that the required dimension K does not increase any more after the tenth object

has been added to the representation. Consequently, the compression ratio grows

from 1:9 at ten objects (360 images) to 1:20 at 20 objects (720 images) as depicted

in Fig. 3.9(b). This is partially due to the fact that some of the objects from the

second half of the learning sequence are similar to the objects from the first half of

the sequence (e.g., the two toy cars) and they do not require new dimensions for

suitable representation.
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Figure 3.9: (a) Dimension of the principal subspace, which preserves 85% of the

energy. (b) Compression ratio.

Moreover, it seems that the visual variability of the first half of the images also

encompasses the variability of the second half. One could expect that after the

first half of the images has been encompassed into the representation, the obtained

eigenspace is big enough and very general to represent any image. However, this is

not the case. We will demonstrate this with the following experiment.

After each run of the algorithm (after a new object was added to the represen-

tation), we projected all the training images into the eigenspace. All MSRE are

depicted in Fig. 3.10(a). For each step (the number of already learned objects —

abscissa) and for every object (ordinate) the grey level of the corresponding matrix

element represents the MSRE of the reconstructions of the particular object after

the particular number of objects have been learned. One can observe that the values

in the upper triangle are significantly smaller than the values in the lower triangle.

This means that MSRE drops after an object is added to the representation. This

is the case in the left half of the matrix (the first objects) as well as in the right

half of the matrix (the last objects). This means that although the dimension of

the subspace does not keep increasing when the objects from the second half of the

training sequence are being added, the novel images rotate the evolving subspace in

the direction, which improves their reconstruction.

This is illustrated in Fig. 3.10(b) as well. It depicts MSRE for six objects after

each run of the algorithm. For five objects MSRE significantly drops after the

object is added to the representation (marked with a circle). The only exception is
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the object no. 19, whose error has very similar behavior as the error of the object

no. 5. This is not surprising, since both objects are very similar toy cars, thus

representing very similar visual variability.

The summary of these results is depicted in Fig. 3.10(c). It shows the average

MSRE of all already learned images and the average MSRE of all not yet learned

images. We can observe that the MSRE of the already learned images is always very

similar. The MSRE of the rest of the images is at the beginning very large, since

the eigenspace is specialized for a few objects which were presented to the learning

process. As the number of the learned objects increases, the eigenspaces becomes

richer, which enables better reconstruction of all images. However the MSRE of the

non-learned objects never reaches the MSRE of the already learned objects.
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Figure 3.10: (a) MSRE for all objects after various phases of learning process. (b)

MSRE for six objects. (c) Average MSRE in all already learned objects and in the

rest of the objects.



3.4. Chapter summary 53

Based on the presented results, the final conclusion would be that the principal

subspace keeps growing until some limit is reached. After that only the rotations of

the principal subspace are applied to keep adapting to the new images. Still, these

rotations considerably improve the reconstruction results of the added images.

3.4 Chapter summary

In this chapter we presented a novel algorithm for incremental learning of eigenspaces.

It takes the training images sequentially and computes the new eigenspace from the

subspace obtained in the previous step and the current input image. We compared

the algorithm with the most similar related work and exposed its advantages and

disadvantages. We also performed a number of experiments to evaluate the proposed

method and to clarify various issues about the incremental learning.

There are three main advantages of the proposed method. Firstly, it is simple,

concise, easy to understand and easy to implement. Secondly, it estimates the

representations of the training images and then maintains them throughout the

entire process of learning, thus the training images can be discarded. And finally,

it can be advanced into the algorithm for weighted incremental learning. We will

discuss this topic in the next chapter.
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Chapter 4

Weighted PCA

4.1 Chapter overview

Previous experience, prior knowledge, and the information obtained by higher-level

cognitive processes affect the level to which the training images should be incorpo-

rated in the representation. Some pixels are often more informative or more reliable

than others. The significance of the training images can also vary. Therefore, a

learning algorithm should enable a selective influence of training images as well as

pixels in individual images to the process of learning. However, in the standard

PCA approach, all pixels of an image receive equal treatment. Also, all the training

images have equal influence on the estimation of the principal axes.

In this chapter we present a generalized PCA approach, which estimates princi-

pal axes and principal components considering weighted pixels and images. First we

will present a batch algorithm for weighted PCA, where the weights can be set to ar-

bitrary values. Then a special case of this algorithm will be discussed; the algorithm

for handling missing pixels, which considers weights of binary values only. Both al-

gorithms will be then incorporated in the incremental framework and extensively

evaluated in various experiments.

4.2 Batch algorithm for weighted PCA

The standard PCA can be extended into the weighted version by introducing weights

into Eq. (2.25). The weights are assembled in the matrix W ∈ IRM×N , where wij is

the weight of the i-th pixel in the j-th image. The goal is to minimize the weighted

55
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squared reconstruction error

E =
M∑
i=1

N∑
j=1

wij

(
x̂ij −

k∑
l=1

uilalj

)2

. (4.1)

Here, the values of the matrix X̂ are obtained by subtracting the weighted mean

vector µ from the training images xj. The elements of the weighted mean vector

are calculated as

µi =

∑N
j=1wijxij∑N

j=1wij

, i = 1 . . .M . (4.2)

In practice, it is useful to deal with two types of weights: temporal weights
tw ∈ IR1×N , which put different weights on individual images and spatial weights
sw ∈ IRM , which put different weights on individual pixels within an image1. Since

different types of weights yield different algorithms for estimating the weighted prin-

cipal subspace, we will discuss both types of weights separately.

4.2.1 Temporal weights

Temporal weights determine how important for estimation of principal subspace the

individual images are. If the temporal weight of an image is larger than the weights

of other images, the reconstruction error of this image should be smaller than the

reconstruction errors of the other images. Similarly, the contribution of its principal

components to the estimation of the variances should be larger in comparison with

other principal components.

Since all the pixels in an image are equally treated, the weight matrixW contains

the row vector tw in each row, thus W = 1M×1
tw and the minimization problem

(4.1) reduces to:

E =
M∑
i=1

N∑
j=1

twj

(
x̂ij −

k∑
l=1

uilalj

)2

, (4.3)

where the weighted mean vector, which is used to obtain X̂, is calculated as

µ =
1∑N

j=1
twj

N∑
j=1

twjxj . (4.4)

1The left superscript is used to distinguish between temporal (tw) and spatial (sw) weights. tw
is a row vector, while sw is a column vector.
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This minimization problem can be solved using a modified EM algorithm or by

algorithm which maximizes the weighted variance. The latter can be derived as

follows. Following (2.2) and (2.3) the weighted mean of the projections of input

vector onto a direction u can be expressed as

ā =
1∑N

j=1
twj

N∑
j=1

twjaj =
M∑
i=1

uiµi (4.5)

and the weighted variance as

σ2 =
1∑N

j=1
twj

N∑
j=1

twj(aj − ā)2 =
M∑
i=1

M∑
l=1

uicilul = u�Cu , (4.6)

where µ is the weighted mean (4.4) and C is the weighted covariance matrix, whose

elements are calculated as

cil =
1∑N

j=1
twj

N∑
j=1

twjx̂ijx̂lj . (4.7)

If we define the matrix tX̂ by re-scaling the input vectors centered around the

weighted mean:

tx̂j =
√

twjx̂j, j = 1 . . . N , (4.8)

the weighted covariance matrix can be conveniently written as

C =
1∑N

j=1
twj

tX̂tX̂
�
. (4.9)

Considering different formulation of the mean vector µ and the covariance matrix

C, the minimization of (4.6) is equivalent to the minimization of (2.3). Therefore,

it can be solved by using a modified standard PCA algorithm as presented in Algo-

rithm 4.

Using this algorithm, the estimated principal subspace does not depend on all

training images equally. For instance, if a training image has weight 2, while all

other images have weight 1, the result of the proposed algorithm is the same as the

result of the standard algorithm, which has two copies of the particular image in

the training set.
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Algorithm 4 : TWPCA – temporally weighted PCA

Input: data matrix X, temporal weights tw

Output: weighted mean vector µ, eigenvectors U, eigenvalues λ.

1: Estimate the weighted mean vector: µ = 1∑N

j=1
twj

∑N
j=1

twjxj .

2: Scale the input data centered around the weighted mean:
tx̂j =

√
twj(xj − µ), j = 1 . . . N .

3: if M ≤ N then

4: Estimate the weighted covariance matrix: C = 1∑N

j=1
twj

tX̂tX̂
�
.

5: Perform SVD on C. Obtain the eigenvectors U and the eigenvalues λ.

6: else

7: Estimate the weighted inner product matrix: C′ = 1∑N

j=1
twj

tX̂
�tX̂ .

8: Perform SVD on C′. Obtain the eigenvectors U′ and the eigenvalues λ′.

9: Determine the principal vectors U: ui =
tX̂u′

i√∑N

j=1
twj

√
λ′

i

, i = 1 . . . N .

10: Determine the eigenvalues λ = λ′ .

11: end if

4.2.2 General weights

Before we derive the algorithm for estimating principal subspace using arbitrary

weights, we will discuss the weighed estimation of subspace coefficients considering

spatial weights. Spatial weights control the influence of individual pixels within

an image. Therefore, if a part of an image is unreliable or not important for the

estimation of principal components, its influence can be diminished by decreasing

the weights of the corresponding pixels.

The coefficients are traditionally estimated by the standard projection (2.20) of

an image x onto the principal vectors. From these coefficients, the reconstructed

image y can be obtained using (2.21). The coefficient estimation can also be for-

mulated as a problem of finding a coefficient vector a that minimizes the squared

reconstruction error between the original image x and its reconstruction y, thus

minimizing

e = ‖x̂−Ua‖2 =
M∑
i=1


x̂i −

k∑
j=1

uijaj




2

. (4.10)

The solution to this minimization problem (the vector a) can be found by solving
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an over-constrained system of linear equations

x̂i =
k∑

j=1

ajuij , i = 1 . . .M (4.11)

in the least squares sense, where x̂i and uij are known and aj unknown variables [40,

70].

Now, we are able to introduce the spatial weights sw into the estimation of

coefficients. The goal is to find a coefficient vector a that minimizes the weighted

squared reconstruction error:

e =
M∑
i=1

swi


x̂i −

N∑
j=1

uijaj




2

. (4.12)

This can be achieved by putting different weights in the equations in (4.11). The

coefficients can be calculated by solving the following system of linear equations:

√
swix̂i =

√
swi

k∑
j=1

ajuij , i = 1 . . .M . (4.13)

In the minimization process, the equations arising from the pixels with large weights

will have larger influence on the estimation of the coefficients and the reconstruction

error in such pixels will be smaller.

Since solving an over-constrained system of linear equations is equivalent to the

pseudoinverse (see Appendix B.1), we can formulate this minimization problem also

in a more concise way2:

a = ((.
√

sw11×k) ◦U)†(.
√

sw ◦ x̂) . (4.14)

In the similar way we can also approach to the weighted estimation of principal

subspace considering arbitrary weights, thus to minimizing (4.1). The weighted

squared reconstruction error (4.1) can be minimized using a modified EM algorithm.

By noting that aj = (U�U)−1U�x̂j = U†x̂j we can replace E-step of the EM

algorithm by solving the system of linear equations (4.11) for each aj , j = 1 . . . N .

A very similar observation holds also for M-step. Therefore, if we consider weights

as well, we can estimate the principal subspace by iteratively solving the following

systems of linear equations:

2.
√

A is an operator that calculates the square root of each element of the matrix A. A ◦ B
denotes the Hadamard (point wise) product between two matrices of equal dimension.
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• E-step: Estimate A in the following way: For each image j, j = 1 . . . N , solve

the following system of linear equations in the least squares sense:

√
wijx̂ij =

√
wij

k∑
p=1

uipapj , i = 1 . . .M . (4.15)

• M-step: Estimate U in the following way: For each pixel i, i = 1 . . .M , solve

the following system of linear equations in the least squares sense:

√
wijx̂ij =

√
wij

k∑
p=1

uipapj , j = 1 . . . N . (4.16)

At convergence, the columns of U span the space of the first k principal axes,

but they are not oriented in the directions of the principal components and U is

not orthogonal. However, when we are dealing with weighted learning, we usually

use a weighted method for estimation of principal components (4.14) in the recog-

nition stage as well. Since this method is also based on solving the system of linear

equations, U does not have to be orthogonal at all. Nevertheless, we can still or-

thogonalize U to enable calculation of the coefficients using the standard projection

(if the weights of all pixels are equal). However, one has to be aware that even after

the orthogonalization the directions of uj, j = 1 . . . k, are not the principal direc-

tions. By using a similar approach to determination of principal directions as in the

original EM algorithm, we can obtain only an approximation of the true principal

directions, since this approach is based on the standard non-weighted PCA on the

coefficient vectors. Thus, the total variance encompassed with k basis vectors is as

large as possible, however the distribution of this variance over the individual basis

vectors is not optimal. As a consequence, a k − 1 dimensional subspace, obtained

by discarding the least significant basis vector uk, cannot be considered as principal

any more.

By expressing (4.15) and (4.16) in a more concise way, the modified EM algorithm

for weighted PCA is shown in Algorithm 5.

4.2.3 Simple 2-D example

We will demonstrate the behavior of the proposed algorithm on our simple 2-D

example with 41 2-D points shown in Fig. 4.1(a). The goal is to estimate 1-D

principal subspace.
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Algorithm 5 : WPCA – weighted PCA

Input: data matrix X, weight matrix W, number of principal axes to be estimated

k.

Output: weighted mean vector µ, U spanning principal subspace.

1: Estimate the weighted mean vector: µi =

∑N

j=1
wijxij∑N

j=1
wij

, i = 1 . . .M .

2: Center the input data around the mean: X̂ = X− µ11×N .

3: Set the elements of U ∈ IRM×k to random values.

4: repeat

5: E-step: aj = ((.
√
wj11×k) ◦U)†(.

√
wj ◦ x̂j), j = 1 . . . N .

6: M-step: ui: = (.
√
wi: ◦ x̂i:)((1k×1.

√
wi:) ◦A)†, i = 1 . . .M .

7: until convergence.

8: Orthogonalize U.

9: Project input data on U: aj = ((.
√
wj11×k) ◦U)†(.

√
wj ◦ x̂), j = 1 . . . N .

10: Perform PCA on A. Obtain U′ .

11: Rotate U for U′: U = UU′.

First, we put different weights on the training points. We set temporal weights

to twj = j2 meaning that the points at the end of the training sequence should have

a stronger influence on the estimation of the principal subspace. Consequently, the

reconstructions of these points should be better. Fig. 4.1(a) depicts the principal

axis estimated using the standard and the weighted PCA. The weighted mean vector

is closer to the end of the point sequence, since the weights of these points have

larger values. The principal axis is oriented in such a direction that enables superior

reconstruction of these points. Consequently, the mean squared reconstruction error

in the points at the end of the point sequence is much smaller when the weighted

PCA is used, (see Fig. 4.1(b)). This results in a smaller weighted reconstruction

error (1.78 for the standard and 0.97 for the weighted method).

Next, we put different weights on the coordinates. For each image, we set the

spatial weight vector sw = [1.0, 0.1]�, meaning that the first coordinate should have

ten times bigger influence to the results than the second coordinate. The results are

shown in Fig. 4.2(a). For both coordinates, the input value and the reconstructed

values using the standard and the weighted method are presented. One can observe

that the first coordinate is almost perfectly reconstructed with the weighted method

in contrast to the standard method, which treats both coordinates equally. This

is also evident from Fig. 4.2(b), which depicts the reconstruction errors in both
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Figure 4.1: Weighted learning considering temporal weights. (a) Obtained principal

axis. (b) Reconstruction errors.

coordinates of the individual points. MSRE in the first coordinate is very close to

zero in all points when the weighted method is used. Consequently, this method

produces significantly smaller weighted reconstruction error (57.93 for the standard

and 19.98 for the weighted method).
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Figure 4.2: Weighted learning considering spatial weights. (a) Reconstructed coor-

dinate values. (b) Reconstruction errors in both coordinates.
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4.3 Batch PCA on incomplete data

In the real world applications, it is often the case that not all data is available. The

values of some pixels are missing or are totally unreliable. Such pixels are referred to

as missing pixels. The estimation of the principal subspace in the case of incomplete

data can be regarded as a special case of weighted PCA where the weights of missing

pixels are set to zero. In this section we will consider this special case of the weighted

learning more thoroughly.

4.3.1 Modified EM algorithm

First let us denote the sets of indices of non-missing (known) and missing pixels in

the j-th image with I•
j and I◦

j , respectively, and the sets of indices of non-missing

and missing pixels in the i-th row of the data matrix X with I•
i: and I◦

i:, respectively.

Now, the goal is to minimize the reconstruction error of known pixels, thus in E

and M steps of the EM algorithm we have to set up the equations arising from the

non-missing pixels only:

• E-step: Estimate A in the following way: For each image j, j = 1 . . . N , solve

the following system of linear equations in the least squares sense:

x̂ij =
k∑

p=1

uipapj , i ∈ I•
j . (4.17)

• M-step: Estimate U in the following way: For each pixel i, i = 1 . . .M , solve

the following system of linear equations in the least squares sense:

x̂ij =
k∑

p=1

uipapj , j ∈ I•
i: . (4.18)

Here, the mean image is obtained by estimating the mean over the known pixels:

µi =
1

|I•
i:|

∑
j∈I•

i:

xij , i = 1 . . .M . (4.19)

When dealing with images containing a considerable amount of missing pix-

els, such a formulation results in an ill-posed problem. The principal vectors are

optimized to ensure the optimal reconstruction error in known pixels. Since the

reconstruction error in missing pixels is not considered in the minimization process,
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the reconstructed missing pixels can have arbitrary values. The generalization abil-

ity of this algorithm is relatively weak, thus although such an algorithm can produce

very small reconstruction errors in known pixels, it may at the same time produce

very strange reconstructed values in missing pixels.

To alleviate this problem we impose additional application dependent constraints

to the minimization process. When the images are ordered, as in the case of image

sequences, we can extend the algorithm to include also a smoothness prior to enforce

that the values of reconstructed missing pixels are changing smoothly over time.

Thus, in the M-step we minimize the second derivative of the reconstructed missing

pixels. The new M-step looks as follows:

• M-step: Estimate U in the following way: For each pixel i, i = 1 . . .M , solve

the following system of linear equations in the least squares sense:

x̂ij =
k∑

p=1

uipapj , j ∈ I•
i:

0 = α
k∑

p=1

uip(ap,j−1 − 2apj + ap,j+1) , j ∈ I◦
i: , (4.20)

where α is the parameter which weights the influence of the smoothness con-

straint.

Thus, the overall algorithm minimizes the following error function:

E =
N∑

j=1

∑
i∈I•

j


x̂ij −

k∑
p=1

uipapj




2

+ α
N∑

j=1

∑
i∈I◦

j


 k∑

p=1

uipa
′′
pj




2

. (4.21)

To summarize the algorithm in a more concise way we will introduce a new

notation. Let us partition a training image (a column in the data matrix) x̂j into x̂•
j

and x̂◦
j vectors of M• known and M◦ unknown values in x̂j, respectively, and assign

the corresponding rows of U to U• and U◦. Similarly, we can partition a row in

the data matrix x̂i: into x̂
•
i: and x̂

◦
i: row vectors of the N• known and N◦ unknown

values in x̂i:, respectively, and assign the corresponding columns of A to A• and A◦.

Using this notation, the modified EM algorithm for the estimation of the principal

subspace from incomplete data is given in Algorithm 6.

In the recognition stage, an input image x is projected into the principal sub-

space U in an analogical way. The coefficients aj are obtained by solving an over-

constrained system of linear equations, which arise from the non-missing pixels only:

x̂i =
k∑

j=1

ajuij , i ∈ I• , (4.22)
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Algorithm 6 : MPPCAtmpSm – PCA on incomplete data by temporal smoothing

Input: data matrix X, weight matrix W with binary values, number of principal

axes to be estimated k.

Output: mean vector µ, U spanning principal subspace.

1: Estimate the weighted mean vector: µi =
1

N•
∑N•

j=1 x
•
ij , i = 1 . . .M .

2: Center the input data around the mean: X̂ = X− µ11×N .

3: Set elements of U ∈ IRM×k to random values.

4: repeat

5: E-step: aj = U•†x̂•
j , j = 1 . . . N .

6: M-step: A′ = [a2 . . . aN , aN ]− 2A+ [a1, a1 . . . aN−1]

ui: = [x̂•
i: 01×N◦ ][A• αA′◦]† , i = 1 . . .M .

7: until convergence.

8: Orthogonalize U.

9: Project input data on U: aj = U•†x̂•
j , j = 1 . . . N .

10: Perform PCA on A. Obtain U′ .

11: Rotate U for U′: U = UU′.

or, expressing with the pseudoinverse:

a = U•†x̂• . (4.23)

4.3.2 Iterative reconstruction of missing pixels

Alternatively, the principal axes can in M-step also be obtained by applying the

standard PCA on all pixels providing that missing pixels are filled-in. The question

is how to optimally fill-in the values of the missing pixels. Since not all the pixels of

an image are known, some coordinates of the corresponding point in the image space

are undefined. Thus, the position of the point is constrained to the subspace defined

by the missing pixels. Given the principal subspaceU, which models the input data,

the optimal location is a point in the missing pixels subspace which is closest to the

principal subspace. This point is obtained by replacing the missing pixels with

the reconstructed values, which are calculated by (2.21) using the coefficients aj

estimated in E-step of the current iteration and the principal axes uj obtained in

the previous iteration.

This principle is illustrated in a simplified 3-D example in Fig. 4.3. The green

line u represents the 1-D principal subspace in the 3-D input space. The input
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image x has defined the first two coordinates only, thus x3 is considered as missing

pixel. Therefore, the proper location of x can be located anywhere on the black

line. The goal is to optimally determine this location by finding a point in the

missing pixel subspace (black line), which is closest to the principal subspace (green

line). To achieve this, x is first projected into the subspace considering only the

first two coordinates by using (4.22). The projection and the reconstructed point

are depicted as the red point in Fig. 4.3. The third coordinate of this reconstructed

point is the best guess for the proper value of the missing pixel. Thus this value is

used as the value of the unknown coordinate of the input image x and the (most

probably) proper location of x is determined (the blue point in Fig. 4.3).
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Figure 4.3: The principle of filling missing pixels.

Therefore, the new M-step looks as follows:

• M-step: Estimate U by applying the standard PCA on X with the recon-

structed missing pixels:

xij = yij , j = 1 . . . N , i ∈ I◦
j where Y = UA+ µ11×N . (4.24)

One advantage of this approach is that it does not assume a smoothness prior,

therefore it is appropriate for visual learning from unordered image sequence as well.

Furthermore, this approach produces real principal axes. The columns of U do not

just span the principal subspace, but they are mutually orthogonal and oriented

in the directions of the principal axes as well (assuming that the missing values

are estimated correctly). This means that the principal subspace of the dimension
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k − 1 can be obtained from the estimated k-dimensional principal subspace simply

by discarding the least significant principal axis uk.

The convergence of the algorithm can be sped up by a more efficient initialization

of the principal vectors U. Instead of simply setting its elements to random values,

one can estimate the initial values ofU from an estimate ofA obtained by performing

SVD on the inner product matrix C′, which is estimated from the non-missing pixels

only:

c′ij =
M

N |P|
∑
p∈P

x̂pix̂pj , P = {p | p ∈ I•
i ∧ p ∈ I•

j } , i, j = 1 . . . N. (4.25)

The entire procedure is outlined in Algorithm 7.

Algorithm 7 : MPPCAitRec – PCA on incomplete data by iterative reconstruction

Input: data matrix X, weight matrix W with binary values, number of principal

axes to be estimated k.

Output: mean vector µ, principal vectors U.

1: Estimate the weighted mean vector: µi =
1

N•
∑N•

j=1 x
•
ij , i = 1 . . .M .

2: Center the input data around the mean: X̂ = X− µ11×N .

3: Estimate the inner product matrix C′ from the known data:

c′ij = M
N |P|

∑
p∈P x̂pix̂pj , P = {p | p ∈ I•

i ∧ p ∈ I•
j } , i = 1 . . . N , j = 1 . . . N.

4: Perform SVD on C′ yielding eigenvectors as an estimate for A.

5: Estimate an initial U: ui: = x̂•
i:A

•† , i = 1 . . .M .

6: repeat

7: E-step: Estimate A: aj = U•†x̂•, j = 1 . . . N .

8: M-step: Estimate U by applying the standard PCA on X with reconstructed

missing pixels: xij = yij , j = 1 . . . N , i ∈ I◦
j where Y = UA+ µ11×N .

9: until convergence.

4.3.3 Simple example

We will illustrate the algorithm for subspace learning by iterative reconstruction of

missing pixels on the following example. Let us consider a set of vectors which is

formed of 10 shifted harmonic (sinus) functions. Next, we randomly remove 20%

of the elements, as depicted in the top row of Fig. 4.4(a). Now, the goal is to

find the optimal principal axes representing these vectors by applying the algorithm

described in the previous subsection.
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Fig. 4.4 illustrates the performance of the proposed method. First, the initial

values of the principal axes are obtained from the covariance matrix estimated from

the non-missing values of the input vectors. Then, based on the E-step, we calculate

the coefficients and the reconstructed signals. The missing pixels are then replaced

with their reconstructed values from the previous iteration. The initialization, the

first, the third, and the tenth iteration of the algorithm are shown in subsequent rows

of Fig. 4.4. Note how the functions representing estimated principal axes are getting

smoother after every iteration. Finally, we obtain almost perfect reconstruction of

the input vectors.
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Figure 4.4: Simple example with missing pixels: (a) input data at each iteration,

(b) estimated principal axes, (c) reconstructed vectors.
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4.4 Incremental weighted PCA

In Section 3.2 we presented the algorithm for incremental learning, while in Sec-

tion 4.2 we presented the algorithm for weighted learning. In this section we will

combine both methods into a unified, weighted and incremental approach.

4.4.1 Algorithm

It is quite straightforward to incorporate the temporal weights into the incremental

algorithm. The core of this algorithm is still the standard batch PCA on low-

dimensional data (step 6 of the Algorithm 3). We can replace this standard PCA

with the weighted algorithm, which considers temporal weights. This is feasible,

because our incremental algorithm maintains low-dimensional coefficients of all input

images throughout the process of the incremental learning (in contrast to other

incremental approaches [32, 41]). Therefore, the representation of each image can

be arbitrarily weighted at each update.

Incorporating spatial weights into the process of incremental learning is more

complex. After the current eigenspace is updated with a new input image, this

image is discarded. Therefore, in the later stages we cannot associate weights to

individual pixels. This can be done only during the update. For that reason we

define spatial weights in a different manner.

Let us assume, that the weights range from 0 to 1. If a weight is set to 1, it

means that the corresponding pixel is fully reliable and should be used as is. If a

weight is set to 0, it means that the value of the corresponding pixel is completely

useless and it is not related to the correct value. We can recover an approximate

value of this pixel by considering the knowledge acquired from the previous images.

By setting the weight between 0 and 1, we can balance between the influence of the

value yielded by the current model and the influence of the pixel value of the input

image.

We can achieve this by adding a preprocessing step to the update algorithm. First

we calculate the coefficients of the new image x by using the weighted method (4.13)

considering larger influence of the pixels with large weights. By reconstructing the

coefficients we obtain the reconstructed image y which contains pixel values yielded

by the current model. By blending images x and y considering spatial weights by

using the following equation

xnew
i = swixi + (1− swi)yi , i = 1 . . .M , (4.26)
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we obtain the image which is then used for updating the current eigenspace. In this

way, a selective influence of pixels is enabled also in the incremental framework.

The principle of blending is illustrated in Fig. 4.5. In this simple 2-D example

the black dot represents a new point, which is to be used to update the current

eigenspace, depicted as the blue line. The red dot represents a point reconstructed

from the coefficient, which was estimated using the weighted method considering

spatial weights. This reconstructed point is then blended with the input point into

the point, which is afterwards used for updating the eigenspace (the green dot).

The results of this process are presented for five different weight vectors. One can

observe how the position of the blended point varies according to the weight vector.

x1

x2

Figure 4.5: Illustration of blending of input point (black) and reconstructed points

(red) into blended points (green) for different spatial weights.

By augmenting these additional steps, the overall algorithm for weighted incre-

mental learning is given in Algorithm 8.

A potential drawback of incremental methods is a propagation of errors, since

images are added sequentially. In the case of the weighted incremental algorithm

this could be problematic if in the early stages of the learning process many images

contain significant number of pixels with small weights. In this case the algorithm

fails to correctly recover the values of these pixels because the model is too flexible

and it cannot predict the correct values. When the model encompasses a sufficient

number of views it becomes more stable and this is no longer a problem.
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Algorithm 8 : WIPCA – weighted incremental PCA

Input: current mean vector µ(n), current eigenvectors U(n), current coefficients

A(n), new input image x, spatial weights for new image sw, temporal weights

for all images tw
(n)

.

Output: new mean vector µ(n+1), new eigenvectors U(n+1), new coefficients A(n+1),

new eigenvalues λ(n+1).

1: Calculate the coefficients considering spatial weights:

a = ((.
√

sw11×k) ◦U(n))†(.
√

sw ◦ (x− µ(n))) .

2: Reconstruct the image yielded by the current eigenspace: y = U(n)a+ µ(n).

3: Blend the input and the reconstructed image considering the spatial weights sw:

x = sw ◦ x+ (1M×1 − sw) ◦ y .

4: Project the obtained image x into the current eigenspace: a = U(n)�(x−µ(n)) .

5: Reconstruct the new image: y = U(n)a+ µ(n).

6: Compute the residual vector: r = x− y. r is orthogonal to U(n).

7: Append r as a new basis vector: U′ =
[
U(n) r

‖r‖
]

.

8: Determine the coefficients in the new basis: A′ =


 A(n) a

0 ‖r‖


 .

9: Perform TWPCA on A′ considering the temporal weights tw
(n)

. Obtain the

mean value µ′′, the eigenvectors U′′, and the eigenvalues λ′′.

10: Project the coefficient vectors to the new basis: A(n+1) = U′′�(A′−µ′′11×n+1) .

11: Rotate the subspace U′ for U′′: U(n+1) = U′U′′ .

12: Update the mean: µ(n+1) = µ(n) +U′µ′′ .

13: New eigenvalues: λ(n+1) = λ′′ .

4.4.2 Simple 2-D example

We will illustrate the behavior of the proposed algorithm on the 2-D example, which

was already used for the demonstration of the non-weighted incremental PCA in Sec-

tion 3.2.1 and the batch method for weighted PCA in Section 4.2.3. The goal is to

estimate the 1-D principal subspace from 41 input 2-D points, which sequentially

enter into the learning process. The eigenspace is being built incrementally consid-

ering temporal weights, which give larger influence to the recent points (the weights

are set to twj = j2).

Fig. 4.6 depicts the evolution of the eigenspace. By comparing this figure with

Fig. 3.2 it is evident how the points at the end of the point sequence have larger



72 4. Weighted PCA

influence to the estimation of the principal axis. At the end of the sequence, the

estimated eigenspace is very similar to the eigenspace obtained using the batch

weighted method.
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Figure 4.6: Illustration of weighted incremental learning.

The second example in Section 4.2.3, which considers spatial weights, cannot be

handled using the proposed method for incremental weighted learning. In that 2-D

example the weight of the second coordinate was 0.1 in all training points, meaning

that the value of this coordinate is very unreliable and that in the blending step,

the value estimated from the current model should have ten times larger influence.

However, since all the training points have equal weights, this model can never be

reliably estimated, therefore the values of the second coordinate predicted by the

model are not accurate either. This example demonstrates that it is very important

that at least in the early stages of the learning process, enough reliable information

should be available.

4.4.3 Comparison with related work

In the literature, the most related work is the algorithm for the eigenspace updating

with temporal weighting proposed by Liu and Chen [41]. We show in Appendix C.2

that their algorithm can be considered as a special case of ours when the temporal

weights in our method form a geometric sequence. On the other hand, our method

can handle arbitrary temporal weights. Moreover, our weighted method can handle

temporal and spatial weights as well. And finally, our method estimates the coeffi-
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cients and maintains their values throughout the learning process, while the method

proposed by Liu and Chen does not.

4.5 Incremental PCA on incomplete data

The algorithm for incremental learning from the data that contains missing pixels is

a special case of the algorithm for weighted incremental learning. In this case, only

the spatial weights are considered, which can have just binary values distinguishing

known and missing pixels.

4.5.1 Algorithm

The blending step in the algorithm for weighted incremental learning reduces into

the imputation of missing pixels. Before the current eigenspace is updated with the

new image, the missing pixels have to be optimally filled in.

The main idea how to fill in the missing pixels is similar as in the case of iterative

batch algorithm described in Section 4.3.2. Using the current principal subspace

U(n), which models the input data seen so far, and a set of known pixels in the

new image x, we want to estimate the values of missing pixels in x. Thus, we

want to locate the point representing the image x in the subspace defined with the

values of the known pixels. The optimal location is a point in the missing pixels

subspace which is closest to the current principal subspace (see Fig. 4.3). This point

is obtained by imputing missing pixels with the reconstructed values, which are

calculated from the coefficients estimated from the known pixels only. Since these

coefficients reflect the novel information in the new image contained in the known

pixels, we hope that the prediction in the missing pixels will be fine as well. Such an

improved image is the best approximation of the correct image that we can obtain

from the information contained in the known pixels and in the current eigenspace.

Thus, the new image x is first projected into the current principal subspace U(n)

by solving the system of linear equations arising from non-missing pixels (4.22). The

obtained coefficient vector a is then reconstructed and the values in the reconstructed

image are used for imputation of missing pixels. The improved image is then used

for updating the current eigenspace. These steps are more formally presented in

Algorithm 9.
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Algorithm 9 : MPIPCA – incremental PCA on incomplete data

Input: current mean vector µ(n), current eigenvectors U(n), current coefficients

A(n), new input image x, binary spatial weights for new image sw.

Output: new mean vector µ(n+1), new eigenvectors U(n+1), new coefficients A(n+1),

new eigenvalues λ(n+1).

1: Impute the missing pixels in the new image x: x̂◦ = U(n)◦U(n)•†x̂• .

2: Project the obtained image x into the current eigenspace: a = U(n)�(x−µ(n)) .

3: Reconstruct the new image: y = U(n)a+ µ(n).

4: Compute the residual vector: r = x− y. r is orthogonal to U(n).

5: Append r as a new basis vector: U′ =
[
U(n) r

‖r‖
]

.

6: Determine the coefficients in the new basis: A′ =


 A(n) a

0 ‖r‖


 .

7: Perform PCA on A′. Obtain the mean value µ′′, the eigenvectors U′′, and the

eigenvalues λ′′.

8: Project the coefficient vectors to the new basis: A(n+1) = U′′�(A′−µ′′11×n+1) .

9: Rotate the subspace U′ for U′′: U(n+1) = U′U′′ .

10: Update the mean: µ(n+1) = µ(n) +U′µ′′ .

11: New eigenvalues: λ(n+1) = λ′′ .

4.5.2 Simple 2-D example

We will illustrate the behavior of the proposed algorithm on our 2-D example. In

this case the second coordinate of five points is unknown. Therefore these points

could lie anywhere in the dashed lines depicted in Fig. 4.7.

The proposed method sequentially estimates the unknown coordinate values and

defines the position of the points on the dashed lines (shown as circles). The

eigenspace is being updated using these improved points. Since these points are

a good approximation of the correct ones, the evolution of the eigenspace is very

similar to the evolution of the eigenspace, which was built from the ideal data (see

Fig. 3.2) and the final principal axis is very close to the optimal one.

4.5.3 Comparison with related work

Recently, Brand presented an algorithm for incremental singular value decomposi-

tion of data containing missing pixels [14]. Thus, his algorithm uses SVD for learn-

ing, while our algorithm uses PCA. This means that in the framework of eigenspace
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Figure 4.7: Illustration of incremental learning from incomplete data.

learning, Brand’s algorithm assumes that the mean is always 0. In contrast, our

algorithm considers also the mean and updates its value at each step adequately.

What is common to both algorithms is the way how they treat missing pixels.

In both cases, before the current subspace is updated with a new image, missing

pixels are imputed using known pixel values and the current subspace. As we show

in Appendix C.3, the imputation rule in our algorithm

x̂◦ = U◦U•†x̂• (4.27)

is equivalent to the imputation rule in the Brand’s [14] method.

As shown in [14], the imputation of missing pixels using (4.27) minimizes the dis-

tance of the vector representing a new image to the current subspace and maximizes

the concentration of the variance in the top singular values. Consequently, such

imputation rule minimizes the rank of the updated SVD guaranteeing parsimonious

model of the data.

4.6 Experimental results

In this chapter we presented several algorithms for weighted subspace learning. We

performed a number of experiments in order to evaluate the proposed methods. In

this section we will present some of the results.
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4.6.1 Batch weighted method

First we will demonstrate the performance of the batch method for weighted learning

using temporal weights. Imagine that we want to build a subspace representation

of the ‘duck’ object from the COIL20 database. If we assume that it is more likely

to see the duck from the front than from the back it is reasonable to model the

front views more accurately [60]. Therefore, we put larger weights on the images

of the front (and side) views of the object and built the eigenspace using the batch

weighted method. Fig. 4.8 shows the images reconstructed with the standard method

and with the weighted method. One can observe that the first three images are

reconstructed worse with the weighted method, since they represent the rear views

of the duck where the weights were small. In contrast, the front (and side) views

of the duck are reconstructed considerably better than with the standard approach.

Fig. 4.9 confirms this finding. It shows the reconstruction errors in the images for

both methods. To increase clarity, the reconstruction error was smoothed over the

consecutive images reducing local deviations. One can observe that in the second half

of the image sequence the reconstruction error produced by the proposed weighted

method is smaller. Consequently, the total weighted reconstruction error is smaller

as well, as presented in Table 4.1. This is exactly what we wanted to achieve.

(a)

(b)

(c)

Figure 4.8: (a) Six images from training set. (b) Reconstruction using standard

PCA. (c) Reconstruction using weighted PCA.

Table 4.1: Weighted reconstruction errors of standard and weighted method.

standard PCA weighted PCA

660 605
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Figure 4.9: Reconstruction errors of standard and weighted method.

The performance of the weighted method for estimating coefficients using spatial

weights is presented in Fig. 4.10. In this experiment we modeled three objects

from the COIL20 database. The training set consisted of 24 images of each of the

three objects – altogether 72 images of size 32 × 32 pixels. Some of the images

are shown in Fig. 4.10(a). Later, we wanted to recognize the object depicted in

Fig. 4.10(b). The left half of this test image represents the ‘duck’ object, while

the right half represents the ‘cat’ object. If the standard recognition was used, the

method could not choose between the ’duck’ and the ‘cat’ and the reconstruction

was indistinguishable (Fig. 4.10(c)). When the weighted method was used and one

half of the image was considered more important (the left part in Fig. 4.10(d) and

the right part in Fig. 4.10(e)), the method reconstructed the ‘duck’ and the ‘cat’,

respectively, very well. Here, we assumed that the information about the weights

was signaled by some higher-level cognitive process.

(a)

(b) (c) (d) (e)

Figure 4.10: (a) Six images from training set, (b) test image, (c) standard, and (d,e)

weighted reconstructions.
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4.6.2 Incremental weighted method

We evaluated the incremental and temporally weighted method on the set of training

images, which was already used for the evaluation of the non-weighted incremental

method. The training set consisted of 720 images of all twenty objects from the

COIL20 database. The objects are depicted in Fig. 3.3.

On each image we put a weight, which was proportional to the second power of

the image index, giving more influence to the objects and the images at the end of

the image sequence. The results are depicted in Fig. 4.11. The reconstruction errors

of the incremental weighted method (WincA, WincX ) do not differ significantly

from the results of the batch weighted method (Wbatch). And certainly, the results

of the batch and the incremental weighted methods are better than the results of

the standard methods for images with larger weights. This is also reflected in better

weighted squared reconstruction errors as presented in Table 4.2.

Table 4.2: Weighted reconstruction errors of batch and incremental methods.

batch incA incX Wbatch WincA WincX

617 658 648 554 583 565

Figure 4.11: Reconstruction errors of batch and incremental standard and weighted

methods.

Next, we present the results of the proposed incremental method for learning

from incomplete data to improve the results of the visually-based localization of a

mobile robot [4]. In the learning stage, the representation of the environment (our

lab in this case) is built from panoramic images taken from several locations. We

can simulate the in-plane robot rotation by shifting cylindrical panoramic images
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and generating spinning images [38]. Three such views of two locations are depicted

in Figs. 4.12(a,b). We thus obtain all necessary views of the environment, which are

used for building the representation using PCA. Later, in the localization stage, a

novel image is taken and projected into the eigenspace. The location of the robot is

determined by searching for the closest projected training image.

However, due to the construction of the panoramic sensor, not only the envi-

ronment is captured in the image, but also the holder of the panoramic mirror (the

dark vertical bar in Figs. 4.12(a,b)) and the surface of the robot (lower part of the

images). If the robot is oriented differently in the localization stage, the holder

appears in a different position in the image, which makes the test image less similar

to the correct training image and the localization can fail.

The proposed method offers a solution to this problem. Since we know, that the

holder is not a part of the environment, we can mask it out during the learning, and

learn only the parts, which belong to the environment. We can achieve this by using

the incremental method for learning from incomplete data considering undesirable

parts as missing pixels (see Figs. 4.12(c)).

(a)

(b)

(c)

Figure 4.12: (a,b) Spinning images from two locations. (c) Weights.

In the learning stage, the robot was moving from one part of the lab to the

other. In the localization stage, the robot returned to the starting position following

approximately the same path in the opposite direction. The results are presented in

Fig. 4.13. The gray levels represent coefficient errors; i.e., the distances between the

projections of the test images (given in the x axis) and the projections of the training

image (y axis). Since the path of the robot was approximately the same as in the
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learning stage, we expect that the coefficient error would be minimal on the diagonal

of the error matrix. Since the standard approach incorporated in the representation

also the vertical holder, which was in a different image position in the localization

stage, the results of the standard method are not very good (the diagonal of the error

matrix in Fig. 4.13(a) is very indistinct). In contrast, the proposed method did not

incorporate the holder into the representation of the environment. Consequently,

the values around the diagonal in Fig. 4.13(b) are significantly smaller, which makes

the localization much more accurate and reliable.

(a) (b)

Figure 4.13: Coefficient errors using (a) standard and (b) proposed method.

4.6.3 Learning from incomplete data

In this subsection we will present the results of the proposed batch methods for

learning from incomplete data. The goal was to learn a 9-D subspace representation

of the ‘duck’ object from 72 images from the COIL20 database (see Fig. 4.14(a)).

From each image we “erased” a square, which covered 20% of the image (Fig. 4.14(b))

and considered erased pixels as missing pixels.

First we applied the standard PCA algorithm on the training images with missing

pixels filled-in using the simple mean substitution (in figures referred to asMS ). The

missing pixels were replaced with the mean values calculated from non-missing pixels

only. Then we applied the proposed algorithms: Algorithm 7, which iteratively

reconstructs missing pixels (itRec), the modified EM algorithm which calculates

the principal subspace from non-missing pixels only (EM ), and Algorithm 6, which

assumes the smoothness prior. The latter algorithm was tested in the circumstances

when the smoothness prior hold (the training images were aligned in the sequential

order – EMts) and when this assumption was disadvantageous (the training images

were aligned in a random order – rndEMts).
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Figs. 4.14(c–g) depict some training images with the missing pixels filled-in with

the reconstructed values, which were obtained using the methods described above.

One can observe that both proposed algorithms (itRec and EMts) reconstructed

missing squares significantly better than the standard PCA on the training images

with mean-substituted missing pixels (MP). The modified EM algorithm without

smoothness prior (EM ) mainly performed well too, however in some pixels it failed

to correctly reconstruct the pixel values to a large extent. As expected, when the

training images were randomly ordered, the incorrectly assumed smoothness prior

significantly degraded the results (rndEMts).

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 4.14: (a) Nine complete images, (b) training images with missing squares,

reconstructed missing pixels using (c) MS, (d) itRec, (e) EM, (f) EMts and (g)

rndEMts approaches.
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The same conclusions can be drawn also from Fig. 4.15, which presents more

quantitative results. For comparison, we projected original images without missing

pixels into the obtained eigenspaces. Ideally, we would obtain exactly the same coef-

ficients as by projecting the training images considering the non-missing pixels only.

Fig. 4.15(a) compares the obtained mean coefficient error, i.e., the mean distance

between the corresponding coefficient vectors, while Fig. 4.15(b) plots the values of

all 72 distances in increasing order. Fig. 4.15(c) plots the recognition rate, i.e. how

many times the projected complete images were the closest to the corresponding pro-

jected non-complete training images. Fig. 4.15(d) indicates the similarity between

the estimated principal axes and optimal ones, which were obtained by performing

PCA on the complete training images without missing pixels. For each of the first

nine principal axes, the dot product between the ideal and the estimated principal

axis is depicted. All these figures clearly indicate that the proposed methods for

learning from incomplete data perform well and considerably improve the results of

the simple mean-substitution approach.

We also tested the performance of the algorithms with regard to the amount of

missing pixels present in training images. We erased from 10% to 90% of randomly

selected spatially incoherent pixels in each image. All the algorithms mentioned

above were applied at each level of missing pixels.

One such trial at 50% of missing pixels is shown in Fig. 4.16. One complete and

one training image are shown as well as the same training image with reconstructed

missing pixels. Again, it is evident that itRec, EM, and EMts approaches reconstruct

missing pixels significantly better than MS and rndEMts.

Fig. 4.17 summarizes the results obtained at all levels of missing pixels. For

each level of missing pixels it plots the mean coefficient error, the mean squared

reconstruction error in missing pixels, the recognition rate and the mean dot product

between the corresponding estimated and optimal principal axes. All the plots show

that itRec, EM, and EMts perform very good when the amount of missing pixels is

50% or less. Note, that in this case the missing pixels are spatially incoherent, which

alleviates the problem to some extent. It can be observed that the unconstrained

EM-based approach EM breaks down at 70% of missing pixels. At this level, some of

the missing pixels are reconstructed very incorrectly, since no constraints are given.

In contrary, if the reconstructed values are constrained with the smoothness prior

(EMts), the best results are achieved. Of course, if this smoothness prior does not

hold true, this algorithm does not perform well (rndEMts). In such cases, the best
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Figure 4.15: Performance of learning algorithms: (a) mean coefficient error, (b)

sorted coefficient errors, (c) recognition rate, (d) dot products between corresponding

estimated and optimal principal axes.

(a) (b) (c) (d) (e) (f) (g)

Figure 4.16: (a) One complete image, (b) training image containing 50% of missing

pixels, reconstructed missing pixels using (c) MS, (d) itRec, (e) EM, (f) EMts and

(g) rndEMts approaches.

choice is iterative reconstruction of missing pixels (itRec).
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Figure 4.17: Performance of learning algorithms with regard to amount of miss-

ing pixels present in training images: (a) mean coefficient error, (b) mean squared

reconstruction error in missing pixels, (c) recognition rate, (d) mean dot product

between corresponding estimated and optimal principal axes.

4.6.4 Recognition from incomplete images

We applied the method for recognition from incomplete data on a rather specific

domain of range images. Due to imperfections of range sensors, acquired images

usually contain missing pixels; the pixels, which belong to the object, however their

depth could not be obtained [71, 69, 2]. This is evident in Fig. 4.18 where an intensity

image and the corresponding range image containing missing pixels are shown.

In the following experiments we will assume that the subspace model has already

been correctly built (possibly from complete training images). For this particular

problem of recognition of range images, we slightly extended the method for recog-
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(a) (b)

Figure 4.18: (a) Intensity image. (b) Range image containing missing pixels.

nition from incomplete data. The subspace coefficients were calculated from the

known pixels only; missing pixels were excluded from the calculation. Since the

depth was not defined in the background pixels either, they were excluded from the

computation as well. However, the background pixels define the contour of the ob-

ject, which proves to be very useful for recognition. Because of this, we performed

the second step to refine the coefficients ai. We reconstructed the coefficients and

obtained the reconstructed image y. Then we selected all pixels from x where the

reconstruction error ‖yi−xi‖2 was consistent with the distribution of the reconstruc-

tion errors in non-missing pixels. Afterwards we marked the newly selected pixels as

non-missing and recalculated the coefficient vector a. These two steps were iterated

until the convergence was reached, which happened after only a few iterations. In

this way, many background pixels were gradually included into the computation,

which significantly improved the results of the recognition.

We performed the experiments on two sets of images created from six 3-D models.

The models (depicted in Fig. 4.19) were created from real objects by NRC-CNRC

Institute for Information Technology3.

The range images in the first set were generated by rotating the model around

one axis in 1◦ steps (one degree of freedom). From each model 360 range images of

the size 64×64 pixels were generated. Twelve range images generated from the first

model are shown in Fig. 4.20.

The range images in the second set were generated by rotating a model around

two axes (two degrees of freedom). From each model 545 range images of the size

64×64 pixels were created. The range images were generated from the views which

were equally spaced in the object’s pose space (see Fig. 4.21). Twelve range images

3www.vit.iit.nrc.ca/3D/Pages HTML/3D Models.html
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Figure 4.19: 3-D models used to create range images.

Figure 4.20: Twelve range images from 1 DOF example.

generated from the first model are shown in Fig. 4.22.

The background pixels and the missing pixels are usually set to 0. We rather

set this level to the mean value of all non-background and non-missing pixels in

all images. Since the difference between missing pixels and pixels in the object is

smaller, the convergence of the reconstruction algorithm is much faster. Due to the

same reason, the recognition results of the standard eigenspace method have also

been improved.

We simulated missing pixels by setting a number of pixel values to the level of

missing pixels. These pixels were chosen in two ways: spatially incoherent – by

randomly choosing pixels, and spatially coherent – by choosing the pixels concen-

trated in two image areas. Both types of simulated missing pixels are depicted in

Fig. 4.23(a).
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Figure 4.21: Viewpoints for generating range images in 2 DOF experiment.

Figure 4.22: Twelve range images from 2 DOF experiment.

We first present the results of 1 DOF experiment. A universal all-encompassing

eigenspace was built from 360 range images (60 images of each object). In addition,

for each object an object eigenspace was created from 72 range images. All the

images that were used were uniformly distributed in the object’s pose space. In all

tests we used eigenspaces of the dimension 15.

First we tested the recognition of the objects. A hundred range images were ran-

domly chosen among all generated range images of all objects and different amounts

of missing pixels were added (0–80%). Figs. 4.23(b,c) show the reconstruction of

one such trial. The summary of the recognition rate is plotted in Figs. 4.24(a,c). It

is evident that the proposed method outperforms the standard one. The recognition

rate of the proposed method is close to 100% even at 80% of missing pixels.
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(a) (b) (c)

Figure 4.23: (a) Input images with spatially incoherent (top row) and spatially co-

herent (bottom row) missing pixels, images reconstructed with (b) standard method,

and (c) proposed method.

We obtained similar results also in the case of determining the orientation of

the objects. Figs. 4.24(b,d) plot the results of determining the orientation of the

first object in Fig. 4.19. A hundred range images were randomly chosen among all

generated range images of the object. The orientation was determined by finding

the closest image in the training set (the closest point in the eigenspace). The error

was defined as the difference between the orientation of the detected training image

and the orientation of the training image that should be detected. For each level

of missing pixels the average absolute error was calculated. Using the proposed

method, this error is very close to zero even at 80% of missing pixels, while the

standard approach is not useful when a range image contains more than 40% of

missing pixels.

Finally, we present the results of 2 DOF experiment. A universal eigenspace was

built from 654 range images (109 images for each object). Each object eigenspace

was created from 109 range images, which were uniformly distributed in the object’s

pose space. We performed only tests for spatially incoherent missing pixels. Here,

the measure for the orientation error was the angle between the detected orientation

and the orientation of the object in the test image. As depicted in Fig. 4.24(e,f),

the recognition rate and the orientation error are almost constant for all amounts

of missing pixels from 0–80%.

All the results clearly show that providing that a good model is given, the recog-

nition can be very efficient even when only a small portion of pixels is known.
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Figure 4.24: Comparison of standard method and method for recognition from in-

complete images. (a–d) 1 DOF experiment, (e,f) 2 DOF experiment. (a,b) spatially

coherent missing pixels, (c–f) spatially incoherent missing pixels. (a,c,e) recognition

rate, (b,d,f) mean absolute orientation error depending on the percentage of missing

pixels.
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4.7 Chapter summary

In this chapter we presented several algorithms for weighted learning of eigenspaces

and weighted recognition. By modifying the standard algorithm for PCA we derived

the batch algorithm, which considers temporal weights. By modifying EM algorithm

we derived the algorithm, which considers spatial weights as well. We also adapted

the EM algorithm to cope with missing data. Then the incremental algorithm was

adapted for weighted learning. We presented the algorithm for incremental weighted

learning considering temporal and spatial weights, which was afterwards used for

incremental learning from incomplete data. In the next chapter we will show, how

these algorithms can be utilized for the robust subspace learning.



Chapter 5

Robust PCA

5.1 Chapter overview

In the previous chapter we presented several algorithms for weighted learning and

learning from incomplete data. These algorithms assume that the weights are known

in advance. However, in the real world environment, this is often not the case. Im-

ages may contain various outliers (occlusions, reflections, etc.) whose exact position

in an image is not known. Since the standard PCA is intrinsically sensitive to non-

gaussian noise such intrusions may considerably degrade the results of the visual

learning and recognition.

To alleviate this problem several methods for robust recognition have been pro-

posed. They introduce the robustness in the recognition stage and they assume

that the images in the learning stage were ideal and that the visual model is correct.

However, if the training images are taken under non-ideal conditions, the obtained

representations encompass various non-desirable effects, which cannot be overcome

at the recognition stage. This clearly indicates that we need a method for robust

learning in order to obtain parametric representations insensitive to these effects.

More specifically, we need a procedure, which is able to detect inconsistencies in the

input data, eliminate them, and then calculate the representation from the consis-

tent data only.

In this chapter we will present robust algorithms for eigenspace learning, which

are able to detect outliers in training images. These outliers are then treated as

missing pixels and the principal subspace is estimated from inliers only, using one of

the algorithms for learning from incomplete data presented in the previous chapter.

First, we will present two versions of a batch method for robust learning. Since

91
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the initial step of this method is still non-robust, a robust initialization of this

algorithm based on a subsampling approach is then discussed. Then we will present

the robust incremental algorithm. All presented algorithms will be finally evaluated

in a number of experiments.

5.2 Robust batch method

First we will present a one-stage batch method for robust learning of eigenspace

representations. It tries to detect outliers in the training images and estimates the

eigenspace from inliers only. Next, the algorithm is further improved by employing

a two-stage procedure, where first the outlying images are detected, which enables

more reliable detection of the outlying pixels in the second stage.

5.2.1 One-stage method

The basic idea of our robust PCA algorithm is to determine the outliers and treat

them as missing pixels. The principal subspace is then obtained with one of the

algorithms described in the previous chapter. Based on the estimated principal axes

and coefficients we can again determine the outliers and repeat the process. The

crucial question is how to determine the outliers.

If we have some additional knowledge about the object or scene, which is being

modeled, or an algorithm for outlier detection tailored for that particular problem,

we can take advantage of it and use such algorithm for the detection of outliers.

However, if we have no additional knowledge we have to rely solely on the infor-

mation contained in the training images. We can detect outliers by checking the

consistency over the entire image sequence. The pixels, whose reconstruction error

significantly deviates from the distribution of reconstruction errors of all pixels, are

treated as outliers. In other words, the outliers are pixels with large reconstruction

error.

A question is how to set the threshold for determining outliers. We have inves-

tigated two approaches.

The first approach gives a global threshold. Depending on the number of prin-

cipal components we choose to represent the images with, we expect that an aver-

age error per image is equal to the discarded variance, which can be computed as

σ2
img =

∑N
i=k+1 λi. When we divide this number by the number of pixels, we get an



5.2. Robust batch method 93

average expected error per pixel σ2
pix = 1

M

∑N
i=k+1 λi. We treat all those pixels as

outliers whose reconstruction error is larger than σ2
pix multiplied by a factor, which

depends on the expected quantity of outliers in the images. This approach is suitable

for the images with similar visual variability across the whole image.

The second approach estimates a local threshold. De la Torre and Black [23]

have proposed a method for computing a local threshold for each pixel based on

the Median Absolute Deviation (MAD) of a pixel. They compute for each pixel

p: σp = β(1.4826medR(|rp −medR(|rp|)|), σmin) where medR is median taken over a

region R, around pixel p, σmin is the MAD over the whole image, and β is a constant

factor. The initial error rp is calculated using the standard PCA on the whole image

set. This method has the advantage that it takes into account the variability within

an image.

Based on this, our robust PCA approach is outlined in Algorithm 10.

Algorithm 10 : RPCA – robust PCA

Input: data matrix X, number of principal axes to be estimated k.

Output: mean vector µ, eigenvectors U, eigenvalues λ, coefficients A.

1: repeat

2: Perform the standard PCA on X and obtain µ′, U′ ∈ IRM×k′
and A′ ∈ IRk′×N .

3: Reconstruct the training images using µ′, U′ and A′ and calculate the recon-

struction error.

4: Detect outliers using either global or local threshold.

5: Treat outliers as missing pixels and perform PCA using an algorithm for

learning from incomplete data (MPPCA) to obtain µ, U, λ, and A from

inliers only.

6: Reconstruct the training images using µ, U and A and replace missing pixels

in X with reconstructed values.

7: until the change in the outlier set is small.

Usually, only a few iterations (even only a single one) of this algorithm are

sufficient for convergence.

In the initial step of this algorithm a standard PCA is performed on the entire

set of training images. The obtained initial subspace U′ is then used for the detec-

tion of outliers. Since the outlying pixels are not consistent with other pixels they

usually appear as a high-frequency noise in a sequence of training pixels. Thus,

they are modeled predominately with the eigenvectors, which correspond to small
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eigenvalues, while the consistent pixels (signal) are mostly modeled with the first

eigenvectors. For that reason, only the first k′ eigenvectors (k′ < k) are used for the

detection of outliers.

The value of k′ and the threshold for outlier detection depend on the content

and the type of training images and on the amount and the degree of the deviation

of outliers. Most of all, they also depend on the application’s goal and on the user’s

perception what should be considered as an outlier. Therefore, these values are

application dependent and cannot be automatically determined in general.

A drawback of this algorithm is the first step, which still relies on the standard

non-robust PCA. If the training images contain many outliers, they can distort

the principal subspace in such a way that the detection of outliers becomes very

unreliable. One solution to this problem is to divide each iteration of the algorithm

into two stages.

5.2.2 Two-stage method

If the training set consists of a certain number of images, which contain a large

portion of outliers, these images can degrade the obtained initial eigenspace con-

siderably. Therefore, we propose to detect such outlying images and to calculate

the initial eigenspace from other images, which are assumed to be predominately

outlier-free. In this way, the obtained initial eigenspace is less distorted by outliers.

Consequently, the detection of outliers in all images is more reliable.

Now, in each iteration a two-stage procedure is executed, where first the outlying

images and then the outlying pixels are detected, as outlined in Algorithm 11.

Since X′′ mostly consists of training images, which contain not many outliers,

the principal subspace U′′ is more appropriate for the detection of outliers than

the initial principal subspace U′. There is, however, an additional requirement: X′′

has to roughly encompass the same visual variability as X. In other words, if the

training images are sorted in an ordered sequence, X′′ has to enclose images, which

are approximately evenly distributed over the entire sequence of training images

X. For that reason, not only the mean reconstruction error of an individual image,

but also its position and the relationship to the other training images have to be

considered, when the outlying images are detected and discarded in the step 4 of

the proposed two-stage algorithm.



5.2. Robust batch method 95

Algorithm 11 : RPCA2 – two-stage robust PCA

Input: data matrix X, number of principal axes to be estimated k.

Output: mean vector µ, eigenvectors U, eigenvalues λ, coefficients A.

1: repeat

2: Perform the standard PCA on X and obtain µ′, U′ ∈ IRM×k′
and A′ ∈ IRk′×N .

3: Reconstruct the training images using µ′, U′ and A′ and calculate the recon-

struction error.

4: Detect outlying images. Let X′′ be a set of non-outlying images.

5: Perform the standard PCA on X′′ and obtain µ′′, U′′ ∈ IRM×k′
.

6: Project all training images in X using µ′′ and U′′, reconstruct the obtained

coefficients A′′ and calculate the reconstruction error.

7: Detect outlying pixels using either global or local threshold.

8: Treat outliers as missing pixels and perform PCA using an algorithm for

learning from incomplete data (MPPCA) to obtain µ, U, λ, and A from

inliers only.

9: Reconstruct the training images using µ, U and A and replace missing pixels

in X with reconstructed values.

10: until the change in the outlier set is small.

5.2.3 Simple example

Fig. 5.1 illustrates the performance of the one-stage robust algorithm. The training

set consists of 40 1-D vectors, formed from shifted sinus functions (only half of them

are shown). 20% of the elements are contaminated with random noise (Fig. 5.1(a)).

The goal is to find the optimal principal axes for the representation of the original

outlier-free vectors.

Figs. 5.1(b-d) depict the reconstruction after the second step (line 3 of the pro-

posed algorithm) in the first iteration, and the reconstruction at the end of the first,

and at the end of the second iteration. One can observe, how initially very noisy

signals become more and more regular, converging to the ground truth. Therefore,

the algorithm successfully detected outliers in the training signals and correctly

reconstructed their values.
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Figure 5.1: Simple example with noisy signals: (a) input data, (b) reconstruction

after using standard PCA, (c) reconstruction after first iteration, (d) reconstruction

after second iteration of robust algorithm.

5.3 Subsampling-based robust initialization

To further increase the effectiveness of the robust learning algorithm, the initial

eigenspace should be estimated in a more robust way. Subsampling-based ap-

proaches (e.g., RANSAC [28]) are known to be more robust, although they are

often computationally very demanding [23]. They are based on a random sampling

of the input data and on determining subsets, which do not contain many outliers.

These subsets are then used to calculate a solution.

The subsampling approach has been very successfully applied in the method for

robust recognition [40]. In this section we will discuss, how can a similar approach

be used for robust learning as well.
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5.3.1 Subsampling-based robust recognition

Leonardis and Bischof [40] proposed a well known and widely used method for

subsampling-based robust recognition. In the recognition stage, the task is to rec-

ognize a test image using the representation (principal subspace), which is assumed

to be obtained from non-corrupted training images. The recognition is performed

by robust estimation of eigenspace coefficients.

Their method is based on the observation that the coefficients can be estimated

from a small subset of pixels by solving an overdetermined system of linear equations

(4.22). Therefore, if the selected subset does not contain outliers and it is sufficiently

representative, the obtained coefficients are approximately equal to the coefficients,

which would be obtained from the outlier-free image.

Since the positions of outliers in the image are not known, a subsampling ap-

proach is used to exclude the outliers from the computation of coefficients. By ran-

domly subsampling the image, a various subsets of pixels are formed. From these

subsets different hypotheses about the true value of the coefficients are estimated.

Finally, the best hypothesis, which gives the estimated values of the coefficients, is

selected.

More specifically, they randomly choose a subset of pixels x̂• and apply the fol-

lowing robust procedure. First, they calculate the coefficients by solving an overde-

termined system of linear equations (4.22) arising from x̂•. Then, based on the error

distribution of the subset of pixels, they reduce the number of selected pixels by a

predefined factor α (they exclude those points with the largest reconstruction error)

and solve (4.22) again with the reduced set of pixels. They repeat this procedure

until the size of x̂• is reduced to a predefined number of pixels.

After that, they include in the computation of coefficients aj all compatible

pixels. They reconstruct the image ŷ and select all pixels from x̂ where the re-

construction error |ŷi − x̂i| is consistent with the distribution of the reconstruction

errors of the pixels, which remained in x̂• after α-trimming. Then they recalculate

the coefficient vector a using all compatible points to form a hypothesis.

However, one cannot expect that every initial randomly chosen set of pixels will

produce a good hypothesis, despite the robust procedure. Thus, to further increase

the robustness of the hypothesis generation step, i.e., increase the probability of

detecting a correct hypothesis if there is one, they initiate, as in [5, 28], a number

of trials. Then, in the selection step, they choose the best hypothesis, i.e., the

hypothesis with the smallest reconstruction error of compatible points.
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The algorithm for robust recognition, which will be used in the procedure for

incremental robust learning as well, is summarized in Algorithm 12.

Algorithm 12 : robRec – robust recognition

Input: test image x, principal axes U, mean image µ.

Output: coefficient vector a.

1: repeat

2: Randomly choose a subset of pixels x̂• from x− µ.

3: repeat

4: Calculate the coefficient vector from the subset of pixels: a = U•†x̂•.

5: Reconstruct the selected pixels: ŷ• = U•a.

6: Exclude the pixels with the largest reconstruction error from x̂•.

7: until x̂• is reduced to a predefined number of pixels.

8: repeat

9: Reconstruct all pixels ŷ = Ua.

10: Add the compatible pixels to x̂•.

11: Re-calculate the coefficient vector: a = U•†x̂•.

12: until the change in x̂• is small.

13: until the number of hypotheses is sufficient.

14: Select the best hypothesis for a.

Fig. 5.2 shows the execution steps of the proposed algorithm in the case of

a good hypothesis. Figs. 5.2(b-g) depict the pixels (in grey) that were used for

calculating the coefficient vector from the occluded range image shown in Fig. 5.2(a).

As one can observe, in α-trimming phase all the pixels in the occluded region were

eliminated, and later were not included in the set of compatible points. Therefore,

the coefficient vector a was calculated only from “good” pixels which resulted in a

perfect reconstruction (Fig. 5.2(h)).

5.3.2 Main idea for subsampling-based learning

Due to demonstrated performance of the method for robust recognition, we wanted

to introduce the subsampling approach into the process of learning as well. However,

it turned out that such an extension is not straightforward.

There are at least four issues that make subsampling-based learning a much

more difficult task. Firstly, the representation of the object or scene is not given
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Figure 5.2: Robust estimation of coefficients: (a) Occluded image, (b-d) three α-

trimming iterations, (e-g) adding compatible points, (h) reconstructed image.

and has to be learned. Secondly, not only one, but a lot of images (an entire training

set) have to be subsampled. Thirdly, the subsampling cannot be performed in an

arbitrary way. And finally, the representation cannot be directly learned from small

and sparse samples of pixels.

To overcome these difficulties, we do not calculate the principal axes directly.

Instead, we rather use a subsampling scheme to detect outliers and then employ the

modified EM algorithm to robustly estimate the principal axes from inliers.

The main idea is to randomly choose a subset of pixels, perform the standard

PCA on them, and reconstruct pixel values from the estimated coefficients. Then

we repeat this procedure on several different subsets of pixels and obtain several

reconstructions of each pixel. Since each of these reconstructed values is potentially

the true pixel value, we call it a hypothesis. At the end, the best hypothesis is

selected for each pixel and used for the detection of outliers. The procedure is

outlined in Algorithm 13.

This procedure replaces the first step in the first iteration of the robust algorithm

presented in the previous section. It increases the robustness of the initialization of

the algorithm. In the subsequent iterations the standard PCA can be used instead.

The crucial point of this procedure is how to choose a subset of pixels and how

to select the best hypothesis. If these two steps are performed well, this algorithm

can improve the robustness of the basic robust algorithm.
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Algorithm 13 : robIni – subsampling-based robust initialization of RPCA

Input: data matrix X.

Output: detected outliers.

1: repeat

2: Choose a subset of pixels X• from the data matrix X.

3: Perform the standard PCA on the selected subset. Obtain µ• and U•.

4: Reconstruct the selected pixels Y• = U•U•�(X• − µ•11×N•) forming a hy-

pothesis for each selected pixel.

5: until the number of generated hypotheses is sufficient.

6: Select the best hypothesis for each pixel.

7: Detect outliers by comparing input and estimated pixel values.

5.3.3 Random generation of hypotheses

Looking from the statistical point of view, PCA is performed on a set of variables

(pixels in the context of computer vision) measured on a set of statistical units

(images). If we do not want to cope with missing data, all variables should be

measured on all statistical units. Thus, the subsampling cannot be performed in an

arbitrary way by randomly selecting pixels across the entire input data matrix.

We rather generate the hypotheses in the following way. First, we randomly select

a subset of pixel indices and then we randomly select a subset of images. A sample

is formed from all pixels with selected indices on all selected images. These pixels

appear on intersections of the selected rows (pixel indices) and columns (images) in

the data matrix shown in Fig. 5.3. From each sample an eigenspace is built and the

pixels are reconstructed to provide one hypothesis for each selected pixel.

The goal of the hypotheses generation step is to form for each pixel at least one

hypothesis, which is obtained from a “good” subset of pixels. A “good” sample

should contain as few outliers as possible, assuring small reconstruction errors in

selected inliers and yielding the correct reconstructed values in selected outliers as

well. In such a way, a hypothesis, which is very close to the correct value, can also

be generated for an outlier.

5.3.4 Semi-random generation of hypotheses

We can increase the probability that some sample contains predominantly inliers

by generating a large number of hypotheses. Moreover, we can also increase this
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Figure 5.3: Randomly selected pixels in a data matrix.

probability by choosing more reliable pixels, i.e., the pixels, which are very consistent

with the information contained in the rest of the images. Thus, we generate the

hypotheses in the following way. First, we perform the standard PCA on the entire

set of input images. Then we calculate the mean reconstruction errors across images

(columns in the data matrix) and across pixel vectors (rows). We choose the images

and the pixel vectors with the smallest reconstruction errors. By intersecting the

chosen images and pixel vectors, we obtain the set of the most reliable pixels. Later,

we add a subset of randomly chosen pixels to form a sample. Thus, each hypothesis

is obtained from a set consisted of the most reliable pixels and the randomly selected

pixels. We call this procedure semi-random generation of hypotheses.

One can argue that the first step is still the non-robust standard PCA. However,

in this case we are looking only for a small subset of very reliable pixels with the

smallest reconstruction errors, which are probably not affected by the outliers too

much. However, if needed, a more robust technique or measure can be used (e.g.,

MAD (median absolute deviation) [23, 62]).

5.3.5 Selection of hypotheses

In the hypotheses generation step, a cost value is assigned to each generated hypoth-

esis. In the end, in the selection step, a hypothesis with the smallest cost value is

selected for each pixel in the data matrix. A very important issue is the evaluation

of the hypothesis, i.e., how to obtain the cost value, which reflects the difference

between the hypothesis and the correct value of the pixel.
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One would expect that the mean reconstruction error of the selected pixels com-

posing a “good” sample is rather small. Therefore, it could be a good measure

for evaluation of the hypotheses. However, it turns out that not all selected pixels

equally influence the estimation of a hypothesis. Pixels in the same pixel vector (a

row in the data matrix) affect more the reconstructed values of other pixels in the

pixel vector than the reconstructed values in other parts of the data matrix. For

that reason, we calculate the cost value for a hypothesis as the mean reconstruction

error of the selected pixels belonging to the same pixel vector (row) as the pixel,

which the hypothesis is being calculated for. This approach has produced better

results than all other approaches that we have considered.

After the best hypothesis for each pixel is selected, we obtain the reconstructed

image, where the values in inliers as well as in outliers should tend to the correct

values. Therefore, the reconstruction error in outliers is large, which makes their

detection easier. The detected outliers are then regarded as missing pixels; the

principal subspace is estimated from inliers only, using the proposed batch method

for robust learning.

5.4 Robust incremental method

The batch method for robust learning is iterative. At each iteration an approxi-

mation of the final eigenspace is estimated, which makes possible to detect outliers

and refine the estimated subspace throughout the subsequent iterations. However,

at each iteration all the training images are needed for estimating the eigenspace,

therefore all of them have to be given in advance.

Incremental algorithm, on the other hand, processes images sequentially one by

one, thus only one image has to be available at each time instant. However, at

each step a representation of the already learned images is available, which makes

possible to detect outliers in the current image. By assuring that the outliers are

sequentially detected and that the images are added in a robust way we arrive at a

robust incremental learning algorithm.

5.4.1 Algorithm

In the robust framework we are aware that images may contain outliers. We treat as

outliers all pixels, which are not consistent with the information contained in other
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images. Since at each step we have a current model of the object or scene seen so

far, we can detect outliers in the new image and replace them with the values, which

are yielded by the current model.

This is achieved by projecting the new image into the current eigenspace in a

robust manner. Instead of a simple projection, a robust procedure summarized in

Algorithm 12 (robRec) is used. Coefficients are obtained mainly from inliers, thus

their reconstructions tend to the correct values in outliers as well. Consequently,

the reconstruction error in outliers is large, which makes their detection easier.

After the outliers are detected, their values are replaced with the reconstructed

values. Since these values are yielded by predominantly inliers and the current

model, they are good approximations of the correct values. Such an improved

outlier-free image is then used for updating the eigenspace. Since the outliers are de-

tected during the learning process using a robust procedure, the obtained eigenspace

is robust as well.

The overall algorithm for robust incremental learning is presented in Algorithm 14.

A potential danger of error propagation in the method for robust incremental

learning is even more pronounced as in the case of weighted incremental learning.

Not only the recovery of the unreliable pixels, but also their detection can cause

incorrect results, which are then propagated throughout the learning process. If the

outliers are incorporated into the representation, especially in the early stages of

the learning process, then the inliers in subsequent images are recognized as outliers

and are not modeled. Similarly, if the initial eigenspace encompasses only a limited

number of appearances of an object or a scene, then all the pixels in the subsequent

images, which significantly differ from the appearances of the first images, will be

considered as outliers and no novel information will be added to the model.

Therefore, the initial eigenspace, which is obtained by using the batch method,

should be reliable and stable. It should roughly model heterogeneous appearances

of an object or a scene and it should be obtained from a set of pixels containing as

few outliers as possible. Thus, the reliable images from various parts of the image

sequence should be used for initialization. When the model encompasses a sufficient

number of appearances it becomes more stable and this is no longer a problem.

Certainly, the initialization also has to be performed in a robust manner, using a

robust batch algorithm.
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Algorithm 14 : RIPCA – robust incremental PCA

Input: current mean vector µ(n), current eigenvectors U(n), current coefficients

A(n), new input image x.

Output: new mean vector µ(n+1), new eigenvectors U(n+1), new coefficients A(n+1),

new eigenvalues λ(n+1).

1: Estimate the coefficient vector a from the new image x using the robust method

robRec.

2: Reconstruct the obtained coefficient vectors: y = U(n)a+ µ(n).

3: Detect outliers x◦ in x (pixels, where |yi − xi| > threshold).

4: Replace the outliers in x with the reconstructed values: x◦ = y◦.

5: Project the obtained image x into the current eigenspace: a = U(n)�(x−µ(n)) .

6: Reconstruct the new image: y = U(n)a+ µ(n).

7: Compute the residual vector: r = x− y. r is orthogonal to U(n).

8: Append r as a new basis vector: U′ =
[
U(n) r

‖r‖
]

.

9: Determine the coefficients in the new basis: A′ =


 A(n) a

0 ‖r‖


 .

10: Perform PCA on A′. Obtain the mean value µ′′, the eigenvectors U′′, and the

eigenvalues λ′′.

11: Project the coefficient vectors to the new basis: A(n+1) = U′′�(A′−µ′′11×n+1) .

12: Rotate the subspace U′ for U′′: U(n+1) = U′U′′ .

13: Update the mean: µ(n+1) = µ(n) +U′µ′′ .

14: New eigenvalues: λ(n+1) = λ′′ .

5.4.2 Simple 2-D example

To demonstrate the behavior of the robust incremental algorithm, we significantly

changed the values of the second coordinate of five points in our 2-D example.

Fig. 5.4 shows that when the non-robust incremental method is used, these outlying

points pull the origin in a wrong direction and incorrectly orient the estimated prin-

cipal axis. On the other hand, the robust method sequentially detects the outlying

coordinate values, replaces these values with their reconstructions (shown as circles)

and updates the eigenspace accordingly. In the end, the principal axis obtained

using this approach is very close to the optimal one.
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Figure 5.4: Illustration of robust incremental learning.

5.5 Experimental results

In this chapter we presented several algorithms for robust learning of eigenspaces.

In this section we will show the results of the experiments, which were performed

to evaluate the proposed methods.

5.5.1 Batch method

First, we will evaluate the results obtained by applying the batch algorithm to a set

of panoramic images and compare the results of our approach to the ones obtained

by a recently proposed method [23] on their set of input images.

Robust PCA on Panoramic Images

First, we tested the performance of the one-stage batch method on the images with

known ground truth shown in Fig. 5.5. We captured 30 panoramic images of the size

100 × 100 in the faculty hall. Then, we synthetically applied gradual illumination

changes and nonlinear illumination changes (a shadow—the vertical “cloud”) to this

set of images. In addition, we added, as an outlier area, a square on a randomly

chosen position in every image. The goal was to learn the panoramic representation

capturing the illumination variations (linear and nonlinear) but discarding the out-

liers. Since these images are temporally well correlated, we included the smoothness

prior in M-step of the EM algorithm for the calculation of the principal axes from
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incomplete data.

The results are depicted in Fig. 5.5. In the images reconstructed from the first

principal component obtained with the standard PCA, one can clearly observe that

the linear illumination changes are modeled, but not the nonlinear. If the model

consists of the first 8 principal axes produced by the standard PCA, then all il-

lumination changes are captured in the reconstructions, however, the model also

contains the outliers (squares). On the other hand, using our robust algorithm, one

can observe from the reconstructions based on the first 8 principal axes, that all

illumination changes are captured in the model, while the outliers are not, which is

exactly what we want to achieve.

Since the positions of the outliers are known, we can calculate the mean abso-

lute reconstruction error in the outliers (squares) and in the inliers (background).

The reconstruction error in the inliers should be as small as possible, while the re-

construction error in the outliers should be large, enabling the efficient detection of

outliers. Table 5.1 compares the reconstruction errors with the errors obtained using

optimal principal axes, which were estimated from the data without outliers (ground

truth). It is evident that the robust PCA outperforms the standard one since the

errors obtained with the proposed algorithm are much closer to the optimal ones.

Table 5.1: Comparison of the reconstruction errors obtained using the standard and

the robust PCA.

num. rec. error in

data method of PA inliers outliers

ground truth standard PCA 8 1 2805

with outliers standard PCA 1 146 2601

with outliers standard PCA 8 21 540

with outliers robust PCA 8 6 2608

We also applied the proposed method to a sequence of panoramic images, which

were captured at several locations in the laboratory. At each location a sequence

of 180 images of the size 100 × 100 was captured, of which 60 were used in the

learning stage. During the acquisition, we varied the illumination conditions and

people were free to walk around in the laboratory. To enable an efficient and robust

appearance-based localization of a mobile platform, a representation has to be built

which parametrically models the laboratory under different illumination conditions
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(a) (b) (c) (d)

Figure 5.5: Comparison of our method with standard PCA. (a) Input images (every

fifth image from training set). (b) Reconstruction based on first principle axis (PA)

using standard PCA. (c) Reconstruction based on first 8 PA using standard PCA.

(d) Reconstruction based on first 8 PA using robust PCA.

but at the same time excludes randomly moving subjects (objects) in the training

images.

The results for one sequence are shown in Fig. 5.6. Since people appear in most

of the training images, the standard PCA incorporates them in the representation.

Consequently, they appear in the reconstructed images as undesirable “ghost peo-

ple”. In contrast, the images, which were reconstructed based on the output of the

robust PCA, do not contain these effects since the outliers (people) are eliminated
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from the representation during the process. Therefore, these images represent solely

the appearance of the location under different illuminations. Robust representations

obtained at different locations can be combined in an overall appearance-based rep-

resentation of the laboratory, suitable for mobile robot localization and navigation,

or for performing surveillance tasks.

(a) (b) (c)

Figure 5.6: (a) Four panoramic images from sequence. Their reconstructions based

on (b) standard PCA, and (c) robust PCA.

Comparison with the Previous Work

We performed an experiment where we applied our method on the same image

sequence1 of 256 images of size 120 × 160 pixels as De la Torre and Black, who

recently proposed a method for robust learning of appearances based on PCA [23].

Some of the results obtained by our algorithm are presented in Fig. 5.7. By visually

comparing Fig. 5.7 with Fig. 8 in [23], we can conclude that both algorithms produce

1Images were obtained from http://www.salleurl.edu/∼ftorre/papers/rpca2.html.



5.5. Experimental results 109

very similar results. However, as reported in [23], their algorithm takes three hours

on a 900 MHz Pentium III to produce these results, while our algorithm finishes the

task in 19 minutes on a 550 MHz Pentium III.

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 5.7: (a),(e) Original data from [23], (b),(f) standard PCA reconstruction,

(c),(g) our robust PCA reconstruction, (d),(h) outliers obtained by our method.

5.5.2 Subsampling-based initialization

We evaluated the performance of the method for subsampling-based initialization

on the images with known ground truth, similar to the images which were used

for evaluation of the robust method. We enlarged the outlying squares in order

to degrade the results of the robust method, which uses the standard PCA for

initialization. Furthermore, we added a square on a randomly chosen position in

upper half of every second image only (see Fig. 5.9(a)) to investigate how different

strategies of subsampling and selection of hypothesis influence the results. The goal

of the method was to enable the efficient detection of outliers in the initialization

step of the robust learning algorithm.
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We compared the results obtained by the standard PCA (in plots indicated as

std), with the results of the proposed method, where the random sampling (rnd)

and the semi-random sampling (srnd) were used for the generation of hypotheses.

In addition, we generated the results assuming that the determination of the most

reliable images and pixels in the hypotheses generation step was optimal (srndOG).

Finally, we obtained also the optimal results (opt) using the best possible selection

criterion (srndOGS ) (since we knew the ground truth, we could select a hypothesis,

which was the closest to the correct value).

Table 5.2 presents the mean absolute reconstruction errors (MARE) in inliers and

in outliers for all approaches. MARE produced by the proposed approach is smaller

in inliers and slightly bigger in outliers in comparison with the standard method.

This increases the ratio between these two values, making the outlier detection much

easier and more reliable.

MARE std rnd srnd srndOG srndOGS

in inliers 6.9 5.7 3.7 3.6 2.5

in outliers 28.4 29.5 29.0 30.3 31.2

inIL/inOL 4.11 5.16 7.93 8.34 12.62

Table 5.2: MARE obtained using different learning approaches.

Very similar conclusions can be drawn also from the plots in Fig. 5.8. The

proposed method narrows the histogram of reconstruction errors in inliers (see

Fig. 5.8(a)). As a consequence we obtain less false positives during the process

of outlier detection (Fig. 5.8(b)). This is also evident from the example of five im-

ages depicted in Figs. 5.9(b,c). Outliers which were detected correctly, are shown

in white, while false detections are gray. The most descriptive approach for the

evaluation of different methods is depicted in Fig. 5.8(c). It plots a portion of false

positives (FP), which are obtained when the thresholds for detecting outliers are set

to the levels that produce certain portions of false negatives (FN). As we can see,

the proposed approach produces less false positives than the standard approach for

all levels of FN. The same results are given also using more familiar precision/recall

curves in Fig. 5.8(d).

The results show that the proposed method outperforms the non-robust standard

PCA. They also show that the semi-random generation of hypothesis significantly

improves the results of the random generation. We can also see that by improving

the criterion for determining the most reliable images and pixels, the results can
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Figure 5.8: (a) Histogram of reconstruction errors in inliers. (b) Number of FP

and FN for various thresholds. (c) Number of FP for various numbers of FN. (d)

Precision/recall curves.

be further improved. And finally, we can also observe that the optimal results are

even better. Therefore, by using a better selection criterion, the results could be

improved even further.

Since the goal of the proposed algorithm is to robustly initialize the algorithm for

robust eigenspace learning, we also compared the results produced by this algorithm.

Fig. 5.10 plots FP/FN curves obtained by this algorithm using different initializa-

tion approaches. One can observe that the robust learning algorithm significantly

improved the results of the initialization stage (please, note here the different scale

than in Fig. 5.8(c)). Moreover, one can also observe, that the results of the robust

algorithm initialized by the proposed subsampling-based approach are significantly
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better than the results of the robust method initialized by the standard approach.

This was in fact the main goal of the proposed algorithm.

(a)

(b)

(c)

(d)

Figure 5.9: (a) Training images. Outliers obtained using (b) std and (c) srnd meth-

ods. (d) Reconstructed training images after applying robust learning algorithm

initialized using srnd approach.
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Figure 5.10: FP/FN curves obtained using robust learning algorithm.

However, one has to note that this particular image set was very appropriate

for the subsampling-based initialization, since one half of evenly spread images was

outlier-free as well as the bottom half of each image. Therefore, it was relatively
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easy to correctly determine the reliable images and pixels. However, if the outliers

are evenly spread over the whole training images (which is, in fact, not very common

in the real world applications), the improvements obtained by using the proposed

subsampling-based approach often do not justify the application of this method due

to its high computational requirements. Then again, we can reduce this requirement

by processing input data matrix in smaller parts. The outliers can be detected for

every part independently and later merged together. In this way, spatially and

temporally local properties of images can have a stronger influence on the detection

of outliers, which can even improve the results.

5.5.3 Incremental method

We tested the performance of the proposed robust incremental method on the images

with known ground truth as well. In this case we added a square on a randomly

chosen position in 80% of the images (see Fig. 5.11(a)). Thus, each fifth image did

not contain outliers. The goal was, again, to learn the representation capturing the

illumination variations (linear and nonlinear) but discarding the outliers.

We tested several approaches to exhibit some properties of the proposed method.

The results are given using two measures. The first measure is the mean squared

reconstruction error of the reconstructed outlier-free (ground truth) images (Ta-

ble 5.3). Besides MSRE, a precision/recall curve is given for each method in

Fig. 5.12. A P/R curve indicates the utility of a method for outlier detection.

If the learned representation does not include outliers, this ability is high and the

precision and recall values are close to 1. In addition, some reconstructed training

images are visualized in Fig. 5.11(b–e).

First we applied the standard batch method on ground truth images, i.e., training

images without outliers (batchOnGT ), which produced the optimal results. Then

we applied the standard batch method (batchStd) on the training images containing

outliers, which generated poor results, since the standard method is sensitive to

occlusions. Therefore, we applied the robust batch method (batchRob), which pro-

duced better results. However, since a lot of relatively large occlusions were present

in the training images, the results were still not satisfactory.

Then, we tested the proposed robust incremental method. First we applied this

method under the assumption, that the occlusions were known (robIncKnownOL).

Therefore, the algorithm did not have to detect outliers. The results are excellent;

they are very close to the optimal ones. This means that the algorithm for updating
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the eigenspace works fine even if some data in the input images are missing and that

the efficiency of the robust incremental algorithm mainly depends on the ability to

detect outliers.

It turns out that this ability significantly depends on the initial stage of the

learning process. If the seed (the initial eigenspace, which is used for the initial-

ization of the incremental algorithm) is not reliable and is affected by occlusions

(robIncPoorSeed), the results are not very good. If the seed is too small and is built

from the training images, which are not dispersed over the whole image sequence

(robIncNonDispSeed), the results are very poor. To demonstrate this, we built the

seed using a few images from the first half of the image sequence. Consequently,

the first half of the images was reconstructed well, however the images from the

end of the sequence were reconstructed badly. Since not even the rough appearance

of these images was encompassed in the initial eigenspace, all the changes in these

images were considered to be outliers and were not added into the representation.

For this reason, the vertical cloud was not modeled correctly as can be observed in

Fig. 5.11(d).

Finally, we built the seed from the images with the smallest reconstruction er-

rors (images without outliers), which were evenly dispersed over the whole image

sequence (robIncGoodSeed). This approach produced excellent results, which are

rather close to the optimal ones. This indicates that when the eigenspace, which is

being updated, is stable enough, i.e., roughly encompassing different views of objects

or scenes, the outliers in the training images are successfully detected and correctly

reconstructed.

The latter approach is very related to the two-stage robust batch method. In

fact, this method also produces very similar results, which are significantly better

than the results of the one-stage batch method. From this we can deduce that the

initial representation, which is learned in the beginning of the learning process, is

crucial for efficient estimation of outliers and robust learning.

batch robInc

OnGT Std Rob KnownOL PoorSeed NonDispSeed GoodSeed

1.7 61.1 29.8 2.0 21.2 166.0 2.9

Table 5.3: MSRE obtained using different learning methods and seeds.
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(a)

(b)

(c)

(d)

(e)

Figure 5.11: (a) Training images, reconstructions using (b) batchStd, (c) batchRob,

(d) robIncNonDispSeed, and (e) robIncGoodSeed approaches.

Figure 5.12: Precision/recall curves obtained using different learning methods and

seeds.
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5.6 Chapter summary

In this chapter we presented robust algorithms for eigenspace learning. The algo-

rithms iteratively detect outliers in the training images. These outliers are then

treated as missing pixels and the principal subspace is estimated from inliers only,

using one of the algorithms for learning from incomplete data presented in the pre-

vious chapter.

First, we presented two versions of the batch method for robust learning. The

first one is the one-stage method, which detects outliers using the representation

built form all training images. The second version of this method first detects

outlying images and then detects outlying pixels using the representation built from

consistent images only. Since the initial step of this method is still non-robust, the

robust initialization of this algorithm based on a subsampling approach was also

proposed.

Finally we presented the method for robust incremental learning. The method

sequentially updates the representation using the previously acquired knowledge for

determining consistencies and discarding inconsistencies in the input images. The

experimental results show that the performance of the robust learning algorithm de-

pends on the early stages of the learning process. If the initial representation is built

satisfactorily, the inconsistencies in other training images are successfully detected

and the representation is robustly built, encompassing all consistent information in

the training images and discarding outliers.

Like in the previous chapters, several experiments were performed to evaluate

the proposed methods. In the next chapter, we will present the results of additional

experiments, which will give more global comparison of the algorithms presented in

all chapters of this dissertation.



Chapter 6

Performance evaluation

6.1 Chapter overview

Each of the previous three chapters includes a section where the experimental re-

sults, which serve for evaluation of the presented methods, are shown. Namely, in

Section 3.3 the experiments using incremental PCA approach are discussed, in Sec-

tion 4.6 the results of the weighted approaches are shown and in Section 5.5 the

robust methods are evaluated.

In this chapter we will present additional experimental results, which will clarify

some aspects of the proposed methods and give a global view to all algorithms.

Furthermore, we will compare the performance of the methods on various types of

images and determine their usefulness in different scenarios. First, we will illustrate

the performance of the incremental algorithms for building the representations of

faces. Then we will evaluate most of the proposed algorithms on three image domains

with different characteristics. From these experiments we will draw some conclusions

about the applicability of the proposed algorithms.

6.2 Performance of incremental algorithms

First we present the results of the experiments where the incremental PCA was

used for building representations of faces. For the testbed we used the ORL face

database [64] consisting of 400 images (10 images of each of 40 subjects), rescaled to

the size of 32× 32 pixels. The images entered into the learning process sequentially

one by one (one image of each of 40 subjects first, then the second image of each

subject and so on to the tenth image). Six training images are shown in Fig. 6.2(a).

117
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The goal was to represent all 400 images with just 25 images (eigenfaces) using

incremental learning.

First, we present the performance of the non-robust incremental method in com-

parison with the standard batch method. Table 6.1 shows the mean squared recon-

struction errors (MSRE) of the images reconstructed from the coefficients obtained

by projecting the training images into the eigenspaces, which were built using the

batch method (batch) and the proposed incremental method (incX ). The results are

very similar; MSRE obtained using the incremental method is only 1% worse. When

the coefficients, which were obtained and maintained during the learning process,

are reconstructed, the mean squared reconstruction error (incA) is still very similar.

In this case, the degradation of the results is 2%. Figs. 6.2(a-c) show some train-

ing images and their reconstructions using the batch and the incremental (incA)

method. We can hardly notice any difference between both reconstructed images.

The results show that the proposed incremental method is almost as efficient as

the batch method (which is optimal in the sense of MSRE) and are completely in

accordance with the results from Section 3.3.

In the second experiment we put different temporal weights on the training

images. Since people’s faces are changing through time, we would prefer that the

latest images are better represented than the old ones. Such representation would

be more appropriate for face recognition, since new images of faces, which will have

to be recognized, will be more similar to the last training images than to the first

ones. Therefore, we put larger weights on the images at the end of the image

sequence. The results are depicted in Fig. 6.1. For every group of 40 images the

mean squared reconstruction error is presented for non-weighted (incA, incX ) and

weighted (WincA, WincX ) incremental method. We can observe that the MSRE

in the last four groups of images is smaller when the weighted method is used.

This means that these images are better represented and their reconstructions are

more detailed as can be observed on the last two images in Fig. 6.1(d). Although

the overall mean squared reconstruction error of all training images is bigger, the

weighted reconstruction error is smaller, as presented in Table 6.1. This is exactly

what we wanted to achieve.

Then we erased a quarter of each of the last 360 images (Fig. 6.2(e)) to test the

performance of the incremental algorithm which sequentially estimates the values

of missing pixels. We left the first 40 images complete in order to make possible to

learn at least the initial representations from the complete data. First we calculated
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batch incA incX WincA WincX

MSRE 582 594 587 636 602

WSRE 598 597 570 562

Table 6.1: Results of batch PCA, IPCA and WIPCA.
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Figure 6.1: Results of weighted incremental PCA.

the mean image over all non-missing pixels, imputed the missing quarter on each

image with the mean values and performed the standard incremental PCA. Then

we applied the incremental algorithm for learning from incomplete data, which se-

quentially imputed missing pixels using the previously acquired knowledge. This

method reconstructed the missing quarters significantly better, as can be observed

in Figs. 6.2(f,g).

Table 6.2 shows the overall mean squared reconstruction error between the com-

plete original images and the reconstructed images obtained from the coefficients,

which were estimated during the incremental learning. The error obtained using the

method which sequentially estimates missing pixels (robust) is significantly smaller

than when the simple mean-substitution was used (standard).

Finally, we occluded each of the last 360 images with a randomly positioned

square of a random intensity (Fig. 6.2(h)). The standard non-robust incremental

method included also the squares into the representation, so they appear in the

reconstructed images shown in Fig. 6.2(i) as well. On the other hand, the proposed

robust incremental method managed to sequentially detect squares as outliers and

reconstruct their values before the update. Therefore, the squares were not included

into the representation and the reconstructed images (Fig. 6.2(j)) look much more

similar to the optimal reconstructions shown in Fig. 6.2(b). Therefore, the robust
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method significantly outperformed the standard one, as can also be concluded from

the mean squared reconstruction errors presented in Table 6.2.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

Figure 6.2: (a) Training images. Reconstructions using (b) batch PCA, (c) incremen-

tal PCA, (d) weighted IPCA. (e) Training images with missing pixels. Reconstruc-

tions using (f) mean substitution and standard IPCA, (g) IPCA with reconstruction

of missing pixels. (h) Occluded training images. Reconstructions using (i) standard

IPCA, (j) robust IPCA.
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standard robust optimal

missing pixels 760 644 594

occlusions 915 710 594

Table 6.2: Results of standard and robust IPCA.

6.3 Evaluation of all algorithms

In this section we will evaluate the performance of most of the proposed algorithms

on three different image domains (objects, faces, and background). We will investi-

gate how the type and the order of input images influence the results.

6.3.1 Image domains

We tested how the algorithms are suitable for modeling objects (in tables and plots

referred to as ”obj”) by building the representations of all twenty objects from

COIL20 database. The training set consisted of 36 images of each object; 720

images of the size 32×32 pixels altogether. When the learning was performed in

the incremental manner, the training images were input into the algorithms in two

different ways. First, the input order was sequential (seq); all the images of the first

object were first processed, then all the images of the second object and so on. The

beginning of the image sequence is shown in Fig. 6.3(a). Then, the input order was

alternate (alt); the first image of each object was first processed, then the second

image of each object and so on (see Fig. 6.3(b)).

We performed similar experiments on the images of faces as well (face). For the

testbed we used the images from ORL face database, which contains 400 images.

Since we wanted to perform all experiments on the same (possibly high) number of

images, we made an assumption that faces are symmetric and doubled the number

of available images by flipping all the images over the vertical bisector. Then, we

took 18 images of each of 40 subjects to form a training set of 720 images resized to

the size of 32×32 pixels. The beginning of the training sequences in the sequential

and the alternate order are shown in Fig. 6.3(c) and (d), respectively.

Finally, we tested how the algorithms are suited for background modeling (bckg).

The sequence of 720 images of the size 32×32 pixels with gradually increasing global

brightness and non-linear vertical shadow moving across the images was used. The
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training images were generated in the sequential and alternate order in this case as

well. Some of them are shown in Figs. 6.3(e,f).

(a)

(b)

(c)

(d)

(e)

(f)

Figure 6.3: First nine images from training sequences: (a,b) objects from COIL

database, (c,d) faces from ORL database, (e,f) synthetically illuminated background;

(a,c,e) sequential order, (b,d,f) alternate order.

We have chosen these three image domains (objects, faces, and background)

because of their characteristic properties. The objects are very different in shape

and texture. Even different views of an individual object may vary significantly as

well. Therefore, the value of each pixel may considerably vary through the image

sequence. Thus, the training images are not very temporally correlated. On the

other hand, faces of different subjects do not differ so radically, nor the images of

an individual subject captured in slightly different poses. Thus, these images are

more temporally correlated. Even greater temporal coherence can be observed in the

sequence of the images for the background modeling, where the static background is

completely temporally correlated and only the illumination changes through time.

The second interesting property of these three types of images is how gradual the

changes in the appearance through the image sequence are, i.e., how similar adjacent
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images are. In the case of images for the background modeling, the illumination

changes gradually, thus the adjacent images are very similar. Also in the case of

objects, the changes in appearance of an object are fairly gradual, since the adjacent

images were captured from nearby views. These changes are the least gradual in

the training sequence for modeling faces, because the individual images of a subject

were not captured in a controlled progression of poses. The properties of all three

types of images are summarized in Table 6.3.

objects faces background

temporal correlation low high very high

graduality of changes high low very high

Table 6.3: The main characteristics of three types of images.

To test the weighted and the robust algorithms we then added a square of a

random intensity on a randomly chosen position on each image, except on the images

which appear between the first 40 images in the sequential or in the alternate order.

Thus, approximately 10% of images remained non-occluded. Some occluded training

images from all three image domains are shown in Fig 6.4.

Figure 6.4: Some occluded training images.

6.3.2 Evaluated algorithms

We performed several experiments on all six different input image sequences: the

objects in the sequential (obj seq) and the alternate (obj alt) order, the faces in the

sequential (face seq) and the alternate (face alt) order and the background images

in the sequential (bckg seq) and the alternate (bckg alt) order.

First, the original images without outliers were processed using the standard

batch algorithm (GT batch) and the proposed incremental algorithm by discarding

(GT incA) and preserving (GT incX ) the training images.

In all subsequent experiments, the occluded training images were processed.

The goal was to build representations, which do not include occluding squares. For
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comparison, first the standard non-robust batch (nr batch) and incremental (nr incA

and nr incX ) methods were applied.

Then, we assumed that the positions of outliers were known and that their

deviations from the correct values were approximately known as well. Thus, we

applied the algorithms for the batch and the incremental weighted learning. Each

algorithm was applied two times using two sets of weights. If we denote the value of a

pixel in an original image with x and x̃ denotes the value of the corresponding pixel

in the occluded image, then the corresponding weight was set to w1 = 255−|x−x̃|
255

in the first case and to w2 = 1
|x−x̃|+1

in the second case. Thus, in the first case

(W1 batch, W1 incA, and W1 incX ) the influence of the outlying values was still

rather large (proportional to the minus absolute deviation of the pixel values), while

in the second case (W2 batch, W2 incA, and W2 incX ) the weights were inversely

proportioned to the absolute deviation of the pixel values meaning that the influence

of the outlying values was significantly reduced.

Next, the outliers were considered as missing pixels. First, an ad-hoc mean sub-

stitution was performed by substituting each missing value with the mean value of

all corresponding non-missing pixels. The filled training images were then processed

using the standard batch (ms batch) and incremental (ms incA and ms incX ) meth-

ods. Then the proposed methods for learning from incomplete data were applied:

the EM algorithm with temporal smoothing (MP EMts), the batch algorithm with

iterative reconstruction of missing pixels (MP itRec) and the incremental algorithm

for learning from incomplete data (MP incA and MP incX ).

Finally, we processed the occluded images with the proposed robust algorithms,

which were supposed to detect outliers by themselves. We only indicated the per-

centage of outliers in each image to enable a fair comparison between the robust al-

gorithms. The one-stage (Rob batch1 ) and two-stage (Rob batch2 ) batch algorithms

as well as the proposed robust incremental algorithm (Rob incA and Rob incX ) were

evaluated.

6.3.3 Evaluation results

In all cases the goal was to build a subspace, which encompassed at least 70% of

the energy. To achieve this, we retained 11 principal axes for modeling objects,

18 principal axes for modeling faces and 2 principal axes for modeling background.

The methods were evaluated with the mean squared reconstruction error, which

was calculated by comparing the reconstructed images with the original outlier-free
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training images.

The errors are presented in Table 6.4. Due to different characteristics of the

training images, the reconstruction errors of three different types of images differ

significantly. To make the evaluation of the performance clearer, we compare all

results with the optimal results, which were obtained using the batch method on

the original non-occluded images (GT batch). The percentage of the degradation of

the results for each learning approach is presented in Table 6.5.

From these results we will draw some important conclusions about the properties

of the proposed methods. To make the explanations clearer we will additionally

visualize the results in plots in Fig. 6.6 and Fig. 6.7.

Fig. 6.6(a) depicts the degradation of the results of the incremental method in

comparison with the standard batch method. The results for all three types of images

and both image orders are shown. As we already established in Section 3.3, better

results are obtained when the training images are kept until the end of the learning

process (incX ) than when the obtained coefficients are maintained throughout the

learning process and the training images are discarded (incA). We also know from

previous experiments that the image order plays a significant role. The degradation

of the results is larger when the images entered in the incremental learning process

in the sequential order. This is the most noticeable in the case of the background

modeling, it is less apparent in the case of the object modeling, while the image

order influences the results of the modeling of faces the least. This is, as one could

expect, completely in accordance with the degree to which changes in the appearance

through the image sequence are gradual. We can again observe that the incremental

method does not degrade the results a lot. Except in the case when the background

was modeled using sequentially ordered input images (which is really an extreme

case), all the degradation of the results are fairly below 10%.

When the representations were built from the occluded images, the reconstruc-

tion error increased significantly. This can be observed in Fig. 6.6(b), which depicts

the reconstruction errors obtained using representations built from the original and

the occluded images. The occluded squares were included in the representation,

therefore they appear in the reconstructed images as well (see, e.g., Fig. 6.2(i)).

The deviation from the optimal reconstruction is thus rather large.

By using the algorithms for weighted learning, we significantly improved the

results. Fig. 6.6(c) compares reconstruction errors obtained by using the standard

batch method and the weighted method considering two sets of weights. Since
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additional knowledge was presented to the system, the weighted algorithm produced

smaller reconstruction errors. The reconstruction error was considerably smaller

when the weights of outliers were set to very small values (W2 ), thus diminishing

the influence of the outlying values. Very similar results can be observed in the case

of the incremental weighted algorithm as well (see Fig. 6.6(d)). Better results were

obtained when the blending step of the weighted incremental algorithm relied more

on the values yielded by the model than on the outlying values.

It is evident from Figs. 6.6(e,f) that the image order influences the results also

in the case of weighted incremental algorithm and that this influence is larger when

the outliers are significantly down-weighted (W2 ). In this case, the new values

in the outliers are mainly estimated from the values yielded by the model. If the

model roughly encompasses various appearances in the beginning already, it is more

capable to reconstruct the values in outliers correctly.

At this point we have to recall that the first 40 images were not occluded. In this

way, the incremental methods were able to build at the beginning of the learning

process a reliable representation, which was subsequently used for improving the

values in outliers. If the initial images were occluded as well, then the incremental

methods would not be able to successfully reconstruct the outliers, since no previous

reliable knowledge would be available. For that reason, the results would not be as

good as in these experiments.

Fig. 6.7(a) depicts the results of the experiments, which considered outlying

squares as missing pixels. The results are similar to the results of the weighted

methods. Since the positions of outliers were known, they were mainly successfully

reconstructed, and excellent representations were built. However, the role of the

image order was still very important. In this case it influenced the results of the batch

algorithm as well. Since the batch algorithm MP EMts assumes the smoothness

prior, i.e., it assumes that adjacent images are similar, significantly worse results

were obtained when the input images were aligned in an alternate order, which

broke the smoothness assumption. This effect can be observed in Fig. 6.7(b). The

effect of the image order on the efficiency of the incremental algorithms is opposite.

For the same reasons as in the case of the weighted incremental method, significantly

better results were obtained when the images entered into the learning process in

the alternate order (see Fig. 6.7(c)).

Finally, we analyze the results of the robust method. The results considerably

depend on the properties of input images. The robust modeling of objects was
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unsuccessful. As depicted in Fig. 6.7(d), the robust algorithms did not improve the

results of the non-robust method. The main reason is that the images of the objects

are not temporally correlated to the extent, which would enable the reliable detection

of outliers. Outliers were detected by checking the consistency of individual pixels

through the image sequence. Since the training images were not highly correlated,

not only the outliers were non-consistent but also some other pixels in each individual

image, which significantly differed from the values of the corresponding pixels in

other images, i.e., the pixels on the contour of a rotating object (see Fig. 6.5).

Such pixels were considered as outliers and their values were reconstructed from the

current model, meaning that no novel information was encoded in the representation.

For that reason, the object was not correctly modeled and the reconstruction error

was large.

(a) (b) (c)

Figure 6.5: (a) Occluded input image, (b) reconstruction error, (c) detected outliers.

Better results were achieved when the robust algorithms were used for building

representations of faces (Fig. 6.7(e)). Since face images are more temporally co-

herent, a significant amount of outliers was successfully detected and not included

in the representation. Thus, the reconstructed images mainly did not contain the

outlying squares (see, e.g., Fig. 6.2(j)) and the reconstruction error was reduced.

The improvement of the results was even more noticeable in the case of the

background modeling. These images are very temporally coherent, therefore the de-

tection of outliers was very reliable and the results were excellent, as can be observed

in Fig. 6.7(f). The algorithms indeed succeeded to build a model of the background

with varying illumination and without outlying squares. However, also in this case

the image order proved to be crucial. As it was already shown in Section 5.5, the

results of modeling background with the incremental robust learning algorithm are

very poor if the initial eigenspaces do not encompass sufficient variability of back-

ground appearances. This condition was perfectly fulfilled when the input images

entered into the learning process in the alternate order, which resulted in a rather

small reconstruction error.
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objects faces background

seq alt seq alt seq alt

batch 1302.5 1302.5 443.5 443.5 69.7 69.7

GT incA 1421.0 1369.4 470.0 457.8 104.0 73.4

incX 1364.8 1326.2 453.5 450.6 89.4 71.1

batch 2099.3 2099.3 1075.6 1075.6 507.0 507.0

nr incA 2176.5 2092.5 1077.5 1068.3 557.8 506.9

incX 2139.2 2091.9 1071.9 1072.7 517.2 505.8

batch 1669.8 1669.8 908.5 908.5 133.8 133.8

W1 incA 1731.9 1644.5 835.2 821.7 245.5 119.0

incX 1713.6 1635.5 866.9 866.7 220.0 119.2

batch 1370.0 1370.0 461.4 461.4 70.2 70.2

W2 incA 1488.9 1438.5 483.6 470.5 106.5 70.7

incX 1437.9 1397.3 468.5 464.0 94.8 70.5

batch 1512.2 1512.2 509.3 509.3 90.1 90.1

ms incA 1633.9 1577.1 532.1 520.6 120.7 93.7

incX 1582.4 1540.5 519.2 514.9 106.7 91.5

EMts 1396.7 1800.9 509.7 620.6 70.2 106.5

MP itRec 1374.6 1374.6 457.4 457.4 70.1 70.1

incA 1499.4 1445.8 485.2 471.8 106.7 70.7

incX 1449.5 1406.2 469.9 465.2 95.2 70.5

batch1 2260.6 2260.6 769.6 769.6 122.1 122.1

Rob batch2 2330.4 2330.4 1124.4 1124.4 114.5 114.5

incA 2285.5 2127.2 683.6 677.4 6456.7 103.5

incX 2345.9 2186.0 825.1 830.3 2588.9 100.5

Table 6.4: Mean squared reconstruction errors obtained by modeling three types of

training images (objects (obj ), faces (face) and background (bckg)) given in two dif-

ferent orders (sequential (seq) and alternate (alt)) using various learning approaches:

learning from original non-occluded images (GT ), learning from occluded images us-

ing the standard non-robust approach (nr), learning considering known weights (W1

and W2 ), learning by treating outliers as missing pixels and using the simple mean

substitution (ms) technique and using the proposed algorithms for learning from

incomplete data (MP), and learning using proposed robust methods (Rob).
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objects faces background

seq alt seq alt seq alt

batch 0.00 0.00 0.00 0.00 0.00 0.00

GT incA 9.10 5.13 5.98 3.22 49.32 5.31

incX 4.78 1.82 2.26 1.59 28.28 2.01

batch 61.17 61.17 142.52 142.52 627.70 627.70

nr incA 67.10 60.65 142.95 140.87 700.60 627.56

incX 64.24 60.60 141.68 141.85 642.37 625.91

batch 28.20 28.20 104.84 104.84 92.01 92.01

W1 incA 32.96 26.25 88.32 85.26 252.41 70.84

incX 31.56 25.56 95.46 95.42 215.72 71.05

batch 5.18 5.18 4.02 4.02 0.77 0.77

W2 incA 14.31 10.44 9.03 6.08 52.86 1.50

incX 10.39 7.28 5.63 4.61 36.09 1.14

batch 16.10 16.10 14.83 14.83 29.32 29.32

ms incA 25.44 21.08 19.98 17.39 73.23 34.42

incX 21.49 18.27 17.06 16.08 53.07 31.34

EMts 7.23 38.26 14.92 39.93 0.77 52.78

MP itRec 5.53 5.53 3.12 3.12 0.54 0.54

incA 15.11 11.00 9.38 6.37 53.15 1.49

incX 11.29 7.96 5.94 4.89 36.57 1.13

batch1 78.91 78.91 153.50 153.50 64.33 64.33

Rob batch2 73.56 73.56 73.52 73.52 75.31 75.31

incA 75.47 63.31 54.12 52.72 9166.98 48.50

incX 80.10 67.83 86.02 87.21 3615.65 44.26

Table 6.5: Degradation of results (in %) of modeling three types of training images

(objects (obj ), faces (face) and background (bckg)) given in two different orders

(sequential (seq) and alternate (alt)) using various learning approaches: learning

from original non-occluded images (GT ), learning from occluded images using the

standard non-robust approach (nr), learning considering known weights (W1 and

W2 ), learning by treating outliers as missing pixels and using the simple mean

substitution (ms) technique and using the proposed algorithms for learning from

incomplete data (MP), and learning using proposed robust methods (Rob).
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Figure 6.6: Evaluation of incremental and weighted methods. (a) Influence of the

image order on the results of the incremental method. (b) Degradation of the results

when outliers are added. Improvements of the results using weighted (c) batch and

(d) incremental methods. (e,f) Influence of the image order on the results of the

weighted incremental method.
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Figure 6.7: Evaluation of the methods for learning from incomplete data and ro-

bust methods. (a) Comparison of several algorithms, which consider missing pixels.

Influence of the image order on the results of (b) the method MP EMts and (c)

the incremental MP method. Comparison of robust algorithms on different image

domains: (d) objects, (e) faces, and (f) background.
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6.3.4 Conclusions

Several conclusions can be drawn from the results of the performance evaluation.

First of all, in all experiments the image order proved to be important to achieve

good results with incremental methods. This was evident for all incremental algo-

rithms, however this was more pronounced when the weighted incremental algorithm

was used, and even more in the case of the robust incremental algorithm. In these

experiments the alternate image order was rather optimal to assure diverse images

at the beginning of the training sequence. In practice, such ideal situations are less

likely to occur, but they are usually not necessary. Nevertheless, to enable efficient

incremental learning, especially by using the robust approach, one has to assure

that the visual variability of the entire image sequence is encompassed in the initial

images already at least at a very coarse level.

From the results we can also conclude that the proposed incremental and weighted

approaches as well as the algorithms for learning from incomplete data perform very

well. In the robust framework this means that the algorithms are capable to cor-

rectly reconstruct outlying values given that their positions in images are known. If

the positions of outliers are not known, they have to be detected using the robust

algorithms. When the input images are not highly correlated, as in the case of im-

ages of several objects, the input sequence does not contain enough information for

the reliable detection of outliers using the reconstruction error only. For that reason

the robust learning algorithm does not perform well. In such cases an alternative

algorithm for outlier detection should be used or an additional knowledge about

outliers obtained from higher-level processes should be utilized to detect outliers

more reliably. The results could also be improved by enhancing the redundancy in

the data by increasing the number of input images or by splitting the training image

set to several temporally more coherent sequences. Once the outliers are detected

more reliably, the results would improve significantly.

Such alternative measures are not necessarily required for the robust modeling of

temporally more coherent image sequences, such as faces or background images. In

these cases the outliers can be detected by considering reconstruction error, which

suffice to achieve a good performance of the robust algorithms.

The main conclusions about the performance of the proposed algorithms with

regard to different image domains are summarized in Table 6.6.
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objects faces background

significance of image order high low very high

performance of incremental method very high very high very high

performance of weighted methods high high very high

performance of robust methods very low high very high

Table 6.6: Characteristic results on three types of images.

6.4 Chapter summary

In this chapter we presented some additional experimental results, which give a

global view to all algorithms. First, we illustrated the performance of the incremental

algorithms for building the representations of faces. Then we evaluated most of the

proposed algorithms on three image domains with different characteristics. We

analyzed the influence of the image order on the results as well as the influence of

different properties of input images. From the experimental results we drew some

conclusions about applicability of the proposed algorithms.
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Chapter 7

Summary and conclusions

7.1 Dissertation summary

The appearance-based approach to visual learning and recognition has been an active

area of research in the recent years. Using this approach, objects are modeled as a

set of views captured during a systematic observation of each object. Recognition

is then performed by directly matching an unknown image with the stored training

images.

This approach of direct matching would be prohibitive (computationally and in

terms of space) unless the views were compressed in a compact representation and

the matching was performed in an efficient way. The most common approach is to

compress the set of views in an eigenspace representation built from all images of

objects using principal component analysis. Recognition of an unknown object is

then performed by projecting its image into the eigenspace and finding the nearest

projected training image.

The main advantage of the appearance-based approach is that it does not require

3-D reconstruction of objects. It uses raw image data directly without any extrac-

tion of geometric features. Learning and recognition can thus be performed by using

simple and well known methods from linear algebra. For that reason several suc-

cessful applications have been developed ranging from object and face recognition

to background modeling.

However, this simplicity poses several limitations, such as the combinatorial ex-

plosion of the number of required training images, poor across-class generalization,

shift and scale sensitivity and non-robustness to non-gaussian noise. In this dis-

sertation we focused on the specific problems regarding incremental, weighted and

135
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robust learning.

The standard PCA approach is usually performed in a batch mode, i.e., all train-

ing images are processed simultaneously, which means that all of them have to be

given in advance. In this dissertation we proposed a method for incremental learning,

which processes images sequentially one by one and updates the principal subspace

accordingly. Although several methods for incremental learning have already been

proposed, our approach is the most suitable for the extension to a weighted and

robust method.

The next shortcoming of the standard PCA approach is that it treats all pixels

of an image equally. Also, all training images have equal influence on the estimation

of principal axes. This is not well suited for applications where some images or some

parts of images should be considered more or less important than other. In this dis-

sertation, we presented a generalized PCA approach, which estimates principal axes

and principal components considering weighted pixels and images, enabling selec-

tive influence of training images as well as pixels in individual images to the process

of learning. We considered also the special case of the weighted learning, where

some pixels are totally unreliable and proposed batch and incremental methods for

learning from incomplete data.

And finally, we put the learning algorithms into a robust framework. Since the

images of objects and scenes are not always ideal and as such they may contain

noise or occlusions, a robust approach is required. Although many methods for

robust recognition have already been proposed, robust learning has been tackled

very rarely. Thus, we proposed the robust methods for eigenspace learning, which

detect outliers and estimate the principal subspace from the consistent data only.

All the proposed methods were experimentally evaluated. The experimental

results were used in the discussion about properties of the proposed methods and

their applicability in different scenarios.

7.2 Contributions of dissertation

The main goal of this dissertation was to develop methods, which would strengthen

the subspace approach to visual learning and recognition under non-ideal conditions.

The emphasis was on the incremental, weighted, and robust learning of eigenspaces.

We studied related problems and theoretically derived suitable methods, which tend

to overcome the drawbacks of the standard PCA approach.
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We proposed a novel incremental approach, which enables continuous learn-

ing. We also presented a generalized weighted PCA approach, which considers

individual images and pixels selectively. We also developed a robust approach,

which aims to build consistent representations even in non-ideal training conditions.

Finally, we embedded weighted and robust methods in the incremental framework

to enable the weighted and robust learning in an evolving environment as well.

For all these approaches we developed appropriate algorithms. To summarize

the contributions of the dissertation, we list the proposed algorithms and highlight

their main characteristics:

• We proposed an algorithm for incremental learning. It maintains low-

dimensional representations of the previously learned images throughout the

entire learning stage, meaning that each training image can be discarded im-

mediately after the update. Furthermore, it is able to treat different images

differently, which enables to advance it into a weighted incremental method.

• We presented two algorithms for batch weighted learning. The first one

considers only temporal weights and is based on the weighted covariance ma-

trix, while the other, a modified EM algorithm, considers general weights. The

latter algorithm was then adapted for batch learning from incomplete

data. Two algorithms were proposed; one algorithm constrains the recon-

structed values in missing pixels considering a smoothness prior, the other is

based on iterative reconstruction of missing pixels.

• The incremental algorithm was also extended into the algorithm for incre-

mental weighted learning, which considers arbitrary temporal and spatial

weights. A reduced version of this algorithm adapted for incremental learn-

ing from incomplete data was also presented.

• Next, we proposed the algorithm for batch robust learning, which itera-

tively detects outliers in training images, reconstructs their values and esti-

mates the robust principal subspace. Since the initial step of this algorithm

is still non-robust, a robust subsampling-based initialization was also

proposed.

• And finally, the robust approach was augmented in the incremental method,

resulting in an algorithm for robust incremental learning. It sequentially
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updates the representation using the previously acquired knowledge for deter-

mining consistencies and discarding inconsistencies in the input images.

We experimentally evaluated all the proposed algorithms on three image do-

mains with different characteristics and determined the applicability of the methods

in different scenarios.

7.3 Future work

In this dissertation we proposed several algorithms, which overcome some deficiencies

of the standard eigenspace approach to the appearance-based modeling. However,

many open problems still remain to be solved. In this very final section of the

dissertation, we will identify some of these open problems and try to give directions

for their solutions.

The proposed robust methods, especially the incremental version, do not prove

effective when training images are not highly temporally correlated. In such cases

the outlier detection is less reliable since it is very difficult to differentiate between

the inconsistencies in the new images, which are result of the object rotation and the

inconsistencies due to occlusions or other outliers. One way to alleviate this problem

is to treat outliers, which are detected on the boundary of the object, differently,

since it is very likely, that those pixels are inconsistent with the previous pixel values

due to rotation of the object and are not outliers.

We can approach this problem also by increasing the number of training images

by, for example, processing a video sequence. In this case, the appearance changes

very smoothly, the redundancy in the data is larger, the images are more temporally

correlated and the detection of outliers is more reliable. By using the incremental

algorithm for eigenspace learning such an approach is feasible in terms of space as

well as in terms of computational requirements.

Outliers are detected by checking the consistencies over a sequence of images,

thus analyzing the correlation through the time. However, one could also check

consistency in other directions of a spatio-temporal volume. This is especially suit-

able when the correlation across rows or columns of the training images is large.

Furthermore, the consistency could also be checked using smaller spatio-temporal

sub-volumes to explore local properties of the data. Such approach would make the

detection of outliers more robust and reliable.
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The temporal correlation can also be increased by registering training images.

In the case of face recognition, the registration can easily be accomplished, since all

training and test images are registered to the same template [9]. It is not obvious,

however, how this registration can be performed in the case of recognition of general

objects. Nevertheless, to bound the number of required training images and to

improve the results of the robust algorithm, a kind of registration, at least at a very

coarse level, should be performed.

In this dissertation PCA approach was always used for processing grey level im-

ages. It can be used, however, for processing images of other modalities as well.

Moreover, it can be applied to any set of vectors that are temporally correlated.

Instead of images, feature vectors obtained using various methods for feature ex-

traction, can be used. All the algorithms, which were developed in this dissertation,

can be applied on such data domains as well. In this way, a pure holistic view-based

approach can be extended by exploiting local geometric features and structural infor-

mation. In fact, current research trends have been taking this approach, which has

a potential to overcome many drawbacks of view-based methods enabling efficient

visual learning and recognition.
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Appendix A

Notation

In this dissertation we use the following notation:

• Scalars are denoted with the italic typeface (e.g., M , i).

• Vectors are denoted with small letters in the bold typeface (e.g., a).

• Matrices are denoted with capital letters in the bold typeface (e.g., A).

• The elements of a vector a are denoted as ai, thus a = [a1, a2, . . . , aN ]� .

• The elements of a matrix A are denoted as aij, thus

A =




a11 a12 . . . a1N

a21 a22 . . . a2N

...
...

...

aM1 aM2 . . . aMN



.

• The columns of a matrix A are denoted as vectors ai, thus

A = [a1, a2, . . . , aN ] .

• The rows of a matrix A are denoted as row vectors ai:, thus

A =




a1:

a2:

...

aM :



.

• 1M×N denotes a matrix of the dimension M ×N , where every element equals

1.
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In the situations where the value of a variable is time dependent, the superscript

denotes the time instant (step) which the value is related to. E.g., A(n) denotes the

values of A at the step n.

The following list enumerates some frequently used variables and their typical di-

mensions:

• M – number of pixels in image

• N – number of training images

• k – dimension of eigenspace

• x ∈ IRM – image

• X ∈ IRM×N – input data matrix (training images)

• µ ∈ IRM – mean image

• X̂ ∈ IRM×N – mean centered input data matrix

• U ∈ IRM×k – matrix of principal vectors

• A ∈ IRk×N – matrix of coefficient vectors

• Y ∈ IRM×N – matrix of reconstructed training images

• λ ∈ IRN – vector containing eigenvalues

• Λ ∈ IRN×N – diagonal matrix containing eigenvalues on diagonal

• C – covariance matrix

• C′ – inner product matrix

• W ∈ IRM×N – weight matrix

• tw ∈ IR1×N – temporal weights

• sw ∈ IRM – spatial weights

A special notation for dealing with missing pixels:

• I•
j – set of indices of non-missing pixels in j-th image

• I◦
j – set of indices of missing pixels in j-th image
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• I•
i: – set of indices of non-missing pixels in i-th row of data matrix X

• I◦
i: – set of indices of missing pixels in i-th row of data matrix X

• x̂•
j ∈ IRM•

– subvector of non-missing pixels in image x̂j

• U• ∈ IRM•×N – rows of U, which correspond to x̂•
j

• x̂◦
j ∈ IRM◦

– subvector of missing pixels in image x̂j

• U◦ ∈ IRM◦×N – rows of U, which correspond to x̂◦
j

• x̂•
i: ∈ IR1×N•

– row subvector of non-missing pixels in row vector x̂i:

• A• ∈ IRk×N•
– columns of A, which correspond to x̂•

i:

• x̂◦
i: ∈ IR1×N◦

– row subvector of missing pixels in row vector x̂i:

• A◦ ∈ IRk×N◦
– columns of A, which correspond to x̂◦

i:

Some non-standard operators:

• 〈a,b〉 – dot product between two vectors of equal dimension

• A† – pseudoinverse

• .
√
A – point wise square root (calculates the square root of each element of

the matrix)

• A◦B – point wise (Hadamard) product between two matrices of equal dimen-

sion

The following expressions are mainly used as synonyms:

• principal subspace = eigenspace

• principal axes = principal vectors = principal directions = eigenvectors

• principal components = coefficients

• vector of principal components = coefficient vector = projection
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Appendix B

Related topics from linear algebra

B.1 Solving system of linear equations and pseu-

doinverse

In this appendix we will show the relation between the solution of an overdetermined

system of linear equations and the pseudoinverse [26].

Let us suppose that we want to solve the following system of M equations with

N unknowns:

N∑
j=1

ajxij = bi ; i = 1 . . .M , (B.1)

where xij and bi are known and aj unknown variables. This problem can be con-

veniently rewritten in the matrix notation. We are looking for a vector a that

minimizes the sum of the squared errors

E = ‖Xa− b‖2 =
M∑
i=1

(xi:a− bi)
2 . (B.2)

By setting the gradient of the error to zero

∇E =
M∑
i=1

2(xi:a− bi)xi: = 2X�(Xa− b) = 0 (B.3)

we obtain the following equation:

X�Xa = X�b . (B.4)

X�X is a square matrix and if it is nonsingular, we can solve for a uniquely as

a = (X�X)−1X�b = X†b . (B.5)

145



146 B. Related topics from linear algebra

Here, the N ×M matrix

X† = (X�X)−1X� (B.6)

is called the pseudoinverse of X.

Therefore, an overdetermined system of linear equations (B.1) can be solved in

the least squares sense using the pseudoinverse (B.6).

B.2 Eigenvalue decomposition and singular value

decomposition

In many places in this dissertation we perform eigenvalue decomposition (EVD) of

a matrix. Here, we will show that for symmetric real matrices eigenvalue decompo-

sition is equivalent to singular value decomposition (SVD) [58, 46].

Let us assume that A ∈ IRM×M is a square matrix. If for some vector e and a

scalar λ holds that

Ae = λe , (B.7)

then e is called the eigenvector and λ is the eigenvalue of A. Let E = [e1, . . . , eM ]

be composed from all M eigenvectors of A and let Λ be a diagonal matrix with the

corresponding eigenvalues λi, i = 1 . . .M on the diagonal. Then it holds that

AE = EΛ . (B.8)

If E is invertible we can rewrite (B.8) as

A = EΛE−1 . (B.9)

The diagonalization in (B.9) is known as eigenvalue decomposition of A.

In this regard, symmetric real matrices have some very nice properties:

• Any two eigenvectors belonging to different eigenvalues are orthogonal.

• All eigenvalues are real.

• Every symmetric matrix can be diagonalized according to (B.9).

• If a real symmetric matrix is of the form BB�, all its eigenvalues are nonneg-

ative.
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The other very useful and common matrix decomposition is singular value de-

composition. SVD decomposes a matrix A in the following way:

A = UDV� , (B.10)

where U and V are orthonormal matrices and D is a diagonal matrix. If A is

symmetric, thus A� = A, we can rewrite (B.10) as

A = UDU� . (B.11)

Since U is orthonormal, U�U = I, thus U� = U−1. Therefore, we can rewrite

(B.11) as

A = UDU−1 , (B.12)

which is equivalent to (B.9). Thus, eigenvalue decomposition and singular value

decomposition of a real symmetric matrix are equivalent.

If the matrix A ∈ IRM×M is a square matrix, then it is decomposed to the

matrices of the same size U ∈ IRM×M and D ∈ IRM×M . However, if it is of the form

A = BB�, where B ∈ IRM×N and N < M , then the rank of A is less or equal to N

and the matrix A has at most N non-zero eigenvalues. Hence, by performing the

SVD (B.11), we can decompose the matrix A ∈ IRM×M on a smaller orthonormal

matrix U ∈ IRM×N and a diagonal matrix D ∈ IRN×N .
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Appendix C

Comparison with related work

C.1 Incremental PCA

In this section we will prove that the method for incremental PCA proposed in

Chapter 3 estimates an identical subspace as the algorithm introduced by Hall et

al. [32]. The core of both algorithms is SVD of a covariance matrix, which is,

however, obtained in different ways. To prove the equivalence of two algorithms we

will show that the covariance matrix is equal in both cases.

Our algorithm performs PCA on A′ =


 A(n) a

0 ‖r‖


 by applying SVD on its

covariance matrix. To make the derivation of the proof of the equivalence between

both algorithms easier, we will rewrite the covariance matrix of A′ in the following

form:

C =
1

n+ 1
A′A′� − µ′′µ′′� .

Now, we will derive the product A′A′�:

A′A′� =


 A(n) a

0 ‖r‖





 A(n)� 0

a� ‖r‖


 =


 A(n)A(n)� + aa� ‖r‖a

‖r‖a� ‖r‖2


 .

Since the coefficients A(n) are mean centered,
∑n

j=1 aj = 0, and

µ′′ =
1

n+ 1

n+1∑
j=1

a′j =
1

n+ 1
a′n+1 =

1

n+ 1


 a

‖r‖


 ,

thus

µ′′µ′′� =
1

(n+ 1)2


 a

‖r‖


 [

a� ‖r‖
]
=

1

(n+ 1)2


 aa� ‖r‖a
‖r‖a� ‖r‖2


 .
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Now we can rewrite C as

C =
1

n+ 1


 A(n)A(n)� + aa� ‖r‖a

‖r‖a� ‖r‖2


 − 1

(n+ 1)2


 aa� ‖r‖a
‖r‖a� ‖r‖2


 =

=
n

n+ 1


 1

n
A(n)A(n)� 0

0 0


 +

n

(n+ 1)2


 aa� ‖r‖a
‖r‖a� ‖r‖2


 .

The main difference of the Hall’s method is that it passes eigenvalues between

the learning steps instead of coefficients. Let Λ be a diagonal matrix containing

eigenvalues on its diagonal and h a unit residue vector h = r
‖r‖ . Then, if we define

γ = h�(x− µ(n)) ,

the matrix C in Hall’s method is composed from matrices

B1 =


 Λ 0

0 0


 and B2 =


 aa� γa

γa� γ2




in the following way:

C =
n

n+ 1
B1 +

n

(n+ 1)2
B2 .

If we compose C from submatrices in the following way:

C =


 C1 +C2 c3

c�3 c4


 ,

we obtain the following expressions for our and Hall’s method:

C1our =
n

n+ 1

1

n
A(n)A(n)�

C2our =
n

n+ 1
aa�

c3our =
n

(n+ 1)2
‖r‖a

c4our =
n

(n+ 1)2
‖r‖2

C1hall =
n

n+ 1
Λ(n)

C2hall =
n

n+ 1
aa�

c3hall =
n

(n+ 1)2
γa

c4hall =
n

(n+ 1)2
γ2 .
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Sice the coefficients are decorrelated, i.e., a
(n)
i: a

(n)�
j: = 0 if i �= j, and the

eigenvalues are equal to the variances in the directions of the principal axes, i.e.,
1
n
a

(n)
i: a

(n)�
i: = λ

(n)
i , we can write

C1our =
n

n+ 1

1

n
A(n)A(n)� =

n

n+ 1
Λ(n) = C1hall .

The pair of second equations is already equal:

C2our =
n

n+ 1
aa� = C2hall .

Now we will derive the value of γ in the Hall’s method. Let ŷ be the reconstruc-

tion of a. Then x− µ(n) = r+ ŷ and r is orthogonal to ŷ. It follows that

γ = h�(x− µ(n)) =
r�

‖r‖(x− µ(n)) =
r�

‖r‖(r+ ŷ) =
r�r
‖r‖ +

r�ŷ
‖r‖ =

‖r‖2

‖r‖ = ‖r‖ .

Thus, the value of γ is equal to the length of the residual vector r. Now, it is trivial

to show that

c3hall =
n

(n+ 1)2
γa =

n

(n+ 1)2
‖r‖a = c3our

and

c4hall =
n

(n+ 1)2
γ2 =

n

(n+ 1)2
‖r‖2 = c4our .

Thus, the obtained covariance matrix C is equal in both algorithms, therefore the

estimated subspace is identical.

C.2 Weighted incremental PCA

In Section 4.4 we presented a method for weighted incremental learning. In the

literature, the most related work is the algorithm for eigenspace updating with

temporal weighting proposed by Liu and Chen [41]. In this section we will show

that their algorithm can be considered as a special case of ours when the temporal

weights in our method form a geometric sequence.

Their algorithm is very simple. At each step n it first estimates the mean vector:

µ
(n)
liu =

xn + αxn−1 + α2xn−2 + . . .

1 + α+ α2 + . . .
,

where α is a decay parameter, which controls how much the previous samples should

contribute to the estimation of the current mean. Since α is in the range from 0 to

1, we have 1 + α+ α2 + . . . = 1
1−α

. Thus, the mean can be estimated as

µ
(n)
liu = αµ(n−1) + (1− α)xn .
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Similarly, the covariance matrix can be estimated as

C
(n)
liu = βC(n−1) + (1− β)(x− µ(n))(x− µ(n))� ,

where β is a decay parameter for the covariance matrix.

Once the mean vector and the covariance matrix are estimated, the eigenvectors

are obtained using SVD or EVD. The estimated covariance matrix and the mean

vector are later input in the next step of the updating algorithm. Thus, the entire

covariance matrix is calculated and being maintained throughout the process of

incremental learning. For the cases where the vector size is larger than number of

the input vectors they proposed also a similar algorithm, based on the inner-product

matrix, which is smaller than the covariance matrix.

We will show that the results produced by both methods are almost equal when

we set the weights in our method to

wi = αn−i ,

where n is the number of the training images. To prove this, we have to show that

the mean vector and the covariance matrix of both algorithms are equal in both

methods at any step.

Our algorithm estimates the mean at the step n+ 1 by the following equation:

µ(n+1)
our =

1∑n+1
i=1 wi

n+1∑
i=1

wia
′
i .

We can rewrite this equation in the recursive manner:

µ(n+1)
our =

1∑n+1
i=1 wi

(
n∑

i=1

wiµ
(n) + wn+1a

′
n+1

)
.

Inserting the values of the weights we obtain

µ(n+1)
our =

1∑n+1
i=1 α

n+1−i

(
n∑

i=1

αn+1−iµ(n) + a′n+1

)
.

Considering that
∑∞

i=0 α
i = 1

1−α
, we obtain for large values of n the same expression

as in the case of the method Liu and Chen:

µ(n+1)
our = αµ(n) + (1− α)xn+1 = µ

(n+1)
liu .

The derivation of the covariance matrix C is analogous. However, the difference

is, that their method estimates C from input images X, while our method estimates
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C from their representations A′. If during the process of incremental learning we

do not discard any eigenvector, we obtain in both cases exactly the same covariance

matrix, since A′ represents X without losing any information, i.e., they are the same

points expressed in different coordinate frames. If during the process of incremental

learning we discard least significant eigenvectors, the covariance matrix of A′ is as

good approximation of the covariance matrix of X as possible. Therefore, we can

conclude that

Cour ≈ Cliu ,

which indicates that the algorithm of Liu and Chen can be considered as the special

case of ours.

C.3 Incremental PCA on incomplete data

Here we will show that the rule for imputing missing pixels in the incremental

algorithm, which we presented in Section 4.5, is equivalent to the imputation rule

proposed by M. Brand [14].

Our rule for imputation of missing pixels is:

x̂◦
our = U◦U•†x̂• . (C.1)

Brand’s rule for imputation of missing pixels [14] is:

x̂◦
brand = U◦Λ(U•Λ)†x̂• , (C.2)

where Λ is a diagonal matrix containing eigenvalues on its diagonal. By expanding

the pseudoinverse and considering the diagonality of Λ, (C.2) can be rewritten as

x̂◦
brand = U◦Λ(Λ�U•�U•Λ)−1Λ�U•�x̂• =

= U◦Λ(ΛU•�U•Λ)−1ΛU•�x̂• =

= U◦(U•�U•)−1U•�x̂• = U◦U•†x̂• = x̂◦
our , (C.3)

Therefore, if we neglect the numerical issues, the Brand’s rule for imputation of

missing pixels is equivalent to our rule.
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Appendix D

Extended summary in Slovenian

D.1 Uvod

D.1.1 Učenje, predstavitev, razpoznavanje

Vid je najpomembneǰsi človekov čut. Oskrbuje nas z veliko količino podatkov o naši

okolici, o bližnjih predmetih in osebah ter njihovih dejanjih. Toda vizualni podatki,

ki jih zajame mrežnica človeškega očesa, dobijo pomen šele, ko so razumljeni v naših

možganih, torej, ko vsaj do določene mere razpoznamo predmete, ki nas obkrožajo.

Že sama beseda “razpoznavanje” implicira na dejstvo, da moramo nek predmet

najprej poznati, da ga lahko potem raz-poznamo. Najprej se moramo torej naučiti,

kako nek predmet izgleda, zapomniti si moramo njegovo predstavitev, šele potem

lahko ta predmet razpoznamo. Učenje, predstavitev in razpoznavanje so torej trije

tesno povezani deli vizualnega zaznavanja.

Čeprav je vid oz. interpretacija vizualne informacije zelo enostavna naloga za

človeka, je to zelo zahtevno opravilo za računalnik. Raziskovalci na področju raču-

nalnǐskega vida se že zelo dolgo trudijo, da bi zmogljivosti računalnǐskih sistemov

za vizualno zaznavanje vsaj deloma približali sposobnostim človeka. V osemde-

setih letih preǰsnjega stoletja je tako prevladovalo prepričanje, da je za uspešno

razpoznavanje potrebno predmete predstaviti kot predmetno-osredǐsčene (object-

centered) 3-dimenzionalne modele, ki so invariantni na smer pogleda (t.i. Marrova

paradigma [43]). Potem, ko so različne psihofizične, neurofiziološke in behavior-

istične študije postregle z dokazi, da je človeško razpoznavanje objektov zelo odvisno

od smeri pogleda na predmet [73, 77, 15, 35, 72, 42], se je tudi v računalnǐskem vidu

bolj uveljavil gledǐsčno-osnovani (view-based) pristop do učenja in razpoznavanja
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objektov in scen. Pri tem pristopu se objekti ne modelirajo kot gledǐsčno invariantni

3-D modeli, temveč je predstavitev sestavljena iz množice 2-D pogledov. Predmet

je lahko tako predstavljen kar z množico 2-D slik. Tak pristop lahko imenujemo

tudi slikovno-osnovani (image-based) ali na izgledu osnovani (appearance-based)

pristop.

D.1.2 Na izgledu osnovani pristop

Izgled predmeta je odvisen od skupnega učinka oblike, odbojnih lastnosti površine

predmeta, njegovega položaja in osvetlitve [55]. Učenje pri na izgledu osnovanem

pristopu poteka tako, da vseh teh faktorjev ne poskušamo ločiti med seboj, ampak

sistematično zajamemo vse (vsaj v grobem) možne izglede predmeta z vseh zornih

kotov in pri različnih osvetlitvah. Razpoznavanje neznanega objekta oz. prizora na

sliki se nato poenostavi v iskanje najbolj podobne slike zajete v fazi učenja. Celoten

proces modeliranja ter razpoznavanja torej poteka v domeni 2-D slik. Tak pristop

bi bil seveda časovno in prostorsko preveč potraten, zato je potrebno vse vhodne

slike zajete z različnih pogledov učinkovito predstaviti v zgoščeni predstavitvi, ki

omogoča hitro iskanje oz. neposredno ujemanje testnih slik z učnimi.

V ta namen se pogostokrat uporabljajo metode na osnovi podprostorov, kot je

metoda glavnih komponent PCA (principal component analysis) [34]. Osnovna ideja

metode PCA je, da se visoko-dimenzijski vhodni podatki na učinkovit način pres-

likajo v nizko-dimenzijski podprostor in pri tem ohranijo kar največ informacije. V

visoko-dimenzijskem prostoru vhodnih podatkov se tako poǐsčejo smeri, v katerih je

varianca podatkov največja. Smeri, v katerih je varianca vhodnih podatkov majhna,

lahko zanemarimo in tako zmanǰsamo razsežnost prostora. Napaka, ki jo naredimo

pri preslikavi vhodnih podatkov v podprostor, ki ima glavne smeri za bazne vek-

torje, je minimalna (v smislu napake najmanǰsih kvadratov) med vsemi linearnimi

preslikavami v podprostor enake dimenzije.

Poleg metode glavnih komponent poznamo še nekatere druge metode za zmanj-

ševanje dimenzionalnosti, kot so linearna diskriminantna analiza (LDA) [8, 44], ana-

liza kanonične korelacije (CCA) [47, 46], analiza neodvisnih komponent (ICA) [36, 6]

ter ne-negativna faktorizacija matrik (NMF) [39], kot tudi nelinearne izvedenke vseh

teh metod [20, 65, 48, 47]. Ker pa je PCA zaradi svojih lastnosti najbolj primerna

in uporabljana metoda za vizualno učenje in razpoznavanje, se bomo v tem delu

osredotočili nanjo.

Nasploh pa je vizualno modeliranje na osnovi podprostorov postalo zelo prilju-
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bljen in pogosto uporabljan pristop za parametrizacijo oblike, izgleda in gibanja

[21, 13, 49, 53, 76]. To je vodilo do uspešnih aplikacij, ki rešujejo probleme, kot

so razpoznavanje obrazov [76, 9], vizualni nadzor [80], vizualno pozicioniranje in

sledenje robotskim manipulatorjem [54], načrtovanje osvetlitve [51], samolokalizacija

robota [37], modeliranje ozadja [57], idr.

D.1.3 Definicija problema

Kljub enostavnosti (ali pa ravno zaradi tega) ima na izgledu osnovani pristop,

temelječ na analizi glavnih komponent, kar precej pomanjkljivosti. Najprej se bomo

posvetili eni izmed pomanjkljivosti standardne metode PCA. Glavni podprostor

se ponavadi računa s paketno metodo; vse učne slike se procesirajo naenkrat, kar

pomeni, da morajo biti vse učne slike podane vnaprej. To pa ni izvedljivo v mnogo

realističnih situacijah, kjer učne slike prihajajo zaporedno ena za drugo. Zato bomo

v disertaciji predlagali metodo za inkrementalno učenje.

Standardna metoda za vizualno učenje ravno tako ne upošteva dejstva, da imajo

lahko tako različni deli slik kot tudi celotne posamezne slike različen vpliv na proces

učenja, čeprav je to v praksi zelo verjetno. Zato bomo v disertaciji predlagali pos-

plošeni pristop do analize glavnih komponent, ki bo selektivno obravnaval posamezne

slike in tudi slikovne elemente. V praktičnih aplikacijah se tudi pogosto zgodi, da

del podatkov ni na voljo, t.j., da slike vsebujejo t.i. manjkajoče slikovne elemente

(missing pixels). Zato bomo algoritme za uteženo učenje prilagodili tako, da bodo

lahko uspešno reševali tudi ta problem.

Slike, ki jih zajamemo z različnimi vizualnimi senzorji, pa pogosto tudi niso ide-

alne in vsebujejo različne nezaželene dodatke, kot so šum ali delna zakrivanja. V

disertaciji bomo zato predstavili tudi robustne algoritme, ki bodo zaznali nekonsis-

tentnosti v vhodnih podatkih in zgradili robustne predstavitve objektov samo iz

konsistentnih podatkov.

Za vse omenjene pristope (uteženo učenje, učenje iz delnih podatkov, robustno

učenje) bomo razvili paketne in inkrementalne metode, ter analizirali za kakšne vrste

slik in pod kakšnimi pogoji so te metode uporabne.

D.1.4 Pregled sorodnih del

V preteklosti je bilo že predlaganih nekaj metod za inkrementalno učenje na os-

novi glavnih podprostorov. Prvi tak algoritem na področju računalnǐskega vida sta
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predlagala Murakami in Kumar [50]. Nato so Chandrasekeran in dr. predlagali algo-

ritem, ki temelji na nadgrajevanju razcepa s singularnimi vrednostmi (SVD) [19], kar

je bila tudi tema nekaterih drugih del [16, 31, 14]. Vsi ti algoritmi pa ne upoštevajo,

da se povprečna vrednost slik lahko spreminja skozi čas. S tem problemom so se

prvi spopadli Hall in dr. [32, 33]. Njihova metoda sicer daje ekvivalentne rezultate

kot algoritem, ki ga bomo predstavili v tej disertaciji. Vendar pa je naš algoritem

zasnovan na tak način, da omogoča tudi uteženo učenje in da ni potrebno učnih slik

shranjevati, ampak jih lahko zavržemo takoj po uporabi.

Večina algoritmov za gradnjo glavnih podprostorov temelji na dekompoziciji

kovariančne matrike vhodnih podatkov. Možni pa so tudi drugi pristopi. Na

PCA lahko gledamo tudi z verjetnostnega vidika, kot na mejni primer linearnih

gaussovih modelov, kjer je šum neskončno majhen in enak v vseh smereh [63].

Iz tega lahko izpeljemo algoritem za računanje glavnih smeri, ki temelji na EM

(expectation-maximization) algoritmu [25, 63, 75]. Bazne vektorje glavnega pod-

prostora, t.j. glavne smeri prostora vhodnih podatkov, lahko ǐsčemo tudi tako,

da minimiziramo kvadratno rekonstrukcijsko napako vseh vhodnih vektorjev. Če

hočemo, da posamezni slikovni elementi selektivno vplivajo na učenje, lahko mi-

nimiziramo uteženo rekonstrukcijsko napako. Takšne pristope so predlagali npr.

Wiberg [78], Shum in dr. [66], Gabriel and Zamir [30], Sidenbladh in dr.[67] ter De la

Torre in Black [24]. Brand [14] ter Liu in Chen [41] so predstavili tudi inkrementalne

algoritme za uteženo učenje, ki so primerni za učenje ob določenih predpostavkah.

Algoritmi, ki jih bomo predlagali v tem delu, bodo bolj splošni.

Velika pomanjkljivost omenjenega osnovnega pristopa vizualnega modeliranja

na osnovi podprostorov je nerobustnost na šum, delna zakrivanja in nepravilno

ozadje. Zato je bilo predlaganih precej metod za izbolǰsanje robustnosti razpozna-

vanja: modularni lastni prostori [59], lastna okna (eigenwindows) [56], iskalno okno

(search-window) [52], adaptivne maske [27], M-estimacija [12], hierarhični pristop

[61] ter pristop na osnovi podvzorčenja [40]. Vse te metode pa se ukvarjajo z ro-

bustnostjo v fazi razpoznavanja in predpostavljajo, da so bile slike v fazi učenja

nepokvarjene, da je torej vizualni model pravilen.

Robustno učenje je veliko težji problem. Njegova naloga je v fazi učenja zgraditi

konsistenten model iz neidealnih učnih slik. Ker pa model objekta oz. prizora šele

gradimo, nimamo veliko predhodnega znanja, na osnovi katerega bi lahko določili

odstopajoče slikovne elemente oz. dele slik. Nekaj avtorjev se je spoprijelo tudi s

tem problemom. Xu in Yuille sta predlagala algoritem [79], ki je uvedel robustnost
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na nivoju slik in pri gradnji modela ni upošteval slik, ki so bile nekonsistentne

z ostalimi. V praktičnih problemih pa to ni dovolj. Zagotoviti moramo namreč

robustnost na nivoju slikovnih elementov. Gabriel in Zamir sta ta problem rešila z

uteženim razcepom s singularnimi vrednostmi (SVD) [30]. Še korak dlje sta šla De

la Torre in Black, ki sta predlagala metodo za robustno analizo glavnih komponent,

ki temelji na M-estimaciji [23, 24]. Ta metoda daje zadovoljive rezultate na slikah z

dovolj veliko časovno konsistentnostjo, je pa časovno zelo zahtevna. Metoda, ki jo

bomo predstavili v disertaciji, je časovno precej manj potratna, daje pa zelo podobne

rezultate. Poleg tega bomo predstavili tudi inkrementalno robustno metodo, ki se

deloma nanaša na nedavno objavljeno metodo avtorjev Aanæsa in dr. [3].

D.2 Osnovna PCA

D.2.1 Kaj je PCA?

Metoda glavnih komponent je linearna transformacija iz visoko-dimenzijskega pros-

tora vhodnih podatkov (input space) v nizko-dimenzijski prostor značilk (feature

space), ki med vsemi linearnimi transformacijami zagotavlja najbolǰso predstavitev

visoko-dimenzijskih vhodnih vektorjev z nizko-dimenzijskimi vektorji koeficientov v

prostoru značilk. Koordinatni sistem obrne v takšno smer, da je variabilnost vhod-

nih vektorjev lahko opisana že z majhnim številom baznih vektorjev.

D.2.2 Izpeljava in lastnosti PCA

Zelo pomembna lastnost analize glavnih komponent je, da maksimizira varianco

preslikav vhodnih vektorjev v glavni podprostor. Iz te lastnosti lahko izpeljemo

tudi algoritem za računanje glavnega podprostora.

Recimo, da imamo N M -dimenzionalnih vektorjev xj zloženih v matriko po-

datkov X ∈ IRM×N . Naš cilj je najti takšno smer u (vektor dolžine 1) v vhodnem

prostoru IRM , ki maksimizira varianco preslikav vseh vhodnih vektorjev na u. Ker

lahko projekcijo j-tega vektorja xj na vektor u izračunamo kot aj = 〈xj,u〉 =

u�xj =
∑M

i=1 uixij , lahko varianco vseh vektorjev koeficientov aj, j = 1 . . . N izraz-

imo s kovariančno matriko vhodnih vektorjev C:

σ2 = u�Cu . (D.1)
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Izkaže se, da moramo za maksimizacijo σ2 rešiti klasičen problem razcepa z lastnimi

vrednostmi (EVD):

Cu = λu , (D.2)

ki ga lahko rešimo tudi z razcepom s singularnimi vrednostmi (SVD):

C = UΛU� , (D.3)

tako da ortonormalna matrika U = [u1, . . . ,uN ] ∈ IRM×N vsebuje po stolpcih lastne

vektorje u1, . . . ,uN , diagonalna matrika Λ ∈ IRN×N pa na diagonali lastne vrednosti

λ1, . . . , λN . Predpostavili bomo, da so lastne vrednosti in pripadajoči lastni vektorji

urejeni po padajočem vrstnem redu lastnih vrednosti, torej λ1 ≥ λ2 ≥ . . . ≥ λN .

Tako je večina variabilnosti vhodnih vektorjev vsebovana že v prvih lastnih vektorjih,

ki jih imenujemo tudi glavni vektorji ali glavne osi. Ohranimo torej samo prvih

k, k � N lastnih vektorjev, torej U = [u1, . . . ,uk] ∈ IRM×k.

Vhodni vektor lahko sedaj projiciramo na k-dimenzionalni glavni podprostor z

uporabo transformacijske matrike U� : IRM → IRk:

a = U�x̂ = U�(x− µ)

aj = 〈x̂,uj〉 =
M∑
i=1

uijx̂i =
M∑
i=1

uij(xi − µi) , j = 1 . . . k (D.4)

in ga nazaj rekonstruiramo z uporabo transformacijske matrike U : IRk → IRM :

ŷ = Ua =
k∑

j=1

ajuj

y = ŷ + µ . (D.5)

Vhodni vektor torej predstavimo z linearno kombinacijo prvih k glavnih vektorjev.

Takšna predstavitev je še posebej primerna za modeliranje množice vhodnih vek-

torjev, ki so med seboj zelo korelirani, saj jih dekorelira in s tem odpravi redundanco

v vhodnih podatkih ter tako zelo zmanǰsa količino potrebnih podatkov za pred-

stavitev. Tako je PCA optimalna v smislu zgoščevanja podatkov, saj pri določeni

stopnji kompresije (številu baznih vektorjev) zagotavlja minimalno rekonstrukcijsko

napako

e =
M∑
i=1

N∑
j=1

(
x̂ij −

k∑
l=1

uilalj

)2

. (D.6)
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Na PCA pa lahko gledamo tudi kot na mejni primer gaussovega modela, ko je

šum neskončno majhen in enak v vseh smereh. Roweis [63] je iz te opazke izpeljal

algoritem za izračun glavnega podpostora, ki temelji na EM algoritmu [25, 63, 75].

Algoritem izračuna glavne smeri in glavne komponente na iterativen način z iz-

meničnim izvajanjem naslednjih E in M korakov:

• E-korak: A = (U�U)−1U�X̂

• M-korak: U = X̂A�(AA�)−1 .

D.2.3 PCA za vizualno učenje in razpoznavanje

Zaradi vseh omenjenih lastnosti je analiza glavnih komponent zelo primerna za

vizualno učenje. Pri na izgledu osnovanem pristopu namreč modeliramo predmet

z veliko množico slik tega predmeta, ki so med seboj korelirane, zato jih lahko z

uporabo PCA zelo zgostimo. V kontekstu vizualnega modeliranja gledamo na sliko

kot na vektor v zelo visoko-dimenzionalnem vhodnem prostoru slik. Vse slike nato z

uporabo PCA preslikamo v nizko-dimenzijski prostor značilk. Izkaže se, da lahko ko-

relacijo med dvema slikama v prostoru slik aproksimiramo z razdaljo med njihovima

projekcijama v prostoru značilk.

Učenje in razpoznavanje predmetov lahko tako izvedemo na naslednji način.

Objekt modeliramo z množico slik, ki jih zajamemo z različnih pogledov med sis-

tematičnim opazovanjem objekta. Primer je prikazan na sliki D.1(a). Iz množice

slik nato izračunamo lastne vektorje (oz. lastne slike, glej sliko D.1(b)) in zgradimo

glavni podprostor ter vanj preslikamo vse vhodne slike tako, da dobimo njihove

nizko-dimenzijske predstavitve. Razpoznavanje objektov se tako poenostavi na pro-

jiciranje vhodne slike na nizko-dimenzijski podprostor in iskanje najbližje projekcije

neke učne slike v tem podprostoru. Ker so vhodne slike ponavadi zelo korelirane, je

dimenzija podprostora majhna, kar zagotavlja zgoščeno predstavitev objektov oz.

prizorov in hitro iskanje. Poleg tega pa lahko z interpolacijo med projekcijami v

prostoru značilk generaliziramo zajete učne slike tudi na še nevidene poglede.

D.3 Inkrementalna PCA

Večina algoritmov za gradnjo glavnega podprostora procesira vse učne slike naenkrat.

To seveda ni primerno za situacije, kjer vse učne slike niso znane vnaprej, ampak je
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(a)

(b)

Figure D.1: (a) Slike, s katerimi modeliramo predmet. (b) Povprečna slika in prvih

pet lastnih slik.

na voljo le ena slika naenkrat, druga za drugo. Zato bomo predstavili inkrementalni

algoritem, ki zgradi glavni podprostor postopno po korakih.

D.3.1 Algoritem

Recimo, da imamo že izgrajen glavni podprostor iz prvih n slik. V koraku n +

1 bi lahko izračunali novi glavni podprostor iz rekonstrukcij prvih n slik in nove

slike z običajno paketno metodo. Seveda pa bi bila računska zahtevnost takšnega

inkrementalnega algoritma previsoka, saj bi morali na vsakem koraku izvesti paketno

metodo PCA na množici visoko-dimenzijskih podatkov. Identične rezultate pa lahko

dobimo z uporabo nizko-dimenzijskih vektorjev koeficientov (predstavitev) prvih n

slik namesto njihovih visoko-dimenzijskih rekonstrukcij, saj so vektorji koeficientov

in njihove rekonstrukcije v bistvu iste točke predstavljene v različnih koordinatnih

sistemih. Ker je dimenzija glavnega podprostora majhna, je takšen algoritem zelo

učinkovit. En korak tega algoritma je povzet v Algoritmu 15.

Algoritem poveča dimenzijo glavnega podprostora za eno. Če hočemo ohraniti

dimenzijo podprostora nespremenjeno, lahko zavržemo najmanj pomemben bazni

vektor. Za začetni podprostor lahko postavimo kar prvo učno sliko, torej µ(1) = x1,

U(1) = 0M×1, in A(1) = 0. Tako je algoritem popolnoma inkrementalen, saj na

vsakem koraku zahteva samo eno sliko. Ker se predstavitve slik hranijo in obnav-

ljajo skozi celoten proces učenja, lahko namreč vsako učno sliko takoj po uporabi

zavržemo.
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Algorithm 15 : Inkrementalna PCA

Input: trenutni povprečni vektor µ(n), trenutni lastni vektorji U(n), trenutni koefi-

cienti A(n), nova vhodna slika x.

Output: novi povprečni vektor µ(n+1), novi lastni vektorji U(n+1), novi koeficienti

A(n+1), nove lastne vrednosti λ(n+1).

1: Projiciraj novo sliko x v trenutni lastni prostor: a = U(n)�(x− µ(n)) .

2: Rekonstruiraj novo sliko: y = U(n)a+ µ(n).

3: Izračunaj vektor razlike: r = x− y. r je pravokoten na U(n).

4: Dodaj r kot nov bazni vektor: U′ =
[
U(n) r

‖r‖
]

.

5: Določi vrednosti koeficientov v novi bazi: A′ =


 A(n) a

0 ‖r‖


 .

6: Izvedi PCA na A′. Dobi povprečno vrednost µ′′, lastne vektorje U′′, in lastne

vrednosti λ′′.

7: Projiciraj vektorje koeficientov na novo bazo: A(n+1) = U′′�(A′ − µ′′11×n+1) .

8: Zavrti podprostor U′ za U′′: U(n+1) = U′U′′ .

9: Popravi povprečni vektor: µ(n+1) = µ(n) +U′µ′′ .

10: Nove lastne vrednosti: λ(n+1) = λ′′ .

D.3.2 Lastnosti inkrementalne gradnje

Paketna metoda PCA je optimalna v smislu minimalne kvadratne rekonstrukcijske

napake. Inkrementalna metoda operira s približki vhodnih slik, zato so njeni rezul-

tati nujno nekoliko slabši. Toda kolikšno je poslabšanje rezultatov? So rezultati še

vedno uporabni? Kateri faktorji so pri tem odločilni? Da bi dobili odgovore na ta

vprašanja in ugotovili nekatere lastnosti inkrementalne gradnje smo izvedli različne

poizkuse na množici 720 slik dvajsetih predmetov iz slikovne baze COIL20 [53]. V

nadaljevanju navajamo najpomembneǰse ugotovitve.

Zavračanje slik

Ugotovili smo, da je potem, ko ob koncu inkrementalnega učenja preslikamo vse učne

slike v zgrajeni glavni podprostor in jih nato rekonstruiramo, kvadratna rekonstruk-

cijska napaka zelo primerljiva z napako paketne metode (v povprečju je večja za 3,1

%). Kot smo že omenili, pa predlagani algoritem omogoča, da vsako sliko takoj po

uporabi zavržemo in nato operiramo samo z njeno predstavitvijo v glavnem podpros-

toru. To seveda nekoliko poslabša rezultate, ki pa so v povprečju slabši od paketne
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metode še vedno samo za 8,6 %. Zaključimo torej lahko, da so rezultati inkremen-

talne metode povsem primerljivi z rezultati paketne metode in da so uporabni za

večino aplikacij.

Vrstni red slik

Rezultati inkrementalne gradnje so še precej bolǰsi, če podajamo slike v naključnem

in ne v zaporednem vrstnem redu. V primerjavi s paketno metodo se rezultati

poslabšajo samo za 1,3 %, če slik ne zavračamo, oz. 3,1 %, če jih. Že na začetku se

namreč zgradi podprostor, ki zelo na grobo zajema izglede celotnega zaporedja slik

in se potem skozi fazo učenja samo še rahlo prilagaja novim slikam, kar omogoča

bolǰse predstavitve.

Povečevanje dimenzije podprostora

Analizirali smo tudi, kako vpliva na rezultate strategija povečevanja dimenzije glav-

nega podprostora. Če že vnaprej vemo, kakšna naj bi bila ciljna dimenzija podpros-

tora, je najbolje, da na začetku na vsakem koraku povečamo dimenzijo podprostora

za 1, dokler ne doseže ciljne dimenzije, nato pa to dimenzijo ohranjamo do konca

inkrementalnega učenja.

Energija podprostora

Želeli smo tudi ugotoviti, kako vpliva na rezultate količina energije, ki jo zajema

podprostor (količnik med vsoto ohranjenih in vsoto vseh lastnih vrednosti). Po

pričakovanju se rekonstrukcijska napaka manǰsa z večanjem dimenzije podprostora

(oz. s povečevanjem količine zajete energije). Ugotovili pa smo tudi, da se relativno

povečanje napake v primerjavi s paketno metodo rahlo povečuje z rastjo dimenzije

podprostora.

Število učnih slik

Ugotovili smo, da število učnih slik ne vpliva bistveno na povprečno poslabšanje

rekonstrukcijske napake v primerjavi s paketno metodo. Pač pa je lahko poslabšanje

zelo različno pri slikah z različnih delov vhodnega zaporedja, kar pa je predvsem

odvisno od kriterija za povečevanje dimenzije glavnega podprostora.
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Kompresija

Na koncu smo želeli ugotoviti še, kako z naraščanjem števila vhodnih slik narašča

število lastnih vektorjev, ki so potrebni za ohranitev določenega deleža energije.

Ugotovili smo, da to število narašča samo do določene meje. Ko podprostor opisuje

določeno število slik, zajema takšno vizualno variabilnost, da z dodajanjem novih

slik ni več potrebno povečevati dimenzije lastnega prostora. Kljub temu pa z do-

dajanjem novih slik izbolǰsujemo trenutni podprostor (ga nekoliko vrtimo), tako da

rekonstrukcijska napaka slik precej pade po tem, ko so le-te dodane v model. Čeprav

se podprostor ne napihuje več, se še vedno prilagaja novim slikam. Ker pa kljub

povečevanju števila vhodnih slik dimenzija podprostora ostaja enaka, je kompresija

vedno bolǰsa.

D.4 Utežena PCA

D.4.1 Paketna metoda za uteženo PCA

Standardna metoda za analizo glavnih komponent se lahko prevede na uteženo PCA,

če v minimizacijsko funkcijo (D.6) dodamo uteži. Naj matrika W ∈ IRM×N vsebuje

uteži, tako da je wij utež i-tega slikovnega elementa v j-ti sliki. Cilj je minimizirati

uteženo kvadratno rekonstrukcijsko napako

E =
M∑
i=1

N∑
j=1

wij

(
x̂ij −

k∑
l=1

uilalj

)2

. (D.7)

Vrednosti matrike X̂ so v tem primeru dobljene z odštevanjem uteženega povprečnega

vektorja µ od učnih slik xi.

V praksi se ponavadi srečamo z dvema tipoma uteži: s časovnimi utežmi tw ∈
IR1×N , ki utežijo posamezne slike, in s prostorskimi utežmi sw ∈ IRM , ki utežijo

posamezne slikovne elemente neke slike.

Časovne uteži

Časovne uteži določajo vpliv posameznih slik na proces učenja. Če želimo neki sliki

dodeliti večjo vlogo pri določanju glavnih osi, ji priredimo večjo utež. V tem primeru

torej minimiziramo uteženo kvadratno rekonstrukcijsko napako oz. maksimiziramo

uteženo varianco projekcij. Iz slednje lastnosti lahko izpeljemo algoritem za uteženo
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učenje, ki upošteva časovne uteži. Lastni prostor lahko tako izračunamo z razcepom

s singularnimi vrednostmi utežene kovariančne matrike.

Splošne uteži

Algoritem za izračun glavnega podprostora z upoštevanjem splošnih uteži, ko ima

lahko vsak posamezni slikovni element na katerikoli sliki poljubno utež, bomo izpel-

jali iz EM algoritma. Spomnimo se, da v E-koraku tega algoritma izračunamo nove

vrednosti aj na sledeči način: aj = (U�U)−1U�x̂j. Ta izraz pa lahko izrazimo

tudi s pseudoinverzom aj = U†x̂j, ki pa je po drugi strani ekvivalenten reševanju

ustreznega sistema linearnih enačb. Podobne opazke veljajo tudi za M-korak EM

algoritma. Če posamezne enačbe ustrezno utežimo, lahko EM algoritem priredimo

za iskanje takšnega podprostora, ki minimizira uteženo rekonstrukcijsko napako.

Koraka E in M sedaj izgledata takole:

• E-korak: Izračunaj A na naslednji način: Za vsako sliko j, j = 1 . . . N , reši

naslednji sistem linearnih enačb v smislu napake najmanǰsih kvadratov:

√
wijx̂ij =

√
wij

k∑
p=1

uipapj , i = 1 . . .M . (D.8)

• M-korak: Izračunaj U na naslednji način: Za vsak slikovni element i, i =

1 . . .M , reši naslednji sistem linearnih enačb v smislu napake najmanǰsih

kvadratov:

√
wijx̂ij =

√
wij

k∑
p=1

uipapj , j = 1 . . . N . (D.9)

D.4.2 Paketna metoda za PCA na delnih podatkih

Prirejen EM algoritem

V praktičnih aplikacijah se pogosto zgodi, da vrednosti nekaterih slikovnih elementov

niso definirane. Takšne situacije lahko obravnavamo kot poseben primer uteženega

učenja, kjer postavimo uteži manjkajočih elementov na nič. V primeru EM algoritma

to pomeni, da postavimo v sisteme linearnih enačb (D.8) in (D.9) samo tiste enačbe,

ki izhajajo iz poznanih slikovnih elementov. Takšno reševanje tega problema pa je

slabo pogojeno. Algoritem sicer res minimizira rekonstrukcijsko napako v znanih

slikovnih elementih, vendar so hkrati lahko rekonstruirane vrednosti manjkajočih
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slikovnih elementov zelo daleč od pravih vrednosti, ker ima algoritem precej slabe

generalizacijske sposobnosti. Zato predlagamo, da se v primerih, ko so učne slike

posnete v zaporedju, tako da so sosednje slike med seboj precej podobne, uporabi še

dodatna omejitev. V M-koraku poleg minimizacije rekonstrukcijske napake v znanih

slikovnih elementih hkrati minimiziramo tudi drugi odvod rekonstruiranih vrednosti

manjkajočih slikovnih elementov. To zagotavlja, da bodo vrednosti rekonstruiranih

manjkajočih slikovnih elementov gladke skozi čas.

Iterativna rekonstrukcija slikovnih elementov

Alternativno lahko vrednosti U v M-koraku izračunamo tudi z uporabo navadne

paketne metode PCA na celotni matriki vhodnih podatkov, pri pogoju, da so manj-

kajoči elementi ustrezno zapolnjeni. Vprašanje je, katera je optimalna metoda za

polnjenje manjkajočih elementov. Ker ne poznamo vrednosti vseh slikovnih elemen-

tov neke slike, so nekatere koordinate ustrezne točke v prostoru slik nedefinirane.

Pravilni položaj točke se torej nahaja nekje v podprostoru, ki ga določajo man-

jkajoče koordinate. Ob poznavanju glavnega podprostora U, ki modelira vhodne

podatke, je optimalna lokacija točka v podprostoru manjkajočih elementov, ki je

najbližje glavnemu podprostoru. Dobimo jo tako, da manjkajoče slikovne elemente

zapolnimo z rekonstruiranimi vrednostmi, ki jih izračunamo iz koeficientov dobljenih

v E-koraku trenutne iteracije z uporabo glavnih osi dobljenih v M-koraku predhodne

iteracije.

D.4.3 Inkrementalna utežena PCA

Inkrementalni algoritem lahko dopolnimo s principi uteženega učenja in tako dobimo

algoritem za inkrementalno uteženo učenje.

Časovne uteži je zelo enostavno vključiti v inkrementalni algoritem. Jedro tega

algoritma je še vedno standardna paketna metoda PCA na koeficientih. Vse, kar

moramo storiti je, da to metodo zamenjamo z uteženo paketno metodo.

Prostorske uteži pa uvedemo v inkrementalno gradnjo z dodatnim korakom. Naj

bodo prostorske uteži vrednosti z intervala med 0 in 1. Če je vrednost uteži 1, to

pomeni, da se na vrednost slikovnega elementa popolnoma zanesemo in jo uporabimo

takšno, kot je. Če je vrednost uteži 0, to pomeni, da je vrednost slikovnega elementa

popolnoma nerelevantna in se nanjo popolnoma nič ne zanesemo. Takšno vred-

nost lahko rekonstruiramo z upoštevanjem trenutnega modela, ki smo ga zgradili v
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predhodnih korakih. S postavljanjem uteži med 0 in 1 lahko uravnavamo vpliv vred-

nosti slikovnega elementa in vpliv trenutnega modela (rekonstruirane vrednosti). Na

začetku inkrementalnega algoritma torej uvedemo nov korak, ki najprej izračuna ko-

eficiente nove slike x na utežen način (D.8) in te koeficiente rekonstruira v sliko y.

Nato dobimo novo sliko kot uteženo vsoto originalne in rekonstruirane slike

xnew
i = swixi + (1− swi)yi , i = 1 . . .M , (D.10)

ki jo potem uporabimo za posodobitev trenutnega glavnega podprostora z inkre-

mentalnim algoritmom.

D.4.4 Inkrementalna PCA na delnih podatkih

V primeru algoritma za računanje glavnega podprostora v prisotnosti manjkajočih

slikovnih elementov se inkrementalni uteženi algoritem poenostavi tako, da imajo

uteži lahko samo vrednosti 0 (manjkajoči slikovni elementi) ali 1 (znani slikovni

elementi). Korak z uteženo vsoto se torej poenostavi na polnjenje vrednosti manj-

kajočih slikovnih elementov z rekonstruiranimi vrednostmi na podoben način, kot

pri paketni metodi, ki temelji na iterativni rekonstrukciji manjkajočih slikovnih el-

ementov.

D.5 Robustna PCA

Pri uteženi metodi za izračunavanje glavnega podprostora predpostavljamo, da so

uteži (ali manjkajoči slikovni elementi) poznane. V praktičnih primerih pa to ve-

likokrat ne drži, tako da mora algoritem sam odkriti odstopajoče slikovne elemente

(outliers). To je naloga robustnih algoritmov.

D.5.1 Robustna paketna metoda

Enostopenjska metoda

Paketni robustni algoritem najprej odkrije odstopajoče slikovne elemente na vhod-

nih slikah. Kot odstopajoči se obravnavajo vsi slikovni elementi, ki niso konsistentni

z istoležnimi elementi na ostalih slikah. Konsistenca se preverja s primerjanjem

rekonstrukcijskih napak. Algoritem najprej iz vseh (neidealnih) vhodnih slik zgradi
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glavni podprostor na nerobusten način. Vse slike nato projicira v dobljeni podpros-

tor in jih rekonstruira. Ker odstopajoči slikovni elementi niso konsistentni z ostal-

imi, je rekonstrukcijska napaka v njih ponavadi večja. Algoritem zato obravnava vse

slikovne elemente z veliko rekonstrukcijsko napako kot manjkajoče slikovne elemente

in nato izračuna robustni glavni podprostor z eno izmed prej omenjenih metod za

učenje iz delnih podatkov. Nato se vrednosti teh slikovnih elementov v matriki

vhodnih podatkov zamenjajo z rekonstruiranimi vrednostmi in celoten postopek se

ponovi. Algoritem ponavadi zelo hitro skonvergira in že po nekaj iteracijah dobimo

v vseh slikovnih elementih vrednosti, ki so konsistentne z ostalimi.

Dvostopenjska metoda

Pomanjkljivost predstavljene robustne metode je v tem, da je prvi korak še vedno

standardna nerobustna PCA, ki lahko ob velikem številu odstopajočih slikovnih

elementov proizvede slabo začetno rešitev. Če množica učnih slik vsebuje manǰse

število slik z zelo veliko odstopajočimi slikovnimi elementi, lahko to pomanjkljivost

ublažimo tako, da odkrijemo odstopajoče točke v dveh stopnjah. Najprej od-

krijemo odstopajoče slike, torej slike, v katerih je povprečna rekonstrukcijska na-

paka slikovnih elementov velika. Nato iz preostalih slik (ki ne vsebujejo veliko

odstopajočih slikovnih elementov) zgradimo glavni podprostor. Ta podprostor nam

potem v drugi stopnji služi za odkrivanje odstopajočih slikovnih elementov na vseh

slikah. Na ta način jih lahko veliko bolj zanesljivo odkrijemo. Nadalje postopamo

podobno kot v primeru enostopenjskega robustnega algoritma.

Robustna inicializacija z uporabo podvzorčenja

Začetni nerobusten korak robustnega algoritma lahko zamenjamo tudi z bolj robust-

nim pristopom, ki temelji na podvzorčenju. Najprej naključno izberemo podmnožico

indeksov slikovnih elementov in podmnožico slik. Nato iz vseh slikovnih elementov

z izbranimi indeksi na izbranih slikah zgradimo glavni podprostor s standardno

metodo PCA. Izbrane slikovne elemente nato rekonstruiramo. Vsaka rekonstru-

irana vrednost hipotetično predstavlja pravo vrednost dotičnega slikovnega ele-

menta. Če smo namreč pri naključnem izbiranju slikovnih elementov izbrali ve-

liko neodstopajočih elementov, le-ti povzročijo, da je tudi rekonstruirana vred-

nost v odstopajočih slikovnih elementih bolj podobna pravi. Če torej ta postopek

naključnega izbiranja slikovnih elementov in rekonstruiranja le-teh velikokrat po-

novimo, za vsak slikovni element zgradimo veliko hipotez, med katerimi na koncu
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izberemo najbolǰso, ki nam služi za osnovo pri odkrivanju odstopajočih slikovnih

elementov.

D.5.2 Robustna inkrementalna metoda

Robustni inkrementalni algoritem je zelo podoben inkrementalnemu algoritmu za

učenje iz delnih podatkov. Slednjemu je dodan samo še korak, ki odkrije odstopajoče

slikovne elemente, ki se potem obravnavajo kot manjkajoči slikovni elementi. Nova

vhodna slika se torej najprej robustno projicira [40] v trenutni glavni podprostor

in nato rekonstruira. Na osnovi rekonstrukcijskih napak se določijo odstopajoči

slikovni elementi in njihove vrednosti se zamenjajo z rekonstruiranimi vrednostmi.

Tako popravljena slika se nato uporabi za posodobitev glavnega podprostora z inkre-

mentalnim algoritmom.

D.6 Ocena učinkovitosti algoritmov

V doktorski disertaciji smo predlagali množico algoritmov za inkrementalno, uteženo

in robustno vizualno učenje in razpoznavanje. Izvedli smo veliko poizkusov, s ka-

terimi smo analizirali učinkovitost predlaganih algoritmov. V nadaljevanju bomo

predstavili nekaj najpomembneǰsih rezultatov in ugotovitev.

D.6.1 Učinkovitost inkrementalnih algoritmov

Najprej bomo na primeru modeliranja obrazov prikazali delovanje vseh predlaganih

inkrementalnih algoritmov. Cilj je bil zgraditi čim bolǰse 25-dimenzionalne pred-

stavitve 400 slik obrazov iz slikovne baze ORL [64] z uporabo inkrementalnega al-

goritma.

Najprej smo model zgradili iz originalnih slik (slika D.2(a)) s paketno metodo.

Rekonstrukcije slik, ki so prikazane na sliki D.2(b), so optimalne glede na to, da

so predstavljene samo s 25 koeficienti in lastnimi slikami. Nato smo predstavitve

zgradili še z inkrementalnim algoritmom in pri tem zavračali učne slike takoj po

uporabi. Rekonstruirane slike, ki so prikazane na sliki D.2(c), so zelo podobne

optimalnim, saj je rekonstrukcijska napaka v povprečju večja samo za 2 %. Nato smo

zgradili predstavitve z uteženim inkrementalnim algoritmom, tako da smo noveǰsim

slikam (slikam s konca zaporedja) priredili večje uteži. Kot rezultat vidimo, da sta

zadnja dva obraza na sliki D.2(d) bolje rekonstruirana in vsebujeta več podrobnosti.
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Tudi skupna utežena rekonstrukcijska napaka je manǰsa in znaša 598 pri standardni

in 570 pri uteženi inkrementalni metodi.

Nato smo na vsaki sliki razen na prvih 40 izbrisali četrtino slike (glej sliko D.2(e)).

Najprej smo manjkajoče slikovne elemente nadomestili kar s povprečno vrednostjo

vseh znanih istoležnih slikovnih elementov in nato predstavitve zgradili iz tako zapol-

njenih slik. Rezultati so prikazani na sliki D.2(f). Potem smo uporabili še predlagani

inkrementalni algoritem za učenje iz delnih podatkov. Na sliki D.2(g) vidimo, da

so obrazi precej bolje rekonstruirani, kar se odraža tudi v manǰsi rekonstrukcijski

napaki (644 proti 760).

Na koncu smo na originalne slike dodali na naključne pozicije kvadratke naključ-

nih intenzitet (slika D.2(h)). Na sliki D.2(i) vidimo, da nerobustna inkrementalna

metoda kvadratke vključi v predstavitev, zato se pojavljajo tudi na rekonstruiranih

slikah. Če pa za učenje uporabimo robustno inkrementalno metodo, le-ta na vsakem

koraku odkrije kvadratke kot odstopajoče slikovne elemente in jih ne vključi v model.

Tako so tudi rekonstruirani obrazi, ki so prikazani na sliki D.2(j), veliko bolj podobni

optimalnim. Posledično je manǰsa tudi rekonstrukcijska napaka, ki znaša 915 pri

standardni metodi in 710 pri robustni.

D.6.2 Ocena učinkovitosti vseh algoritmov

Na podoben način smo opravili še množico poizkusov, s katerimi smo ocenili večino

algoritmov, tako paketnih kot tudi inkrementalnih, ki so bili predlagani v disertaciji.

Da bi dobili realistično sliko o uporabnosti predlaganih algoritmov, smo le-te testirali

na treh različnih slikovnih domenah: na slikah predmetov, obrazov in ozadja. Za

slike predmetov (slika D.3(a)) je namreč značilno, da niso najbolj časovno korelirane,

saj se med seboj precej razlikujejo. Obrazi (slika D.3(b)) so veliko bolj časovno

koherentni, še najbolj pa so časovno korelirane slike ozadja (slika D.3(c)). Ozadje je

namreč statično, spreminja se samo globalna osvetlitev, ki se enakomerno povečuje,

in vertikalna senca, ki potuje čez sliko. Za slike ozadja je tudi značilno, da se zelo

počasi in enakomerno spreminjajo, kar do neke mere velja tudi za predmete, ker

so bile sosednje slike zajete iz sosednjih zornih kotov. To še najmanj velja za slike

obrazov, ker le-ti niso bili posneti po kakšnem določenem vrstnem redu poz. Za

oceno uteženih in robustnih algoritmov smo nato na vse slike, razen na prvih 40 v

obeh vrstnih redih (vseh je bilo 720) naključno dodali kvadratek kot nezaželen in

moteč element (slika D.3(d)).

Glavne lastnosti vseh treh tipov slik in učinkovitosti različnih algoritmov so
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Figure D.2: (a) Učne slike. Rekonstrukcije dobljene z (b) paketno PCA, (c) inkre-

mentalno PCA, (d) uteženo IPCA. (e) Učne slike z manjkajočimi slikovnimi ele-

menti. Rekonstrukcije dobljene s (f) standardno IPCA, (g) IPCA z rekonstrukcijo

manjkajočih slikovnih elementov. (h) Deloma prekrite učne slike. Rekonstrukcije

dobljene z (i) standardno IPCA, (j) robustno IPCA.

povzete v tabeli D.1. Navedli bomo samo nekaj najbolj značilnih rezultatov. Učne

slike smo na vhode algoritmov podajali v dveh različnih vrstnih redih. Najprej

smo jih uredili po naravnem zaporednem vrstnem redu - najprej po vrsti vse slike

enega predmeta, nato drugega in tako naprej. Nato smo jih uredili v izmeničnem
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(a)

(b)

(c)

(d)

Figure D.3: Nekaj učnih slik: (a) predmeti, (b) obrazi, (c) ozadje. (d) Nekaj deloma

prekritih slik.

vrstnem redu - najprej po ena slika vsakega predmeta, nato druga slika vsakega

predmeta in tako naprej. Ugotovili smo, da vrstni red pomembno vpliva na rezultate

inkrementalnih algoritmov, saj smo pri izmeničnem vrstnem redu vhodnih slik dobili

precej bolǰse rezultate. To velja tako za navadno inkrementalno metodo, kot tudi za

uteženo, še najbolj pa za robustno inkrementalno metodo. Pri navadni inkrementalni

metodi je izmenični vrstni red ugodneǰsi, ker nam že na začetku učenja zgradi dovolj

dober približek končnega glavnega podprostora, ki se nato samo še izbolǰsuje. Pri

uteženi metodi je ta vpliv še večji, ker se trenutni model uporablja tudi za določanje

novih vrednosti slikovnih elementov z majhnimi utežmi na novi sliki. Največji vpliv

pa ima vrstni red pri robustni metodi, saj se v tem primeru trenutni model uporablja

tudi za odkrivanje odstopajočih slikovnih elementov na novi sliki. Če trenutni model

vsaj zelo približno ne zajema tudi izgleda nove slike, se vsi slikovni elementi, ki se na

njej razlikujejo od preǰsnjih istoležnih elementov, označijo za odstopajoče, torej tudi

tisti, ki dejansko to niso, ampak prinašajo samo neko novo informacijo, ki bo sčasoma

postala konsistentna. Zato moramo težiti k temu, da algoritmom za inkrementalno

učenje (predvsem robustnemu) že na začetku podamo vsaj nekaj slik, ki v grobem

predstavljajo različne možne izglede predmeta ali prizora.

Kot smo že ugotovili, je inkrementalna metoda zelo učinkovita, saj bistveno ne

poslabša rezultatov paketne metode. V primeru deloma prekritih slik se dobro ob-

nesejo tudi utežene metode in metode za učenje iz deloma manjkajočih podatkov.

Pri testiranju teh metod smo namreč predpostavili, da so lokacije odstopajočih

slikovnih elementov poznane, zato smo tem slikovnim elementov priredili manǰse
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uteži oz. jih označili za manjkajoče. Predlagane metode so uspešno rekonstru-

irale prave vrednosti odstopajočih slikovnih elementov in zgradile predstavitve, ki

nezaželenih kvadratkov niso vsebovale.

Rezultati robustne metode pa so bili zelo odvisni od vhodnih slik. Zelo slabo se je

obnesla pri modeliranju predmetov. Problem je namreč v tem, da slike predmetov

niso najbolj korelirane, tako da določanje odstopajočih slikovnih elementov samo

na osnovi konsistentnosti posameznih slikovnih elementov ni bilo dovolj uspešno.

Posledično so bili v predstavitve vgrajeni tudi nekateri kvadratki, izvzeti pa nekateri

deli predmetov, ki so bili odkriti kot odstopajoči slikovni elementi, čeravno to niso

bili (recimo robovi predmetov). Ta problem je bil veliko manj opazen pri slikah

obrazov, ki so časovno bolj koherentne. Najbolǰse rezultate pa je robustni algoritem

dosegel pri modeliranju ozadja, kjer je uspešno odkril večino odstopajočih slikovnih

elementov in zgradil predstavitev ozadja brez motečih kvadratkov.

predmeti obrazi ozadje

časovna korelacija majhna velika zelo velika

enakomernost spreminjanja slik velika majhna zelo velika

pomen vrstnega reda slik velik majhen zelo velik

učinkovitost inkrementalne metode zelo velika zelo velika zelo velika

učinkovitost utežene metode velika velika zelo velika

učinkovitost robustne metode zelo majhna velika zelo velika

Table D.1: Glavne lastnosti treh tipov slik in učinkovitost algoritmov.

D.7 Zaključek

D.7.1 Prispevki disertacije

V disertaciji smo se v glavnem ukvarjali s povečevanjem robustnosti vizualnega

učenja z uporabo podprostorov. Analizirali smo različne probleme, ki se pri tem

pojavljajo in predlagali različne rešitve, ki so odvisne od količine informacij, ki nam

je na voljo.

V situacijah, v katerih so zanesljivosti posameznih slik in slikovnih elementov

že vnaprej poznane, lahko uporabimo predstavljene metode za uteženo učenje.

Za primere, ko so na slikah nekateri slikovni elementi nedefinirani, smo predlagali

algoritme za učenje ob manjkajočih podatkih. Za situacije, ko nimamo nobenih
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dodatnih informacij o vsebini slik, pa smo predlagali algoritme za robustno učenje,

ki poskušajo sami odkriti odstopajoče slikovne elemente in zgraditi robustni glavni

podprostor. Za vse te pristope k vizualnemu učenju na osnovi podprostorov smo

predlagali tako paketne kot tudi inkrementalne algoritme.

D.7.2 Nadaljnje delo

V disertaciji smo predlagali algoritme, ki deloma rešujejo nekatere probleme, ki se

pojavljajo pri vizualnem učenju in razpoznavanju na osnovi podprostorov. Še vedno

pa na tem področju ostaja veliko odprtih problemov.

Kot smo že ugotovili, se predlagana robustna metoda slabo obnese v primerih, ko

vhodne slike niso zelo časovno korelirane, ker je odkrivanje odstopajočih slikovnih

elementov v teh primerih zelo nezanesljivo. Ta problem bi lahko omilili tako, da

bi povečali število testnih slik, na primer s procesiranjem video sekvence. Na ta

način bi se slike počasneje spreminjale, redundanca podatkov bi bila večja, slike bolj

časovno korelirane in odkrivanje odstopajočih slikovnih elementov bolj zanesljivo.

Z uporabo inkrementalnega algoritma bi bilo procesiranje velikega števila slik tudi

dejansko izvedljivo.

Še bolǰsa rešitev pa bi bila poravnava učnih slik še pred učenjem. Tako bi bile

slike bolj časovno korelirane, še posebej, če bi zaporedja učnih slik razbili na časovno

koherentna podzaporedja in procesirali vsako podzaporedje posebej. V primeru

modeliranja obrazov je poravnava preprosta, ker lahko vse slike, tako v fazi učenja

kot tudi v fazi razpoznavanja, poravnamo na isto šablono [9], v primeru modeliranja

poljubnih predmetov pa bi bil proces poravnave precej bolj zapleten. Vsekakor pa bi

bila za bolj robustno in učinkovito gradnjo gledǐsčno-osredǐsčenih modelov poljubnih

predmetov potrebna vsaj zelo groba poravna slik.

Modeliranje z uporabo analize glavnih komponent lahko izvajamo ne le na sivin-

skih učnih slikah, marveč tudi na slikah drugih modalnosti (binarne, barvne, glo-

binske, infra-rdeče). Slike lahko tudi predhodno predprocesiramo (poǐsčemo robove,

ukrivljenosti), lahko pa na slikah poǐsčemo tudi razne druge značilke, lokalne ali

globalne, ki jih nato uporabimo za modeliranje predmetov s PCA. Vsi algoritmi

predlagani v disertaciji so popolnoma uporabni tudi za procesiranje takšnih po-

datkov. Na ta način bi lahko čisto holistični gledǐsčno-osredǐsčeni pristop obogatili

z lokalnimi geometričnimi značilkami in strukturnimi informacijami. To pa bi lahko

bistveno pripomoglo k izbolǰsanju učinkovitosti na izgledu osnovanega vizualnega

učenja in razpoznavanja.
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Dr. Blaž Zupan for serving as the members of the dissertation committee.

I want to express my gratitude to my parents, and also to relatives and friends,

for encouraging me and helping me in various ways. Last, but not least, the most

special thanks go to Iris for her love and support and to Jan for all the moments I

have spent writing this dissertation instead of being with him.

177



178



Izjava

Izjavljam, da sem doktorsko disertacijo izdelal samostojno pod mentorstvom prof.
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