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Recovery of Parametric Models from Range Images:
The Case for Superquadrics with Global
Deformations

FRANC SOLINA anpD RUZENA BAJCSY, SENIOR MEMBER, IEEE

Abstract—A method for recovery of compact volumetric models for
shape representation of single-part objects in computer vision is intro-
duced. The models are superquadrics with parametric deformations
(bending, tapering, and cavity deformation). The input for the model
recovery is three-dimensional range points. We define an energy or
cost function whose value depends on the distance of points from the
model’s surface and on the overall size of the model. Model recovery
is formulated as a least-squares minimization of the cost function for
all range points belonging to a single part. The initial estimate required
for minimization is the rough position, orientation, and size of the ob-
ject. During the iterative gradient descent minimization process, all
model parameters are adjusted simultaneously, recovering position,
orientation, size, and shape of the model, such that most of the given
range points lie close to the model’s surface. Because of the ambiguity
of superquadric models, the same shape can be described with different
sets of parameters. A specific solution among several acceptable solu-
tions, which are all minima in the parameter space, can be reached by
constraining the search to a part of the parameter space. The many
shallow local minima in the parameter space are avoided as a solution
by using a stochastic technique during minimization. Results using real
range data show that the recovered models are stable and that the re-
covery procedure is fast.

Index Terms—Computer vision, least-squares fitting, range image
interpretation, shape deformations, shape representation, volumetric
models.

1. INTRODUCTION

ISUAL perception enables intelligent interaction with

the environment. It provides us with information that
makes it possible to locate and recognize objects and their
interrelationships without direct physical contact. In short,
vision makes the outside world accessible to thought [11].
Although we are far from understanding the complexities
of human visual perception, we are trying to give ma-
chines the sense of vision for the very same reason—to
enable them to interact with a changing environment. The
type of interactions and the environment where machine
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vision systems are currently employed are quite restricted
and limited in comparison to capabilities of the human
visual system. Nevertheless, computer vision and the
study of human vision share some common problems on
the computational level, for example, what information is
derived from the world and how is it done, independent
of specific algorithms and mechanisms.

The main problem in vision research is that two-dimen-
sional images underdetermine the three-dimensional
world. In theory, an infinite number of 3-D scenes can
produce the same 2-D image. Additional information is
required not only to invert the projection but to derive and
infer meaningful descriptions of the world. This addi-
tional knowledge is about image formation and the struc-
ture of the world. In computer vision systems, this knowl-
edge is incorporated in models. Since a large part of visual
information is in geometrical form, most of these models
are models for representing shape. The way information
in a vision system can be organized and processed is
closely linked to the selected representation of shape. We
believe that inadequate shape representation is a central
problem in computer vision.

The pixel by pixel information in images must be or-
ganized into larger entities or models. Models on any level
achieve reduction of data by imposing a certain organi-
zation on it. This organization is the knowledge or expec-
tation of how data is structured. The higher the level of a
model, the more structure it imposes on data. An open
question in computer vision research is what are the high-
est level generic models that can be recovered from un-
constrained environments in a purely data-driven fash-
jon—that is, without invoking any semantic or context
dependent knowledge. Most so called ‘‘model driven”
object recognition vision systems use context dependent
information by relying on a set of rigid or precise models
for all objects expected to be found in the scene [7], [14].
This approach is possible in tightly controlled environ-
ments, such as in industrial applications. It clearly cannot
work in unconstrained environments due to the sheer
number of necessary models, not to mention the problem
of building such a model database. A more general way
of describing objects and scenes must be used in such
cases. Traditional approaches advocate a stepwise reduc-
tion of data [20]. First, low level shape models such as
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edges, corners and surface patches are computed locally.
Because in natural scenes the image formation parameters
can change abruptly from image point to image point,
these local models are error-prone. Due to the small gran-
ularity of these models, a large number of them is re-
quired even for a moderately complicated scene. Since
any matching with a large set of models to recognize ob-
jects on this level of representation leads to a combina-
torial explosion, another step of information compression
by infusion of outside knowlege is required. This can be
done either by retaining the low level models and select-
ing only the relevant ones by using the laws of perceptual
organization [37], or by building compact volumetric
models of larger granularity. In either case, if the addi-
tional information is not explicit, this is a difficult step to
make. The additional knowledge should enable patching
up for missing information and rejecting erroneous infor-
mation in a robust and verifiable manner. We believe that
the solution is to develop powerful mathematical models
whose parameters can be recovered from the image under
the internal constraints of the models. Those internal con-
straints should reflect the background knowledge of image
formation and shape of real-world objects.

In this paper, we introduce a method for recovery of
compact volumetric models for single part objects. To
solve the shape recovery problem in isolation from seg-
mentation, we assume that only a single object is present
in the scene at a time. Although we made this simplifi-
cation to break up the problem, this assumption is still
valid for some restricted environments [30]. We show that
the shape of those objects can be recovered subject to the
model’s internal constraints. In this work we use a partic-
ular example of compact volumetric models—superquad-
ric primitives with parametric deformations. We intro-
duce a least-squares minimization method to recover
model and deformation parameters using range data as the
input. Range data enables us to study shape recovery in-
dependent of different passive techniques of obtaining
depth data, such as depth from stereo, depth from focus,
or depth from motion. The fitting function which we min-
imize is a cost or energy function whose value depends
on the distance of points from the model’s surface and on
the overall size of the model. We show that the solution
space, which can have more than one ‘‘deep’’ minimum
or acceptable solution and many shallow local minima,
can be searched efficiently with a gradient descent method.
By using a stochastic technique, the procedure can escape
from shallow local minima, and a particular solution
among several acceptable solutions can be reached by
searching in a constrained parameter subspace.

The paper is organized as follows. Section II is on para-
metric models in computer vision, focusing on compari-
son of generalized cylinders and superquadrics. Section
III explains superquadric models in detail. Section IV is
about recovery of nondeformed superquadric models, and
Section V is on recovery of deformed superquadrics.
Least-squares minimization of the model fitting function
is introduced, and results of this model recovery are

shown. Section VI examines several issues concerning
stability and speed of superquadric model recovery. The
discussion in Section VII compares the advantages and
deficiencies of the proposed shape representation, identi-
fies applications for it, and points to possible future ex-
tensions.

II. PARAMETRIC MODELS

Parametric models are suitable models for computer vi-
sion because we can form overconstrained estimates of
their parameters. This overconstraint comes from using
models defined by a few parameters to describe a large
number of image points. To find parameters so that the
model best fits the data is called an overdetermined optim-
ization problem. The result of this optimization is also a
measure of how well models fit the data. This is an im-
portant aspect for computer vision since normally results
of interpretation are tedious to verify and verification is
hence too often omitted.

Although most low level models used in computer vi-
sion are parametric models, they are too local to be able
to capture or make use of the gross structure of the world.
Compact volumetric models of larger granularity seem to
be a better level of description. Generalized cylinders,
proposed by Binford, were the first such influential models
intended specifically for computer vision. The first at-
tempts to recover generalized cylinders were made with a
series of intermediate representations, using rule base rea-
soning, ACRONYM being the most representative of such
systems [10]. Generalized cylinders can also be recovered
directly from short edge segments obtained from stereo
[26]. Common to all these model recovery methods is that
they are based on rules, such as the importance of parallel
lines, which are derived from perceptual organization
ideas. In such rule-based systems, monitoring of progress
is difficult and a direct evaluation criteria of results is not
available. Typically, those systems can recover only a re-
stricted subset of generalized cylinders, such as linear
straight homogeneous generalized cylinders [26].

The power of parametric models is better used if math-
ematical methods such as linear regression, variational
calculus, or least-squares minimization can be used for
recovery of their parameters. The shape and recovery of
such models can be explained in terms of intrinsic and
extrinsic forces. Intrinsic are the internal properties of the
model, governing its possibe arrangements and its poten-
tial shape. Extrinsic forces are the influences which direct
the shape options allowed by the internal constraints.
Shape is a result of the interaction of intrinsic and extrin-
sic forces.

Terzopoulos, Witkin, and Kass [33] have proposed a
3-D shape model similar to generalized cylinders, but en-
hanced with deformation parameters to control the elas-
ticity of the main axis and the walls of the cylinder. Using
this powerful but complicated model, they are able to re-
cover models from 2-D silhouettes. Recovery requires
setting constraints on multiple parameters and this so far
requires human interaction. The fitting function for these
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distributed models is complicated and numerical differ-
entiation is required.

We decided to trade some flexibility in shape descrip-
tion for a simpler and more efficient recovery of models
by adopting a shape vocabulary for modeling on the level
of parts which consists of superquadrics and global de-
formations [23]. Description of shapes on the part level
does not require complicated models. While a cylinder
with a bump on it could be modeled with a single primi-
tive in the modeling system proposed by Terzopoulos,
Witkin, and Kass, it would require two primitives or parts
in the vocabulary that we use—a cylinder and a bump.
This level of description is also favored by some psy-
chologists when trying to explain human perception [6].
Superquadric models are implicitly constrained by the
class of shapes that they can model and do not require any
setting of external constraints from case to case. An im-
portant advantage for ease of model recovery is that the
function that has to be minimized is differentiable every-
where. This is due to the fact that a superquadric surface
is defined with a single analytic function. Superquadric
shapes form a subclass of shapes describable by general-
ized cylinders. Boolean operations can be defined on su-
perquadric primitives and variations of shape can be de-
scribed with two shape parameters or with global
parametric deformations. Superquadrics with parametric
deformations encompass a large variety of natural shapes
yet are simple enough to be solved for their parameters.
This enables uniform handling of a large set of primitives
with a small set of perceptually relevant parameters. Due
to their built-in symmetry, superquadric models predict
the shape of occluded parts by assuming global symme-
try. This conforms with the principle of parsimony—
among several hypothesis select the simplest—which
guides human perception [13].

III. SUPERQUADRICS

Superquadrics are a family of parametric shapes that
were discovered by the Danish designer Peit Hein [12] as
an extension of basic quadric surfaces and solids. Super-
quadrics have been used or proposed for use as primitives
for shape representation in computer graphics [4] and
computer vision [23]. Superquadrics play the role of pro-
totypical parts and can be further deformed and glued to-
gether into realistic looking models as is nicely demon-
strated by Pentland’s Supersketch graphics system [23].

A superquadric surface is defined by the following 3-D
vector

a, cos®' (1) cos? (w)
x(n, w) = | a; cos® () sin® (w)
a; sin®' (1)
—-T/2 <9 <7x/2
-T = w < 7.

(1)

The vector x originates in the coordinate center and
sweeps out a closed surface in space when the two inde-

pendent parameters, angles n and w, change in the given
intervals. w is the angle between the x-axis and the pro-
jection of vector x in the x-y plane, while 7 is the angle
between vector x and its projection in the x-y plane. Pa-
rameters 1 and w correspond to latitude and longitude an-
gles of vector x expressed in spherical coordinates. Pa-
rameters a4, d,, a; define the superquadric size in x, y,
and z coordinates, respectively. e; is the squareness pa-
rameter in the latitude plane and e, is the squareness pa-
rameter in the longitudine plane. In writing (1) we fol-
lowed the established notation [4], [23]. But since
function values of cos and sin are negative for same
values of both 5 and w, the first component of vector x
should be written as sign (cos (1) cos (w)) |cos ()]
| cos (w) | . This prevents components of vector x to have
complex values, which are in general a result of a nega-
tive number raised to a real power. The same holds for
the other two components of vector x.

Superquadrics can model a large set of standard build-
ing blocks, like spheres, cylinders, parallelepipeds and
shapes in between (Fig. 1). When both ¢; and ¢, are 1,
the surface vector defines an ellipsoid or, if a;, a,, a3 are
all equal, a sphere. When ¢; is << 1 and &, = 1, the
superquadric surface is shaped like a cylinder. Parallel-
epipeds are produced when both ¢, and ¢, are << 1. Flat
beveled shapes are produced when either ¢; or e, = 2, and
pinched shapes are produced when either ) or e, > 2.
We do not use pinched shapes in our model vocabulary
because we prefer to model concavities with deforma-
tions. Star-like shapes (e,, € >> 2) perceptually consist
of parts and should be modeled as a union of parts.

Modeling capabilities of superquadrics can be en-
hanced by deforming them in different ways, including
tapering, bending and making cavities (Fig. 1). Defini-
tions for tapering, bending and cavity deformations and a
method for their recovery are given in Section V.

A. Superquadric Inside-Outside Function

Equation (1) is a parametric equation of a superquadric
surface. By eliminating parameters 7 and w, using equal-
ity cos? (a) + cos* (a) = 1, we get the following im-
plicit equation

2/e 2/e\ e2/e 2/a
a a as

Based on this implicit equation of the superquadric sur-
face we define the following function

2/e2 2/e2\ /€
() (2

We refer to this function as the inside-outside function
because it determines where a given point [x, y, z] lies
relative to the superquadric surface. If F(x, y, z) = 1,
point (x, y, z) is on the surface of the superquadric. If

(2)

(3)
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Fig. 1. Superquadrics (1, 2, 3) and deformed superquadrics (models 4,
and 5 are tapered, model 6 is bent, model 7 is tapered and bent, models
8 and 9 are a result of a cavity deformation).

F(x,y,z) > 1, the corresponding point lies outside and
if F(x, y, z) < 1, the corresponding point lies inside the
superquadric.

Note the outermost exponent ¢, in (3). This additional
exponent ¢, does not change the superquadric surface it-
self but is necessary if the function is used for shape re-
covery with a least squares minimization method. It en-
sures that, independent of the current value of ¢,, points
at the same distance from the superquadric surface have
the same value of F(x). Otherwise, when ¢; << 1, even
very small deviations of a point from the superquadric
surface in the z coordinate are greatly amplified. For ex-
ample, minimizing the inside-outside function without
this correction in the case of a cylindrically shaped object,
where ¢; = 0.1 and ¢; = 1, does not give consistent so-
lutions. Instead of finding the expected cylindrical shape,
a gradient minimization algorithm might converge to-
wards a very long, flat beveled shape (¢, = 2, ¢, = 1, a;
>> a,, a,), even when the initial estimates are close to
the desired solution. The same problem is described else-
where although no explanation for the cause of the prob-
lem is given [8].

B. Superquadric Inside-Ouiside Function for General
Position and Orientation

The inside-outside function (3) defines the superquad-
ric surface in an object centered coordinate system (xg,
Ys> Zs). Input 3-D points from passive stereo or range
imaging, on the other hand, are expressed in a world co-
ordinate system. We move points to the center of the
world coordinate system with a homogeneous coordinate
transformation T ! (Fig. 2)

Xg Xw

Ys - 7! Yw (4)
s iw

1 1

Transformation T ! is the inverse of transformation ma-
trix T, which first rotates a point and then translates

X
S zg

Xw

Fig. 2. Coordinate transforms T and T~ ' link the object centered coordi-
nate system of the superquadric with the world coordinate system of the
ranging device. ‘

it from the origin of the world coordinate system for
[ px» Py P2 117. By inverting the homogeneous transfor-
mation matrix T and using Euler angles (¢, 6, ) to ex-
press the elements of the rotational part of transformation
matrix T [22] we get the inside-outside function for su-
perquadrics in general position

F(XW, Yw> ZW) = F(xW’ Yws Zw; Gy, Ay, A3,

€1, €2, ¢9 9; ¢9 Dx» py9 pz)' (5)

The expanded inside-outside function has 11 parameters;
ay, a,, as define the superquadric size; €, and ¢, are for
shape; ¢, 6, ¥ for orientation; and p,, Py, p. for position
in space. We will refer to the set of all model parameter
values as A = {a;, a,, " * ,a;}.

C. Ambiguity of Superquadric Shape Description

Different sets of superquadric parameters can produce
identical shapes. Besides the common symmetries with
respect to rotation, superquadrics can also describe the
same shape with different sets of shape parameters ¢, and
€;. For example, the same parallelepiped with slightly
rounded edges (a; = a, = 1,¢;, =0.1and e, = 0.1) can
be represented after a rotation for = /4 around axis z of
the object centered coordinate system, with ¢, = 0.1, ¢,
=19,anda; = a, = V2.

If the recovered models are used only to represent space
occupancy (to do path or grasp planning, for example)
such ambiguities are not a problem. Nonunique shape de-
scription is a problem when the recovered shape descrip-
tion is used for matching with a database of models. There
are two ways that one can solve the problem. One can
accept this lack of uniqueness and find the correspondent
equivalence class after shape recovery. The other possi-
bility is to constrain the parameter space during shape re-
covery to force the system to find particular solutions. An
example of such constrained shape recovery is given in
Section VI-C.

IV. RECOVERY OF NONDEFORMED SUPERQUADRIC
MoDELS

In this section, recovery of nondeformed superquadrics
in general position is described. The recovery method is
based on least squares minimization of a fitting function
which is based on the inside-outside superquadric func-
tion (3).
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Other approaches to recovery of superquadrics for shape
description described in the literature are due to Pentland
[23], [24] and Boult and Gross [8]. Pentland [23] first
suggested to solve analytically for all independent param-
eters using the superquadric parametric equation (1) and
the corresponding parametric equation for superquadric
surface normals. Linear regression on all available infor-
mation would provide the best fit. As input Pentland sug-
gested information from 2-D contours and shading. An
analytical solution turned out to be too complicated and
this approach was never implemented for objects in gen-
eral position.

Pentland’s second approach [24] is a combination of
part model recovery and segmentation based on search
through the entire superquadric parameter space. Input are
3-D points from range images. For each range image point
or pixel, the superquadric parameter space is searched to
provide the best fit for the immediately surrounding area.
The goodness of fit is evaluated with a linear combination
of the data error using a minimal-length encoding and the
number of parameters in the description. Such a brute
force is computationally expensive and practical only on
powerful parallel computers. We will show in the rest of
this section that a faster search in the superquadric param-
eter space is possible by minimizing a fitting function
when combined with a stochastic technique to avoid shal-
low local minima.

Boult and Gross [8] also use a gradient descent min-
imization technique. Since they do not correct the inside—
outside function for fitting (see Section III-A), they report
problems with convergence of cylindrically shaped ob-
jects.

The next two sections are on least-squares minimiza-
tion (Section I[V-A) and on computing rough position, ori-
entation and size of the model (Section IV-B), which is
necessary to initialize minimization. Throughout this work
we used range images obtained with a laser imager built
at University of Pennsylvania [34]. Before model recov-
ery, the supporting surface was removed by fitting a plane
to it and subtracting the points on or close to that plane.

A. Least-Squares Minimization of Superquadric Inside—
Outside Function

Suppose we have N 3-D surface points (xXw;, Yw;» 2w;) >
i =1, -+, N which we want to model with a super-
quadric. We want to vary the 11 parameters q;, j = 1,
-+ +, 11 in (5) to get such values for a;’s that most of the
3-D points will lay on, or close to the model’s surface.
There will probably not exist a set of parameters A that
perfectly fits the data. Finding the model A for which the
distance from points to the model is minimal is a least-
squares minimization problem. Since, for a point [xy, yw,
zw 17 on the surface of a superquadric F(xw, Yw, Zw; 4,

-, a;;) =1, we have to find

,all)]2~ (6)

N
min _Z] [1 — F(xw, Yw, Zws @y, *
i=

Due to self occlusion, not all sides of an object are visible
at the same time. We assume a general view for recovery
of object shapes. Seeing, for example, just one side of a
cube does not provide enough information on the extent
of the whole object [18], [17]. But even assuming a gen-
eral viewpoint, objects such as parallelepipeds or cylin-
ders (objects with surfaces where at least one principal
curvature = 0) do not provide enough constraints for
shape recovery with the inside-outside function alone.
Parallelepipeds of different size, for example, satisfy (6)
given range points on three or two adjacent faces. Among
all those solutions we want to find the smallest super-
quadric that fits the given range points in the least squares
sense. We have to find a function with a minimum cor-
responding to the smallest superquadric that fits a set of
3-D points and such that the function value for surface
points is known before minimization. We define a new
fitting function

R = Vaja,a;(F — 1), (7)

which fulfills the first requirement with factor (a,a,a3)"'/?
and the second requirement with factor (F — 1), because
function R = O for all points on the superquadric surface.
In Section VI-C we explain how the factor (a,a,a;) 172,
which corresponds to the superquadric size, was chosen.
Now, we have to minimize the following expression

N

. 2
min 2 [R(xws, ywo 2z @ s an)]- o (8)

i=
Since R is a nonlinear function of 11 parameters a;, j =
1, - -+, 11, minimization must proceed iteratively. Given

a trial set of values of model parameters A;, we evaluate
(7) for all N points and employ a procedure to improve
the trial solution. The procedure is then repeated with a
set of new trial values A, until the sum of least-squares
(8) stops decreasing, or the changes are statistically mean-
ingless.

We had to introduce inequality constraints on the set of
function parameters A. Constraints that we use are simple
bounds on parameter values in the form of intervals. A
constraint becomes active when a parameter reaches the
lower or upper bound of the allowable interval. Observing
that the constraints became active mostly for those sets of
parameters A that were not accepted because the step in
the derivative direction was too large, we concluded that
constraints are necessary not so much to assure conver-
gence to a local minimum but to achieve numerical sta-
bility. For example, when any of parameters a;, a,, a3,
€1, € = 0, the inside-outside function (3) becomes sin-
gular.

We use the Levenberg-Marquardt method for nonlinear
least squares minimization [25], [29] since first deriva-
tives 6R /8a; for i = 1, - -+, 11 can be computed ana-
lytically. Parameter constraints are implemented by a
simple projection method [29]. We take the search vector
or the trial set of parameters A, generated by the uncon-
strained minimization technique, and project it so that it
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lies in the intersection of the set of constraint intervals.
We use the following constraints: a,, a,, a; > 0 and 0.1
< {e1, &} < 2. When ¢, ¢, < 0.1, the inside-outside
function (3) might become numerically unstable, al-
though the superquadric shape stays perceptually the
same. When €, ¢, > 2, superquadrics have concavities
and, as explained in Section III, we do not use those
models in our shape vocabulary. We explain in the next
section how the first trial set of parameters Ag is estimated
experimentally.

B. Computation of Initial Estimates for Model
Parameters

Initial estimate of the set of model parameters Ay de-
termines to which local minimum the minimization pro-
cedure will converge. When testing the iterative model
recovery method described in the previous section, we
found that only very rough estimates of object’s true po-
sition, orientation, and size suffice to assure convergence
to a local minimum that corresponds to the actual shape.
This is important since these parameters can be estimated
only from the range points on the visible side of the object
and hence the estimates cannot be very accurate to begin
with. Initial values for both shape parameters, ¢, and e,
can always be 1, which means that the initial model Agis
always an ellipsoid. This insensitivity towards correct es-
timation of the two shape parameters was achieved when
the outermost exponent ¢; was added to the inside-outside
function (3). The position of the initial ellipsoid Az is set
to the center of gravity of all N range points:

pXE = f,
p,vE = yy
Pxr=1Z

To compute the orientation of the object centered co-
ordinate system, we compute first the matrix of central
moments

=3+ @=-2)" ~(3-3)(x -3
-3+ @-2)" ~(z-2)(3n-7)
—()’i —i)(z; _Z)

1
M—N;

~ (= %)(»-7)

(5 —%)(z - 2)

Central moments are moments with respect to the center
of gravity (¥, ¥, Z). We want to find a rotation matrix R
which makes the matrix of moments M diagonal [28],
[16]. The new diagonal matrix of moments D is then

D = R'MR, (10)

where R is the rotational part of transform T in Section
III-B. On the other hand, matrix M can be diagonalized
with a diagonalization matrix @, whose columns are ei-
genvectors of matrix M [31]

D=0 'MQ. (11)
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Comparing (10) and (11) gives
R =0 (12)

Rotation matrix R that orients the object centered coor-
dinate system along the axis of minimum and maximum
inertia can be assembled out of eigenvectors of matrix M.
Eigenvector e; with the smallest eigenvalue A\, corre-
sponds to the minimum-inertia line and the eigenvector e
with the largest eigenvalue to the maximum inertia line.
The minimum-inertia line is also known as the principal
axis [28]. We use the Jacobi method for computing the
matrix of eigenvectors which consists of a sequence of
orthogonal similarity transformations designed to annihi-
late one of the off-diagonal matrix elements. The Jacobi
method is fast for matrices of order less than 10 and ab-
solutely foolproof for all real symmetric matrices [25]
which is the case with matrix M.

We decided to orient the object centered coordinate sys-
tem so that the new axis z lies along the longest side for
elongated objects (axis of least inertia) and along the
shortest for flat objects (axis of largest inertia), based on
the assumption that bending and tapering deformations
normally affect objects along their longest side. For round
flat objects, on the other hand, we want the z coordinate
axis to coincide with the axis of the rotational symmetry
(Fig. 8). Given the three eigenvectors e, e,, €5, we have
to assign them coordinate axes labels. As explained, we
want to control only the orientation of the z axis. For or-
dered eigenvalues \; < N, < \;, of the three correspond-
ing eigenvectors e;, e,, e;, the z-axis is assigned accord-
ing to the following rule

if [N — Ny < [Ny = Ay then z = e,
else z = e,.

This puts the axis z along the long side of elongated ob-
jects and perpendicular to flat, rotationally symmetric ob-
jects. From the elements of the rotation matrix R [which

—(Zi - Z)(’Ci —X)
(9)
-3+ (n-3)

makes up the rotational part of transform T—(4)] we com-
pute the equivalent Euler angles ¢z, 0, ¥ [22].

For evaluating the inside-outside function (5) we could
use the elements of the rotational matrix R directly, but
the partial derivatives required for minimization of the fit-
ting function are all expressed in terms of Euler angles.
The size of the initial ellipsoid Ag is simply the distance
between the outermost range points along each coordinate
axis of the new object centered coordinate system.

Rotations expressed with homogeneous transforms be-
come degenerate for some combinations of angles [22].
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During experimentation with shape recovery we did not
have problems with degenerate rotations. If necessary, the
problem can be avoided by using quaternions for express-
ing rotations.

The initial estimates computed in the described fashion
are sometimes very close to the actual parameter values.
In the example shown in Fig. 3, however, the estimated
orientation is quite different from the actual orientation.
This is due to occlusion and unequal distribution of range
points on the object’s surface, all made worse because the
object is not elongated. The fitting procedure recovers the
right model in spite of very poor estimates for orientation.
This would suggest that we do not have to estimate ori-
entation at all. The initial ellipsoid could have a default
orientation, the same as the world coordinate system for
example. This would be acceptable for blob-like objects.
But for elongated objects, that might require additional
deformations for shape description, because we would
lose control over the orientation of the model’s z-axis.

V. RECOVERY OF PARAMETRIC DEFORMATIONS

Deformed superquadrics can be recovered using the
same technique as for the recovery of nondeformed su-
perquadrics. The only difference is that some additional
parameters describing deformations must be recovered
also. In general, any shape deformation can be recovered
using the technique described in Section IV, as long as
the inverse transformation is available such that x, y, z
components of the nondeformed superquadric can be ex-
pressed in terms of X, Y, Z components of the deformed
superquadric and the necessary deformation parameters.
Of interest are deformations that occur often in nature or
are used for manufacturing of man-made objects. Defor-
mations such as simplified tapering, bending and twisting
require just a few parameters [5].

A shape deformation is a function D which explicitly
modifies the global coordinates of points in space

X = D(x) (13)

where x are the points of the undeformed solid and X are
the corresponding points after deformation. Both x and X
are expressed in the object centered coordinate system.
Any translation or rotation is performed after the defor-
mation. This can be described schematically [38] by

Trans (Rot (Deform (x))). (14)

Tangent and normal vectors at every point on the de-
formed surface, which are important for rendering or for
checking the consistency of the model with the input range
points, can be computed from the tangent and normal vec-
tor of the undeformed model simply by a matrix multipli-
cation. Tangent vectors transform under deformations by
multiplication with the deformation function’s Jacobian
and normal vectors transform by multiplication with the
inverse transpose of the same Jacobian matrix [5].

We started by using Barr’s definitions for tapering and
bending [5]. At the very beginning of this work, we con-
sidered the use of symmetry axis and Gaussian spheres as

Fig. 3. Shape recovery of a parallelepiped-like object. On top are the in-
tensity image and the corresponding range image. Below is the recovery
sequence showing the initial model estimate (E ) and models after the
1st, 3rd, 7th, 15th and 30th iteration.

indicators of deformations. Now we believe that it would
be difficult to estimate deformations accurately and reli-
ably enough to be really useful. We follow instead the
principle that deformation parameters should be re-
covered directly from the input data through shape model
recovery. In the initial set of parameters Ag, all defor-
mation parameters correspond to nondeformed primitives
by default. This called for several changes in definitions
of deformations which were originally provided by Barr
[5]. Barr defined deformations for computer graphics ap-
plications where the designer has the freedom to place and
orient the primitives to his liking. During shape recovery
such interaction is not possible. Consider, for example,
that bending is defined in a single plane as in [5]. Once
the initial model is set into the world coordinate system,
the whole model cannot rotate freely during the recovery
procedure to bring the plane where bending is defined into
the position where bending is required. Deformations
should be defined so that the object centered coordinate
system constrains as little as possible the execution of de-
formations. In other words, the solution space around ac-
ceptable solutions should be convex. We introduced an
additional parameter for the bending deformation, which
allows for bending in any plane that goes through the
z-axis of the object centered coordinate system. Tapering
deformation was enhanced to enable different tapering in
x and y directions so that modeling of weclge shapes is
possible (Fig. 4).
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Fig. 4. Shape recovery of a tapered object—a wedge. On top are the in-
tensity image and the corresponding range image. Below is the recovery
sequence showing the initial estimate (£ ) and models after the 1st, 3rd,
7th, 15th and 30th iteration when 13 model parameters were adjusted
simultaneously.

We introduced also a new deformation for modeling
cavities. The prevailing way of modeling concave parts is
to use set difference or intersection. This is probably the
best way for modeling holes small in comparison to the
rest of the object. In man-made objects, such holes are
actually made by removing material. Larger cavities, like
various kinds of vessels (plates, bowls, cups), are nor-
mally not made by taking material away, but by deform-
ing material into the desired shape. A process resembling
a “‘potter’s wheel’’ technique of making cavities is behind
our definition of a cavity deformation. Using such defor-
mation one can model a whole continuum of shapes rang-
ing from flat plates to bowls (Fig. 8).

In the rest of this section, tapering, bending, and cavity
deformations are defined and their inverse deformations
derived. For each deformation an example of model re-
covery is shown.

A. Tapering
Tapering deformation along axis z is
X=f(z)x
Y=£()y
Z =z, (15)

where X, Y, Z are the components of the surface vector X
of the deformed superquadric, f, and f, are the tapering
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functions in the x- and y-axes of the object centered co-
ordinate system, and x, y, z are the components of the
original surface vector x.

To be able to recover the deformation parameters, the
original surface vector components x, y, z must be ex-
pressed in terms of the deformation parameters and co-
ordinates of input points X, ¥, Z. The inverse transfor-
mation is given by

x = X/f(2)
y = Y/f(z)
z=72. (16)
For linear tapering, the two tapering functions are
K,
[(Zs) = a—32s +1 (17)
K
MZs)==Zs + 1, (18)
3

where —1 < K < 1. When expressions for x, y, z are
inserted into (5), we get the inside-outside function for a
tapered superquadric in general position

F(X,Y,Z)=F(X,Y,Z,a, -+, a,, K, K)). (19)

In the set of initial parameters Az, parameters K,z =
K,z = 0, which corresponds to a nondeformed model.
During model recovery both tapering parameters are ad-
justed simultaneously with the other 11 parameters (Fig.
4).

B. Bending

We use a simple bending deformation which corre-
sponds to a circular section in the bending plane. The
bending plane is defined by coordinate axis z and vector
r in the x-y plane whose direction is defined by angle «
(Fig. 5). The bending deformation is performed first by
projecting the x and y components of all points onto the
bending plane, performing the bending deformation in that
plane, and then projecting the points back to the original
plane. The projection of a point (x, y) on the bending

plane is
r=cos (@ — B)Vx* + 32, (20)
and
g = arctan%:. (21)
Bending transforms r into
R=k"=cos(y) (k™' =r), (22)

where v is the bending angle, computed from the curva-
ture parameter k

v =zk . (23)

By projecting R back onto the original plane, which is
parallel to the bending plane, we get the transformed sur-
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Xs

X,y

XY

¥s

Fig. 5. Definitions for bending parameters: left is the x-y plane, right is
the bending plane z-r.

face vector
X=x+cos{(a)(R—-r),
Y=y +sin(a)(R - r),

Z=sin(y)(k™' = 7r). (24)
The inverse transformation is given by
x=X—cos(a)(R—r),
y=Y—sin(a)(R—-7r),
2=k, (25)
where
y = arctan m, (26)
r=k' = NZ2+ (k7' = R), (27)
Y
R = cos (a — arctan —}E> vx? + Y4 (28)

Inserting (25) into (5), we get the inside-outside func-
tion for bent superquadrics in general position, which has
13 parameters

F(X,Y,Z)=F(X,Y,Z,ay, -+ ,ap, k, a).

(29)

The default values for bending parameters in the initial
set of model parameters A correspond to an unbent su-
perquadric. Since, for k = 0, the above equations become
singular, a very small number is used for kg instead. ag
= 0, although any real value could be used.

C. Combinations of Deformations

Deformations can be combined in the form of hierar-
chical structures [5]. A tapered model can be bent by tak-
ing the tapered surface position vector and inserting it into
the bending equations. The new surface normal vector
transformation matrix is computed by multiplying the pre-
vious two normal transformation matrices. Since matrix
multiplication is not commutative, it is not surprising that
deformations are not commutative

Bend (Taper (x)) # Taper (Bend (x)).  (30)

During model recovery, we have to settle for a specific
ordering of deformations. Tapering usually precedes
bending, or in other words, tapering is perceived as to
affect the model along the longest axis of symmetry for
elongated objects, whether the axis is bent or not. Leyton
[19] has shown that deformations acting on prototypical
shapes have a specific order, such that the transformation
is more structure-preserving. The corresponding model
has the following structure

Trans (Rot (Bend (Taper (x)))) (31)

Model recovery of a tapered and bent object is shown in
Fig. 6.

C. Cavity Deformation

Cavities are made by starting with a thin circular plate
and bending its sides uniformly in all directions symmet-
rically around axis z. Models for objects with such cavi-
ties cannot be recovered with the same general fitting
function as bending and tapering deformations can. The
reason is that a cylindrical model, for example, fits the
body of a cup with thin walls as well as a model with an
actual cavity does. The flaw of a the first model can be
detected though. If the range image is taken from a single
viewpoint, then the dot product of the viewing direction
vector with the model surface vector through any input
range should have the same sign. In the above example,
the normals on the cylinder through the range points on
the inside of the cavity have the wrong sign. In this way,
a cavity can be inferred. To recover cavities, we could
use the surface normal information during model recovery
as we suggested before [2]. We decided to do it in two
steps instead (Fig. 8). First we use the fitting function (7)
to recover a convex model enclosing the object. If the
surface normals through the input range points are not
consistent with the first model, another recovery is done
using a fitting function tuned to cavities (Fig. 8). Cavities
typically have very thin walls in comparison to other di-
mensions. Since thickness corresponds to parameter a;,
we want to emphasize models with small a;. We use the
following fitting function for recovery of cavities

Rc(X,Y,Z) = a3(F - 1). (32)
The second recovery can start either from the initial model
A or closer to the solution by using the recovered convex
model A.

The cavity deformation is defined as follows (Fig. 7).
First, Cartesian coordinates x and y of a point on the sur-
face of the nondeformed superquadric are transformed into
polar coordinates

r=x*+y% (33)
o= arctan)y—c. (34)

r is then bent as defined by the radius of curvature k ~'.
The range of the bend is controlled by parameters ry and
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Fig. 6. Shape recovery of a tapered and bent object—a squash. On top are
the intensity image and the corresponding range image. Below is the
model recovery sequence when a total of 15 model parameters, including
tapering and bending parameters, were adjusted simultaneously. The  Fig. 8. Shape recovery of an object with a cavity—a bowl. On top are the
above sequence took about 20 seconds on a VAX 785 computer. intensity image and the corresponding range image. Below is the initial

estimate (E) and the best fitting convex model after 30 iterations—an
ellipsoid in this case. In model N are displayed those surface normals on
zg the recovered model that have the wrong direction, indicating that the
points through which those normals 80 could not be seen from the given
viewpoint. Next is the recovery sequence (7-15-30) using a fitting func-
tion tuned to cavities (32).

When converting back to Cartesian coordinates, the
surface position vector X of the deformed superquadric is

X = Rcos (a)

Fig. 7. Definitions of cavity deformation parameters. Zs is the axis of ro- Y = R sin (a)
tational symmetry. ro and r, define the bent region.

b4 ifr<mn

n ro ifr<r k™' = cos (v) (k7! - z)
F=4r ifro<r<n (35) Z = ifro<r<n
r ifr < r. k™' = cos (y) (k™" = z) + sin () (r — r)
The bending angle is given by ifry <r
v = k(P = ry). (36) (38)

After bending the polar coordinate r becomes The inverse transformation is given by

rooifr<n R=+VX"+ 1. (39)

. -1 _
ro + sin () (k z) If R < ry, then

R = ifro<r<n =X
ro + sin (y) (k™' = 2) + cos (v) (r — r,) N
ifr, <r.

(37) 1=2Z (40)
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If ry < R, then compute first

= arctanz (41)
a e
R —_
v = arctan ﬁ, (42)
Y
=1+
r ry % (43)
If r < rq, then
x = rsin ()
y = rcos (a)
_ -l
A ek ) (44)
cos ()
else
vy = k(r = ro), (45)
r=r +cos(y)(R —ry) +sin(y)(Z— k"), (46)
and

x = rcos (a)

rsin (o)

SR N PR Py s
o8 (1) Z—k sin () ( )+ T

<
I

(47)

In the initial set of parameters Ag, which is a nonde-
formed model, parameters roz = rz = 0. kg is a very
small number since, for k = 0, the above deformation
equations become singular.

VI. STABILITY AND SPEED OF MODEL RECOVERY

The fitting function (7) can be regarded as an energy
function on the space of model parameters. In this space,
several minima that are equally deep can exist, corre-
sponding to the shape ambiguities described in Section
III-C. Some of the deep minima are weak minima. A weak
minimum, as opposed to a strong minimum, is when one
or several model parameters can take up to a range of
values without affecting the function value. For example,
a model for a cylindrical object can rotate around the
z-axis without changing the value of the fitting function.
Besides these significant minima, a profusion of shallow
local minima can be expected. This section explores dif-
ferent stability issues in light of this existence of more
than one acceptable solution.

A. Local Convexity

First, to show local convexity (Fig. 9) in the neighbor-
hood of a solution, we examined how the fitting function
changed when one of the model parameters was changing
for the cylinder model in Fig. 17. This simple way of
looking at the neighborhood of a solution does not fully

20000 —{
fitting function
(log scale) 200
2
T T T T
0.25 a; 0.7 2, ay 1.3a, 1752,
ay (size along x axis)
800
fitting function
(log scale) 40
2
T T T T
- 0 -n/2 ] 0+ /2 o+
¢ (first Euler angle)
20000
fitting function &
(log scale) 2004 ©2
€
28
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0.1 1 1.9

shape parameters €, and €,

Fig. 9. Influence on the fitting function for the cylinder in Fig. 17 obtained
by changing one model parameter at a time. Although all parameters are
interdependent, these 2-D plots give some insight into the behavior of
the fitting function around a ‘‘deep’’ minimum.

reflect the complex relationships in the 11+ dimensional
parameter space of deformed superquadric models.

B. Stochastic Technique to Combat Shallow Local
Minima

Minimization methods guarantee convergence in gen-
eral only to a local minimum. It depends on the starting
position in the parameter space (Ag ) to which minimum
will the minimization procedure converge. We have to as-
sure that the minimization procedure does not get stuck in
a shallow local minimum, but finds the deepest minimum
in the close vicinity. Shallow local minima are avoided as
solutions during model recovery by adding Poisson dis-
tributed noise to the value of the fitting function of the
accepted model before comparing it with the value of the
fitting function of the model under consideration. Note
the spikes in fitting function in Figs. 11 and 18—they are
due to the added noise. This stochastic technique intro-
duces ‘‘jitter’’ into the fitting procedure and resembles
simulated annealing.

C. Constraining Parameters to Achieve Unique
Solutions

When describing ambiguities of superquadric shape pa-
rameters in Section III-C, we suggested constraining the
parameter space as a way to achieve unique solutions. We
took the range image of the box in Fig. 3 and recovered
another model, this time with shape parameters con-
strained to 0.1 < {¢, ¢&,} < 1. The solution was again
a parallelepiped but with ¢, = 0.1 (Fig. 10) instead of ¢,
= 1.9 as in Fig. 3.

D. Influence of the Size Parameter on the Fitting
Function

The size factor in the fitting function R (7) is necessary
to transform weak minima in the inside-outside function
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Fig. 10. Model recovery of the same object as in Fig. 3. By constraining
the range of shape parameters to 0.1 < ¢, €; < 1.0, another parallel-
epiped-like model was recovered with e, = ¢, = 0.1.

to strong minima, which correspond to models with the
smallest volume that still fit the input range points in the
least squares sense. Note that the size factor va,a,a; does
not introduce a new global minimum into fitting function
R. When a4, a,, ora; — 0, fitting function R — oo. The
size factor in the fitting function also changes the form of
the parameter space—compare Figs. 11 and 12. The far-
ther away a point is from a deep minimum (R = 0) in
the parameter space, the larger is the value of the inside-
outside function in that point. In the fitting function, this
value is multiplied with the size factor, which in general
also increases when a point gets farther away from a deep
minimum (when any of the two shape parameters in-
crease, the size parameters must also increase, to keep the
model’s volume about the same size). The result is that,
in comparison to the plain inside-outside function param-
eter space (Fig. 12), the fitting function parameter space
has steeper walls around the deep minima (Fig. 11). This
eliminates some of the shallow local minima and flattens
the rest of the local minima. Larger gradients around the
deep minima also cause faster convergence of the min-
imization algorithm (see Section VI-F).

We recovered a model of the same object with four dif-
ferent size factors in the fitting function (Fig. 13). The
noticeable differences in recovered shape are due to the
size factor in the fitting function. Because the largest vol-
ume obtainable for a given a,a,a; corresponds to paral-
lelepiped shapes, such shapes are favored when the size
factor overpowers the inside-outside function. Note that
computing the actual volume of the superquadric would
not eliminate this bias toward square shapes. The expres-
sion for superquadric volume has the form: K(a,a,a;),
where K is a function (series expansion) of ¢, and ¢,. For
example, common geometric primitives that can be mod-
eled with superquadrics have the following values of K:
for diamond shapes K = 4 /3, for ellipsoids K = 4 /37,
for cylinders K = 2w, and for parallelepipeds K = 8. The
larger the weight of the size factor in the fitting function,
the more favored a model with a rectangular cross section
(Fig. 13). When testing different size factors on different
shapes, we selected the size factor va,a,a; because it

Fig. 11. The above surface is part of the parameter space using the fitting
function (7) for recovery of the box-shaped object in Fig. 3. The two
‘‘deep’” minima correspond to two acceptable solutions: (e, = 0.1, ¢,
=2), shown in Fig. 3 and (¢, = 0.1, ¢, = 0.1), shown in Fig. 10. The
surface was computed by fixing the two shape parameters at 400 choices
of €, and ¢, and computing a minimum in 20 iterations. The sharp peaks
on the surface are due to the addition of noise during minimization.
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Fig. 12. This is the same surface and for the same object as in Fig. 11,
but showing only the inside-outside function (5). Such as in Fig. 11, the
surface has two global minima which correspond to two acceptable so-
lutions, but the slopes around the minima are flatter.

(b)

© (d)

S S

Fig. 13. Models of the same object, recovered in 20 iterations with the
following size factors in the fitting functions: (a) (a,a,a;)'/?, (b)
(a1a2a3)'"?, (¢) (a,a,a5)*/%, and (d) (a,a,a;).

gives perceptually better results and the residuals recom-
puted with the inside-outside function alone are the
smallest (Fig. 14). When comparing the rate of conver-
gence using different size factors, we observe that the
larger the factor, the steeper are the walls around the deep
minima, and the faster is the convergence rate (Fig. 15).
An adaptive technique would make the size factor a func-
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Flg 14. Residuals, recomputed for the inside-outside function (without
the size factor), during the recovery of the four models in Fig. 13: A—
(aasay)'?, B—(a1aza3)' % C—(aya,a;)*, and D—(a,a,a;).
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Fig. 15. Convergence rate for three different fitting functions used for re-
covery of models in Fig. 13: B—(a,a.a3)'/?, C—(a,a,a;)*’?, and
D—(a,a,a5). The fitting functions are scaled differently and their val-
ues cannot be compared directly. The larger the size factor in the fitting
function, the faster the convergence.

tion of the residual. At the start of minimization when the
residual is large, the weight of the size factor should be
large to speed up convergence and come close to a deep
minimum. Once there, the size factor is reduced to get a
better fit.

E. Consistency of Interpretation

To show that the recovery method that we devised has
consistent solutions we did the following experiment. We
took a range image of the same object in several different
positions and orientations and compared the recovered
models (Fig. 16). Some of the recovered model parame-
ters can be compared directly, others, such as a, and a,
parameters cannot be compared directly due to the ambig-
uous orientation of the bending plane. The sum or product
of a; and a, parameters reflects the size of the cross sec-
tion better.

F. Speed of Model Recovery and Multiresolution

The most time consuming part in the described model
recovery is the repeated evaluation of the fitting function
and of its partial derivatives for all input range points.
Since the sum of least squares is a monotonically increas-
ing function, an iteration can be shortened by monitoring

Fig. 16. Recovered models of the same object (a banana) in eight different
positions and orientations. All recovered models are perceptually simi-
lar.

the partial sum after each addition. As soon as the sum is
larger than the sum of least squares of the accepted model,
it makes no sense to continue. The model cannot be ac-
cepted.

Faster convergence is possible by improving the method
for selecting the trial set of parameters in the minimiza-
tion method [29]. This reduces the number of rejected it-
erations because of a too big jump in parameter values.

A substantial speed up can be achieved by subsampling
the original range map. The models recovered from
coarser range maps can still be a very good representation
of the imaged object (Fig. 17). During iterative model
recovery, the fitting function typically drops very fast un-
til it reaches a plateau. Further iterations gain no substan-
tial improvements of fit (Fig. 18). It is well known that
copies of an image at multiple resolutions, generally
known as a pyramid data structure, can dramatically im-
prove the speed and effectiveness of many early vision
algorithms [1]. One can view the coarser grids as correc-
tion grids, accelerating convergence of the minimization
scheme on the finest grid by efficiently liquidating smooth
error components [9]. Fast and efficient recovery of su-
perquadric models can be done on a hierarchy of range
images with different resolution. We implemented a mul-
tiresolution model recovery scheme which starts on a very
coarse range map. Once no improvement in fit is made,
the minimization continues on a denser range map until
the finest or the original range map is reached (Fig. 18).
Multiresolution is faster because it takes less time for
computation in each iteration and not because of a smaller
number of iterations. During multiresolution recovery the
number of iterations can get even larger because the
models for sparser range maps converge to a somewhat
different set of parameters then the model for the finest
grid.

Implementing the recovery procedure on a fine grained
parallel architecture would be straightforward since the
evaluation of the fitting function and its partial derivatives
is independent for each range point. By assigning a pro-
cessor to each range point, very fast model recovery would
be possible.

Recovery of models shown in this work, where the
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Fig. 17. Influence of coarser range maps on the recovered models. On the
left, from top down, are finer to coarser rage maps, obtained by picking
every second (b), 4th (c) and 8th range point (d) in the x and y axis of
the original range map (a). On the right are the corresponding recovered
models which are shown against the original range map.
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Fig. 18. Fitting function as a function of CPU time during recovery of the
four models (a), (b), (c), (d) in Fig. 17. The jaggedness of the function
is due to the addition of Poisson noise which enables escaping from shal-
low local minima. When the fitting function reaches a plateau, the cor-
responding model cannot improve any more. MR shows the fitting func-
tion for a multiresolution fitting technique when model recovery starts
on the coarsest map and switches to a finer map when the fitting function
does not improve any more.

number of range points for each model is on the order of
several hundred, took about 20 seconds of CPU time on
a VAX 785 computer.
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VII. DiscussioN

We adopted a shape vocabulary [23] which consists of
superquadric primitives and deformations. Together with
global deformations, superquadrics can model on the level
of parts a large variety of geometrical and natural shapes.
A new method for recovery of such part models was in-
troduced, which is based on least squares minimization of
a newly defined fitting function for all input range points
belonging to a single-part object. A gradient descent
method combined with a stochastic technique is used for
minimization. To start minimization, only estimates for
rough position, orientation and size of the part have to be
computed. Model’s shape parameters, as well as the
bending, tapering and cavity deformation parameters, al-
ways start with default values. Their actual values are re-
covered through model recovery. Results of investigating
model stability issues, consistency of interpretation and
speed of model recovery are reported.

We would like to stress that superquadrics are ‘‘not’’
necessary for the approach to shape recovery that we took.
They are just a handy mathematical representation of pro-
totypical parts that can be made to fit the actual shape of
parts by scaling and global deformation. Other compact
volumetric primitives, like a type of generalized cylin-
ders, can be recovered through free-form fit [33]. The ad-
vantage of superquadric primitives is that they can capture
a large variety of shapes with a small number of param-
eters and have nice mathematical properties which make
model recovery efficient. We made use of the analytic in-
side-outside function to precompute analytically the par-
tial derivatives for all model parameters, which speeds up
the minimization. In general, any parametric model would
make sense as long as its parameters are perceptually rel-
evant.

The adopted shape vocabulary is intended for rough de-
scription of parts, suitable for object avoidance, grasping
or shape classification/recognition of basic categories
[27]. Inadequate representation can occur if the occluded
side of an object is not symmetrical to the visible side, or
because the deformations that we use are defined only
along the longest side of the object or along the axis of
rotational symmetry. Although deformations are suffi-
cient most of the time, they do not cover all possible cases.
Deformations used in this paper are quite simplified, but
with more parameters, more accurate modeling is possi-
ble. Details in the context of this part-level modeling, on
the other hand, could be better described with surface rep-
resentations, or some formative processes like fractals
[23]. The level of required description depends ultimately
on the task the vision system has to perform. The re-
covered model in Fig. 19, for example, is not detailed
enough to recognize the object, but good enough to grasp
or avoid it. When refinement of shape is required, the re-
covered part model gives a good starting point for recov-
ery of local surface patch models. For refinement of shape
representation, local deformations could be used by ap-
plying local push and pull to the part models [3]. Models
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Fig. 19. Model, recovered for an irregular object—a tennis shoe.

could be enhanced also with parameters representing some
physical properties related to the real world, like elasticity
or stiffness [32].

What seems to be important is the chosen granularity
of representation. There is psychological evidence show-
ing the particular salience of parts—especially on the basic
category level [35]. For objects and biological categories,
basic category cuts seem to follow natural breaks in the
structure of the world and this structure is determined by
part configuration. Parts and part configuration seem to
form a natural bridge connecting perception (appearance)
of objects and behavior (activity) toward them, and in turn
communication about them. Perceived part configuration
underlies both perceived structure and perceived function,
and forms the basis of the intuitive causal reasoning and
naive induction. The basis of naive induction is that sep-
arate parts have separate functions, similar parts have
similar functions, and more salient parts have more im-
portant functions. This close relation opens up possibili-
ties to infer function from shape [36]. There is also ample
evidence that human perception makes use of the proto-
type and deformation paradigm. Using deformations is an
efficient way of representing a large variety of shapes and
has a causal structure because it is related to the process
of how the shape evolved over time. Leyton [19] has
shown that prototypification of shapes can be done with a
decomposition into primitive transformations (deforma-
tions) and that a particular ordering is psychologically sa-
lient. The hierarchical structure of the model we used
seems to have also a perceptual significance in the sense
that one has to know first where an object is and how it
is oriented, to recover its size and shape. This order re-
sembles the structure of solving geometry analogy tasks
which involve finding first location, orientation, size,
general outline, and additional small parts and details at
the end [21].

The model parameter space (superquadrics with defor-
mations) is continuous, but some sets of parameters cor-
respond to easily identifiable geometric primitives such as
parallelepipeds, ellipsoids and cylinders. For those cate-
gories, the within-category parameter differences look
smaller than between-category parameter differences even
when they are of the same size. This differential respond-

ing is referred to as categorical perception [15]. By map-
ping symbols on the continuous model parameter space it
is possible to define distinctive volumetric primitives such
as Geons, a finite set of shape primitives believed to cor-
respond to letters in a shape vocabulary [6]. A represen-
tation, using prototypes associated with category names,
is more compact and more likely used for cognitive activ-
ities such as recognizing, learning and remembering. Re-
covering the larger structure of the world before recover-
ing the details is very compelling since human vision also
seems to proceed from general to particular and not the
other way around. People do not apprehend shape by
patching it together through the tracing of its parts but
seize an overall pattern first [13].

Most methods for recovery of midgrain or larger models
in computer vision are based on circumstantial evidence,
typically using rules encoding some perceptually relevant
relation. We view the importance of the introduced model
recovery in the mathematical formulation of the problem.
This enables constant monitoring of the goodness of fit,
enabling to stop when the fit is sufficient or detecting that
the model is inappropriate when the residual does not drop
as expected.

In this work we used range data exclusively. In this
way, shape representation and recovery could be studied
in isolation from problems specific to particular modali-
ties ( shape from x) . We believe that other shape cues can
be used as input for this model recovery method, espe-
cially if several visual cues are used in combination.
Model recovery could serve as a medium for merging in-
formation from different cues. Since shape information
from different visual cues can be basically interpreted as
position (passive stereo, focusing), and orientation (shad-
ing, texture, occluding contours) the expanded fitting
function would have two types of terms; the first ones,
like the one we used here, for position, and a second type
of terms, for surface normals [2].

Part models seem to be the right level for integrating
information from several views and over the time. For
integration, it would be beneficial to include in the model
some information indicating, which part of the model was
based on the input data, and which part was occluded but
inferred from the model symmetry.
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During experimentation we faced the problem of non-
uniform range data density and a large number of singular
views in range images. For example, if only one face of
a cube is seen, a very thin parallelepiped is recovered
which fits to that face. Images taken with a passive range
imager, which uses triangulation, have more singular
views than normally associated with intensity images. The
larger the distance (angle) between the source of illumi-
nation and the camera of the range imager, the better the
accuracy, but the more singular views, since every re-
corded range point must be illuminated and seen by the
camera at the same time. Singular views can be resolved
by taking into account the structure of the surrounding
scene. Objects normally rest on some support, they can
touch but usually do not penetrate each other. We believe
that this type of constraint could be incorporated in the
part recovery procedure by a method devised by Witkin,
Fleischer, and Barr [38]. They developed an elegant
method for describing geometric constraints between parts
or objects in terms of energy. To solve for all constraints,
the sum of all corresponding energy terms, including the
shape fitting function, would have to be minimized. The
inclusion of such constraints into this shape recovery
would be a first step towards segmentation based on part-
level shape recovery [30].

Nonuniform range point density causes that parts with
higher density have more influence on the shape of the
recovered model then parts with lower density. However,
the model recovery method is quite robust in this regard—
note that no range data is available from occluded parts
to begin with. During minimization, we used the same
weight for all range points and all model parameters. By
using a larger weight (penalty) for points outside the
model, a convex-hull-like model can be recovered, and
by putting different weights on parameters, a perceptually
relevant ordering of parameter importance can be en-
forced.
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