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Abstract. In this contribution we present a framework for an embodi-
ed robotic system that is capable of appearance-based self-localization.
Specifically, we concentrate on the issues of robustness, flexibility, and
scalability of the system. The framework presented is based on a pano-
ramic eigenspace model of the environment. Its main feature is that it
allows for simultaneous localization and map building using an incre-
mental learning algorithm. Further, both the learning and the training
processes are designed in a way to achieve robustness and adaptability
to changes in the environment.

1 Introduction

With the increase of interest for autonomously navigating mobile robots, which
are not any more limited to operate in production halls, but are able to func-
tion in the unconstrained environment, several new issues regarding the design
and implementation of such machines arose. The need for systems that would
be capable of operating in unstructured and dynamically changing environments
shifted the focus of robotics research away from the classical artificial intelligence
reasoning towards new fields like embodied intelligence, reactive learning, and
distributed thinking. The same definition of an intelligent system now means
that it is capable of operating in changing conditions, which includes the capa-
bility of continuous and unsupervised learning, generalization of knowledge, and
robustness against random changes, which can occur in the environment during
interaction.

Mobile robot self-localization is an important part of the navigation task
(besides defining the goal and planning). Obviously, to estimate the current
position, there is a need for a reference model of the environment to which the
momentary sensory data has to be compared. The recent decade saw a gradual
shift from the systems that use 3D models towards appearance-based approaches.
In fact, supported by the findings of psychologists, theories awoke that describe
the visual process as a task of recognizing and associating 2D imagery [15, 16,
14,11]. Instructive collections of work that stresses the relation between the
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Fig. 1. Mobile robot equipped with a catadioptric panoramic sensor.

3D reconstruction approach and the appearance-based visual recognition can be
found in [18] and [1].

In this contribution we present a framework for an embodied robotic system
that is capable of appearance-based self-localization. The framework presented
is based on a panoramic eigenspace model of the environment. The eigenspace
model of appearance is essentially a model of memory that, besides storing com-
pressed imagery, allows also for pictorial retrieval.

Although distributed systems give a solution to limited physical resources,
most of the autonomous robots are expected to be embodied, therefore allowing
for a limited processing capability and speed. When storing large collections of
visual cues, the storage demands can become quickly prohibitive. It is therefore
of extreme importance for the model to be optimized in both the terms of de-
scriptive power and compactness. While dealing with these issues, the notions
of local vs. global models and modularity arise.

Further, the robot should be capable to use the model in any time, i.e.,
the classical divide between the learning and the training stage, typical for the
appearance-based recognition methods, should be overcome by introducing an
open-ended incremental model capable of dynamic updating and splitting into
local representations.

Another important issue of an intelligent embodied system is the fashion
in which new knowledge is being acquired. As Rolf Pfeifer argues [17], classi-
cal AT models suffer from a number of fundamental problems, such as symbol
grounding and dependance on the knowledge of the designer, rather than being
environmentally conditioned, knowledge being acquired only through interaction
with the environment. The robot should be therefore capable of independent ex-
ploration without any intervention of the human operator or other displaced



intelligent units. As we show, eigenspace recognition methods comply with the
latter requirements, being essentially unsupervised learning schemes.

This paper is organized as follows: in Section 2 we give a general overview
of the framework for embodied intelligent self-localization, first describing the
hardware and the software used and then concentrating on the overall structure
of the system. In Section 3 we first describe the learning stage, which is designed
to be a robust procedure. We continue with a description of the recognition part
of the system. After emphasizing the importance of constant interaction between
the learning and localization scenarios, we introduce the on-line methods, that
enable us to use a SLAM (Simultaneous Learning and Map Building) approach.
Finally, in Section 4, we give an overview of experimental results and end up
with a conclusion and an overview of future work.

2 A Framework for Embodied Intelligent Self-Localization

The robot that we use as a testing platform for the appearance-based self-
localization is a Magellan Pro with a Pentium II based onboard computer, ma-
nufactured by the iRobot company (Figure 1). The software part of the system
is written based on the Mobility system, which uses CORBA for distributed
computing.

Although the robot comes equipped with a variety of sensors, our goal is to
enable localization using only a vision sensor. A schema of the system’s frame-
work is depicted in Figure 2. The cognitive part of the system consists of models
and routines needed to perform simultaneous localization and map building. Al-
though the learning stage and the localization (recognition) stage are depicted
as divided entities, with further development of the system, they will presuma-
bly become more and more interconnected, finally becoming a unique cognitive
model, using common mechanisms and methods.

As the primary source of external information about the environment, pa-
noramic snapshots enter the system and are encoded in the eigenspace model
and/or used for localization. To enhance the accuracy of localization, we fur-
ther use short range readings from the odometry, which helps us to calculate a
probabilistic function for the momentary positional estimate.

The software part of the system is implemented such that it allows for dis-
tributed computing. However, since the robot is linked to the network using
a slow wireless LAN connection, we tend to run all of the data processing on
the robotic platform, so that there is no need to transfer the images over the
network.

2.1 The Model of the Environment

As we have already mentioned, we use panoramic images acquired from a cata-
dioptric panoramic camera. Panoramic images are becoming more and more
popular in the area of computer vision, their primary advantage being a wide
field of view. Further, they provide an efficient representation of the surrounding
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Fig. 2. The framework of the localization system.

and their special properties allow for an efficient encoding in the eigenspace [8,9,
4]. On the top of the robot we mounted a catadioptric panoramic camera, which
was the only visual sensor used. We used two different mirrors in the catadioptric
camera. The first mirror was of a spherical shape, while the second mirror had
a hyperbolical reflective surface of a r = 1.9 ratio.!

2.2 Learning and Recognition

The images that are to be learned as depictions of the environment the robot is
navigating in are represented in a compressed form using the eigenspace represen-
tation [21,15]. The major advantage of the eigenspace method is that it allows to
perform image matching in a much lower-dimensional space. As one can deduce
from the experimental evidence from previous work, the covariance between two
panoramic images drops with the distance between positions where they were
taken. Position could be therefore inferred by finding the image in the training
set that shows the largest covariance with the momentary panoramic view. How-
ever, it can be shown that when projecting an image onto the eigenspace, the L,
norm and the covariance produce the same result as when calculated on original
images, when using the complete set of eigenvectors. It is therefore possible to
match images in a much lower-dimensional space by representing all the images
by their projections in the eigenspace and then by adopting the Lo norm or the
Mahalanobis distance between the projections as the distance metric. Further-
more, it is possible to densely interpolate the set of points in the eigenspace to

! For a review of catadioptric cameras see [5].



obtain a hyperplane that represents an approximation of an arbitrary dense set
of images [15].

The model of the environment is therefore represented by the eigenvectors
representing the optimized subspace where the trained images lie in and the re-
presentations of positions, which are derived from projections of training images
or from interpolation between them.

3 The Cognitive Modules

In this Section we briefly describe the modules that provide the routines needed
to perform simultaneous localization and map building. As we have already
mentioned, the system consists of two separate modules. The learning module
implements the learning routines, which are designed in order to allow for an
open-ended, incrementally built model of environment. The localization module
implements routines needed for robust recognition of panoramic snapshots and
robust localization, supported by a probabilistic computation using short-range
odometry data. In the future development of the system, both modules will
presumably become more and more interconnected, finally becoming a unique
cognitive model, using common mechanisms and methods.

3.1 The Learning Module

The standard approach to eigenspace learning is by the eigen-decomposition of
the covariance matrix of the training images. Such a method is susceptible to
outliers, occlusions, and varying illumination. However, PCA can be considered
as a limiting case of a linear Gaussian model, when the noise is infinitesimally
small and equal in all directions. From this observation one can derive an al-
gorithm for calculating principal axes, which is based on the EM (expectation-
maximization) algorithm [19]. This algorithm consists of two steps, E and M,
which are sequentially and iteratively executed:

— E-step: Estimate the coefficients using computed eigenvectors
— M-step: Compute the new eigenvectors which maximize expected joint like-
lihood of the estimated coefficients and the training images

Since the EM algorithm can run on subsets of image pixels, our system
implements it in order to obtain a consistent subspace representation in the
presence of outlying pixels in the training images. By treating the outlying points
as missing pixels, we arrive at a robust PCA representation [20].

Another issue in learning is how to represent images that are taken under
different orientation of the robot. Such panoramic images have the same pictorial
content, since they represent the same view, yet they are rotated for an angle
(phase) of ¢. To solve this problem, our system implements a specific eigenspace
representation, called “eigenspace of spinning—images” [7,9], which achieves in-
sensitivity to the rotation of the sensor by integrating multiple rotated versions
of a single panoramic image. The representation exploits the fact that a set of
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Fig. 3. Calculating the coefficients from a set of linear equations.

rotated templates carrying identical pictorial information can be compressed in
the eigenspace in an efficient way. By doing so, we have the advantage of being
able to match the incoming image directly to the whole set of rotated images in
the recognition phase.

3.2 Adaptable Robust Recognition Module

To localize the robot we have to find the coefficients of the input image and
then search for the nearest point on the interpolated hyperplane, which repre-
sents the model built on the basis of the images in the training set. The stan-
dard method to recover the coefficients is to project the image vector onto the
eigenspace [15]. However, this way of calculation of parameters is non-robust?
and thus not accurate in the case when the input image locally deviates from
the image approximated in the environment map.

To overcome the erroneous calculation of image parameters when the visual
content deviates from the learning examples, we use the robust approach [11],
that, instead of using the image vectors as a whole, generates and evaluates a
set of hypotheses r as subsets of k image points r = (rq,r2,...,rk). In fact, the
coefficients can be retrieved by solving a set of linear equations on k& = n points,
where n denotes the dimensionality of the eigenspace.

The principle of such computation is clearly illustrated in Figure 3, where ¢; are
the image parameters.

By selecting only p, p < n eigenimages as our basis we have to solve an
over-constrained system in a robust way. We solve the system on k, k > p points,
where k is significantly smaller than the total number of image points. After the
robust solving of the set of equations, we first perform an a—trimming step, in
order to allow only the points on which the error is arbitrary small to contribute
to the further computation of the parameters. To further increase the probability
of avoiding points that are noise or represent occlusion, several different subsets
of points are generated, resulting in multiple hypotheses. A hypothesis consists of

2 Robustness is defined as the extent of the ability of a method to give expected results
despite the deviations of the input data.
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Fig. 4. Schema of the robust localization subsystem.

a set of parameters, an error vector € calculated as the squared difference between
the original image and its reconstruction, and the domain of compatible points
that satisfy an error margin constraint. These hypotheses are then subject to
a selection procedure, based on the Minimal Description Length principle, as
described in [11].

Illumination artifacts are another problem that influence the overall robust-
ness of the system. A straightforward approach to the problem of illumination
in appearance-based learning and recognition is to learn the appearance under
all of the possible light conditions [13]. However, an object in the environment
can produce so many different images that it is not clear how to sample all of
them.

Instead of this, we employ an extended schema of robust calculation of pa-
rameters: by convolving the eigenimages with linear filters, we significantly re-
move the illumination artifacts [10]. As the eigensystem is a linear equation,
both the eigenspace and the input image can be convolved with linear filters
without changing the results of computation. The important notion here is that
the model itself does not depend on filters at all - filtering can be done just in
the process of localization, using an arbitrary number and type of filters, or even
using none of them, when the illumination conditions are equal to those encoded
in the eigenspace.

The overall schema of the robustified localization system is depicted in Fi-
gure 4. F denotes the bank of linear filters applied. Note that the also robust
calculation can be turned on or off, according to the momentary conditions.

3.3 The SLAM Approach

The eigenspace learning and recognition method applied in the standard way has
its drawbacks. One of them is the fact that the localization stage is strictly sepa-
rated from the learning stage. In the learning stage we capture all images first,
and only then can we construct the model. The model built in this way can not
be modified unless we keep the original images. To update the model with new
images, we have to construct a new one from the scratch. Therefore, standard
approaches are not optimal for performing simultaneous learning (environment
exploration) and localization (SLAM [3]).



To overcome these problems, we developed an incremental method for buil-
ding the subspace. Incremental computation of eigenvectors has been considered
before [6]. However, for a method to be completely on-line, we have to simulta-
neously update both the eigenvectors and the low-dimensional representations of
images. In this way, we can discard the original images immediately after the up-
dating of the subspace. One has to be aware, however, that the low-dimensional
representations of the images are only approximations of the originals.

With our approach [2] we are able to perform simultaneous exploration and
localization, which means that from the very first moment of the exploration
(learning) phase, the robot can use the momentary model of the environment, as
it is built incrementally. By collecting new pictorial evidence, the model grows,
and by applying a multiple eigenspace growing procedure [12], it can be seg-
mented into logical submodels.

4 Experimental Results

In this section we give the experimental results that show how our self-localiza-
tion system performs in navigation. In an incremental training phase, the robot
explored an indoor environment, storing snapshots at positions that are depicted
as empty squares on Figure 5. Then, we positioned the robot on an arbitrary
position and sent an order to navigate to a position which was determined by
a previously acquired panoramic image. In order to navigate to the goal, the
robot performs the following steps: first he estimates his momentary position
and orientation, then he estimates the goal’s position and determines the vector
which points in its directions. He then moves for 70cm in the direction of the goal
and again performs localization. According to the new estimate, he recalculates
the homing vector and moves for another 70cm.

We present, the results as the odometry of the path that the robot followed
during his navigation to the goal. In order to demonstrate robustness, we per-
formed tests in both static and dynamic conditions, both with normal and robust
techniques.

The leftmost map on Figure 5 illustrates the path of the robot in the case
when there are no occlusions in the environment. The filled squares denote the
estimated training positions, while the circles denote the positions where the
robot stopped to perform self-localization. One can associate the estimated and
the actual positions by their numbering. Please note that the information on
the odometry accumulated a large amount of error. In truth, the actual ending
position differed from the expected one for less than 5cm.

The map in the center illustrates the path of the robot in the presence of
significant occlusions and change in illumination. The navigation was in this
case performed without employing any of the robust features of the localization
system. The rightmost map illustrates, how the robust features of the system
improve the performance in harsh conditions.
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Fig. 5. Localization results in point-to-point navigation.

5 Conclusions

In this contribution we presented a framework for an embodied robotic sy-
stem that is capable of appearance-based self-localization using a parametric
eigenspace model built from panoramic snapshots of the environment.

The eigenspace approach for appearance-based learning and recognition pro-
ved itself to be a suitable core for the self-localization system. It provides an
efficient representation of the environment, which can be stored in the robot’s
onboard memory. Further, it allows for a true on-line learning process, enabling
simultaneous localization and map building. As we showed in the description
of our system, the eigenspace method can be extended with mechanisms that
provide robustness both in the learning and in the localization process.

We concluded the paper with a set of experiments which demonstrate the
effectiveness of the system. In future work we intend to enhance the accuracy of
localization by introducing more knowledge on short range odometry, implement
the probabilistic framework and enhance the process of incremental learning
with the support for building modular local representations. Further, we are
investigating how to build reliable maps with a fully unsupervised procedure in
order to achieve a genuine SLAM approach.
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