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Classical epistasis analysis can determine the order of function of genes in pathways using morphological, biochemical and
other phenotypes. It requires knowledge of the pathway’s phenotypic output and a variety of experimental expertise and so
is unsuitable for genome-scale analysis. Here we used microarray profiles of mutants as phenotypes for epistasis analysis.
Considering genes that regulate activity of protein kinase A in Dictyostelium, we identified known and unknown epistatic
relationships and reconstructed a genetic network with microarray phenotypes alone. This work shows that microarray data
can provide a uniform, quantitative tool for large-scale genetic network analysis.

In classical epistasis analysis, two genes are mutated in the same strain
and the phenotype of the double mutant is compared with those of
the corresponding single mutants. The prevailing phenotype defines
the epistatic mutation1,2. Genetic networks, outlining the details of a
biological process, are then constructed by integrating the epistatic
relationships between several pairs of genes. This task depends on the
measured phenotype, and so the analysis of different systems requires
a variety of experimental expertise. In addition, the rules of epistasis
cannot be applied consistently if the experimental procedures are not
identical for all pairs of genes in a certain pathway2.

The genomic era introduced another challenge in applying epistasis
analysis to network construction. Although methods exist for identi-
fying and mutating genes as individuals or in pairs on a genomic
scale3–5, some cellular functions do not provide easily scored pheno-
types, such as unusual appearance or sensitivity to certain culture
conditions. For many other genes, we do not know what phenotype to
measure. Therefore, we need systematic approaches to identifying the
functions of new genes and their interactions to ensure progress from
genome sequence to directed experimentation.

We tested whether whole-genome expression profiles could be used
to determine relationships between genes in genetic networks, with the
idea that transcriptional profiles of mutant strains could replace less
objective phenotypes, such as morphology, in determining epistatic
interactions between genes. Transcription profiles have already proven
useful as phenotypes in the analysis of single-gene mutations6–12. The
advantage of inferring epistatic relationships from the transcriptional
phenotypes of mutants is that specific knowledge of the relationship
between the gene function and the phenotype is not essential.

In our studies, we used the haploid soil amoeba Dictyostelium
discoideum, which is amenable to microarray studies13. Upon removal
of nutrients, D. discoideum executes a developmental program in

which single cells aggregate and form multicellular organisms. Aggre-
gation depends on chemotaxis towards extracellular cAMP, and the
cells aggregate into centers B8–10 h after starvation. Two cell types
then differentiate and give rise to a fruiting body consisting of a spore
mass on top of a stalk tube14. We focused on the interactions between
genes in the protein kinase A (PKA) pathway, which is essential for
development15. Mutations in this pathway have marked effects,
including developmental arrest or attenuation, precocious develop-
ment and aberrant sporulation and germination. The genes are
dispensable for growth, and so null mutations can be studied. The
PKA regulatory pathway has been elucidated by biochemical, cellular
and genetic methods2, but some relationships in the pathway have not
been tested genetically.

To test the applicability of microarray profiling to epistasis analysis,
we made ten combinations of single or double mutations in six genes
(Table 1). We developed mutant cells and collected and analyzed RNA
samples throughout the course of development. We then calculated
the similarity between the expression profiles of the mutants and used
the values to determine epistatic relationships between the mutated
genes. We found that the epistatic relationships inferred from tran-
scriptional profiles were in complete agreement with the relationships
observed in classical studies. We also used the microarray profiles to
infer two previously undetermined relationships between genes in the
pathway. We propose that microarray profiles can be used to study
systematically the relationships between genes in genetic pathways
without existing knowledge of the pathway’s phenotypic output.

RESULTS
Reconstruction of a known epistatic relationship
Classical genetic analysis showed that pufA is epistatic to yakA16. We
tested whether epistasis analysis with expression profile phenotypes
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could also identify that relationship. We developed yakA� cells,
pufA� cells and double mutant yakA� pufA� cells for 24 h, collected
RNA samples at 2-h intervals and interrogated the samples with a
microarray representing 5,624 genes. We identified similarities
between the transcriptional profiles of the three strains by computing
the Euclidean distances from 5,624 array targets over 13 time-point
measurements. The distance between the double mutant yakA� pufA�

and the single mutant pufA� was smaller than that between yakA�

pufA� and yakA� or that between the two single mutants (Fig. 1a).
We also used hierarchical clustering to evaluate the data and represent
the results with a dendrogram (Fig. 1b). In this representation, two
strains are more similar to each other than either of them is to a third
strain if the two are directly connected on the tree structure. The
distance between pufA� and yakA� pufA� was the smallest, and so
they clustered together leaving yakA� as the out-group (Fig. 1b).
The statistical significance of this clustering by bootstrapping17,18

analysis was 40.99. Assuming a linear signaling pathway, if separate
mutations in two genes give different phenotypes and the phenotype
of the double mutant strain is similar to that of one of the single
mutants, then that single mutation is epistatic1,2. Therefore, this
analysis supports the conclusion that pufA is epistatic to yakA. This

conclusion is identical to that reached by classical genetic analysis16

and provides a proof-of-principle for the use of microarray pheno-
types in epistasis analysis.

We carried out a detailed comparison of the profiles of the pufA�

mutant, the yakA� mutant and the double mutant (Fig. 1c). We first
clustered the 5,624 gene trajectories from wild-type D. discoideum
development19 using the k-means algorithm and then ordered the
clusters to emphasize developmental progression (data not shown).
We imposed that order on the expression trajectories of the three
mutant strains (Fig. 1c). In the wild type, B40% of the genes are
developmentally regulated, and so, when presented in a heat map
(Fig. 1c), their trajectories showed a shift in color at B6–12 h of
development19. Such shifts were evident at the top 10% and the
bottom 20% of the yakA� pufA� and the pufA� charts. On the other
hand, yakA� cells, which cannot aggregate, showed little or no change
in expression throughout the 24-h course of development (Fig. 1c). To
illustrate the morphological defects, we cultured the three strains on
bacterial lawns. As the cells grew and depleted the bacteria, they
starved and developed to their capacity. yakA� cells did not develop
and remained unaggregated after depletion of the food source
(Fig. 1d). Inactivation of pufA in wild-type or in yakA� cells resulted
in aggregation and development, albeit with attenuation at the finger
stage (Fig. 1d). Therefore, pufA� is a suppressor of yakA� and pufA
is epistatic to yakA16 (Fig. 1e).

Derivation of unknown epistatic relationships
Next, we tested whether microarray data could detect unknown
genetic relationships. Because biochemical analysis showed that
PufA binds the 3¢ untranslated region (UTR) of the pkaC mRNA
and inhibits its translation16, we expected pkaC to be epistatic to pufA.

yakA–

yakA–

yakA

pufA–

pufA–

pufA Development

yakA– pufA–

yakA– pufA–

11.76

13.13

P < 0.0001

9.16

12

8

4

0

B G A B G A B G A

a

b

c

d

e

Table 1 Genes and mutations

Gene Protein Function Knockout Overexpression References

yakA YakA Minibrain-like protein kinase Aggregationless Growth defect, precocious development 35

pufA PufA Pumilio-like RNA binding protein, inhibits pkaC mRNA translation Suppressor of yakA knockout 16

acaA AcaA Aggregation-stage adenylyl cyclase Aggregationless 23

regA RegA Response-regulator controlled cAMP-specific phosphodiesterase Precocious sporulation 20,45

pkaR PkaR cAMP-binding regulatory subunit of PKA Precocious sporulation Aggregationless 33,46

pkaC PkaC Protein kinase catalytic subunit of PKA Aggregationless Precocious sporulation 21,47

Figure 1 Transcriptional profiling to test whether pufA is epistatic to yakA.

RNA samples from developing yakA�, pufA� and yakA� pufA� cells were

analyzed. (a) Euclidean distances between the three mutants are presented

as edges in a triangle (numbers indicate length). The null hypothesis of

uniform distribution was tested by the w2 test and rejected (P value

indicated). (b) The dendrogram represents the distances between the

different mutants (arbitrary units on scale bar). Vertical distances represent

the dissimilarity between leaves and joints. Confidence levels (from

bootstrap analysis) were 40.99. (c) Heat maps representing expression

changes between mutants. Genes are ordered according to their expression

in the wild type19 (not shown). The order from top to bottom is identical in

all mutants. Columns represent time points (0–24 h in 2-h intervals); rows

represent genes. Blue indicates lower-than-average levels of expression;

yellow, higher-than-average. (d) Morphological phenotypes. Single cells
deposited on bacterial lawns propagated and formed plaques. Cells in the

center starved and developed but cells in the periphery continued to grow.

The opaque bacterial lawn (B) is on the left; in the growing zone (G),

amoebae are consuming bacteria; starving amoebae (A) are on the right. The

yakA� cells did not aggregate. The pufA� and yakA� pufA� cells developed

to the finger stage. Scale bar, 1 mm. (e) The genetic interaction between

yakA and pufA.
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To test that possibility, we generated the double mutant pufA� pkaC�

and compared its microarray profile with those of pufA� and pkaC�.
The profile of pufA� pkaC� was most similar to that of pkaC�, and
both were different from that of pufA� (Fig. 2a,b). This finding is
consistent with the prediction that pkaC is epistatic to pufA.

Visualizing the gene expression data further supports that notion
(Fig. 2c). Genes expressed during growth were not downregulated,
and developmentally induced genes were not upregulated, in pkaC� or
in pufA� pkaC� cells, suggesting that these mutant strains did not
develop. Morphological examination of pkaC� and pufA� pkaC� cells
confirmed that both mutants failed to aggregate upon starvation,
whereas pufA� cells developed well (Fig. 2d). These results verify the
microarray-based finding that pkaC is epistatic to pufA (Fig. 2e).

Epistasis between mutations with similar phenotypes
Classical epistasis analysis is most effective when the phenotypes of the
individual mutations contrast with each other1,2. We tested whether
microarray phenotypes could provide sufficient resolution for epistasis
analysis even with mutations that cause similar morphological phe-
notypes by analyzing the precocious development mutants regA� and
pkaR� (refs. 20–22). Owing to the similarity between the phenotypes
of the two gene knockouts, the original epistatic relationships between
them were determined using a prespore-specific dominant negative
allele20. The genetic interaction between regA and pkaR during

aggregation has not been determined, but their biochemical activities
suggest that pkaR should be epistatic to regA.

To test the relationship between pkaR and regA, we constructed and
examined double mutant regA� pkaR� and corresponding single
mutant strains. The expression profiles of pkaR� and regA� pkaR�

were more similar to each other than to that of regA�, indicating that
pkaR is epistatic to regA (Fig. 3a,b). The distances between these
profiles were smaller than those observed in experiments with yakA�

pufA� and pufA� pkaC� (Figs. 1 and 2) but were significantly
different both by the w2 test (Fig. 3a) and by the bootstrap analysis
(Fig. 3b). As expected, the gene trajectories of the three mutants were
similar (Fig. 3c). pkaR� and regA� pkaR� showed a precocious shift in
gene expression at 4–6 h instead of 8 h of development, and all three
strains showed a precocious loss of coherent gene expression pattern
at 14–18 h of development. Such a loss is characteristic of the
postsporulation phase of development19.

These results suggest that pkaR is epistatic to regA during aggrega-
tion. Closer examination of the three strains showed that regA� cells
aggregated without streams whereas pkaR� and regA� pkaR� cells
aggregated with streams (Fig. 3d), although the streams were less
elaborate than those of wild-type strains (data not shown) and
somewhat different from each other. This morphological phenotype
supports the microarray-based conclusion that pkaR is epistatic to
regA during aggregation (Fig. 3e).
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Figure 2 Transcriptional profiling to test whether pkaC is epistatic to pufA.

RNA samples from developing pkaC�, pufA� and pufA� pkaC� cells were
analyzed. Data for pufA� cells are the same as in Figure 1. (a–c) Euclidean

distances (a), dendrogram (b) and heat maps (c) as in Figure 1 a–c.

(d) Morphological phenotypes as in Figure 1d for pufA�, pkaC� and

pufA� pkaC� cells. pufA� cells developed to the finger stage. pkaC� and

pufA� pkaC� cells failed to aggregate. Scale bar, 1 mm. (e) The genetic

interaction between pkaC and pufA.
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Figure 3 Transcriptional profiling to test whether pkaR is epistatic to regA.

RNA samples from developing regA�, pkaR� and regA� pkaR� cells were

analyzed. (a–c) Euclidean distances (a), dendrogram (b) and heat maps (c)

as in Figure 1 a–c. (d) Developmental phenotypes of the three mutant

strains developed on agar. regA� cells aggregated without streaming.

pkaR� and regA� pkaR� cells aggregated with few short streams (arrows).

Scale bar, 5 mm. (e) The genetic interaction between pkaR and regA.
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Reconstruction of the PKA pathway
The above examples demonstrate the application of microarray
phenotypes to epistasis analysis with three strains at a time. Next we
tested the robustness of the relationships with ten mutants. We first
collected microarray data from two additional strains, acaA� and
acaA� pkaCO/E, and considered them together with the eight mutants
described above. acaA� cells do not develop due to lack of cAMP23,
but that defect is suppressed by overexpression of PkaC (acaA�

pkaCO/E); therefore, pkaC is epistatic to acaA24.
Clustering the microarray profiles of the ten strains yielded a

dendrogram (Fig. 4a) that is consistent with the relationships deter-
mined from the two-gene analyses, indicating the robustness of the
relationships. pufA� and yakA� pufA� clustered together, separate
from yakA�; pkaC� and pufA� pkaC� clustered together, separate
from pufA�; and pkaR� and regA� pkaR� clustered together, separate
from regA� (Fig. 4a), supporting results from the corresponding two-
gene analyses (Figs. 1–3).

Finally, we tested whether the published pathway (Fig. 4b) could be
reconstructed from microarray data alone (Fig. 4c). We inferred that
pufA is epistatic to yakA (Fig. 4c) from the similarity between the
yakA� pufA� double mutant and the pufA� mutant (Figs. 1 and 4a).
We inferred that pkaC is epistatic to pufA (Fig. 4c) from the similarity
between the pufA� pkaC� double mutant and the pkaC� mutant
(Figs. 2 and 4a). We inferred the linear path from yakA through pufA
to pkaC (Fig. 4c) from these relationships assuming that a linear

combination is the most simple and from the lack of conflicting
relationships, as described2. We inferred that pkaR is epistatic to regA
(Fig. 4c) from the similarity between the double mutant regA� pkaR�

and the pkaR� mutant (Figs. 3 and 4a). The data could also indicate
that pkaC is epistatic to acaA24 because the double mutant strain
clustered with the regA� and pkaR� mutants, both of which have
activated PkaC (Fig. 4a). That relationship is not formally complete,
however, because we did not analyze the pkaCO/E strain.

Our microarray-based pathway (Fig. 4c) is incomplete relative to
the published pathway2 (Fig. 4b) because we did not test the relation-
ships between acaA and pkaR or between pkaR and pkaC. Never-
theless, we were able to construct the pathway (Fig. 4c) from
microarray phenotypes alone (Figs. 1–3 and 4a), using the basic
rules of epistasis analysis1,2, showing that, in principle, a correct
pathway can be constructed from microarray phenotypes of mutant
strains alone.

The ten-strain dendrogram (Fig. 4a) also shows that profiles of
mutants with similar physiologies cluster together, further supporting
the validity of transcriptional profiles as phenotyping tools. Specifi-
cally, one cluster contains two mutants with attenuated development
at the finger stage (Fig. 4a). The aggregationless mutants (acaA�,
pkaC�, yakA� and pufA� pkaC�) clustered together, and the pre-
cocious developers (pkaR�, regA�, regA� pkaR� and acaA� pkaCO/E)
were in a separate cluster (Fig. 4a).

Complexity of the transcriptional phenotype
pkaC is epistatic to pufA16 (Fig. 2), but although pkaC� and pufA�

pkaC� have indistinguishable morphologies (Fig. 2d), the difference
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Figure 5 Additional genetic relationships between pkaC and pufA. Data from

the single mutant strains pkaC� and pufA� and from the double mutant

strain pkaC� pufA� (the same as in Fig. 2) were searched for genes that

support the ideas that pkaC is epistatic to pufA (a), pufA is epistatic to pkaC

(b) and pkaC is parallel to pufA (c). The dendrograms represent the
clustering of the three mutants based on these genes; the number of genes

supporting each relationship is indicated. The heat maps represent the gene

trajectories in the three mutants, ranked by their order in the pkaC� strain.

Developmental morphologies of the pufA� mutant (left) and wild type

24 h after starvation on nitrocellulose filters are shown (d) to illustrate the

finger-stage attenuation of the mutant. Scale bar, 1 mm.

Figure 4 Pathway construction. RNA samples from developing acaA� and

acaA� pkaCO/E cells were analyzed. All other data are the same as in

Figures 1–3. (a) Distances were calculated between the ten mutants

followed by hierarchical clustering. The dendrogram represents the distances

(arbitrary units on scale bar) between the mutants. In this dendrogram, two

strains are more similar to each other than to any other strain if they are

connected directly. Vertical distances represent the dissimilarity between

leaves and joints. Confidence levels (from bootstrap analysis) are shown next

to each joint. The blue cluster contains pufA� and the double mutant yakA�

pufA�, both of which attenuate at the finger stage. The red cluster contains

mutants that fail to aggregate; the green cluster, mutants that develop

precociously. (b) The published PKA regulatory network2. Arrows, activation;

barred lines, inhibition. (c) The genetic network inferred from the microarray

data. Colors indicate relationship to the data in a.
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between their microarray profiles was not zero (Figs. 2b and 4a).
Experimental noise may partly account for that difference, but we
suspected that the relationship between pufA and pkaC might be more
complicated than expected. Formally, there are two other possible
genetic relationships: pkaC and pufA could function independently
(pkaC is parallel to pufA) or pufA could be epistatic to pkaC. We
searched the microarray data for gene trajectories that would support
either of these two relationships.

We calculated the Euclidean distances between the three time
courses for each gene trajectory and divided the genes into three
groups according to the relationship they best support (Fig. 5). The
largest group, 2,833 genes, showed the smallest distance between
pkaC� and pufA� pkaC�, supporting the idea that pkaC is epistatic
to pufA (Fig. 5a). We found 1,377 genes whose trajectories supported
the idea that pufA is epistatic to pkaC (Fig. 5b) and 1,414 genes that
supported the idea that pkaC is parallel to pufA (Fig. 5c). The 1,377
genes that support the idea that pufA is epistatic to pkaC had a
coherent pattern in the pkaC� mutant and almost no pattern in the
pufA� mutant or in the double mutant. In that case, the clustering was
influenced by the distance of pkaC� from pufA� and the double
mutant more than by any similarity between pufA� and the double
mutant (Fig. 5b). In the parallel relationship, there is no expectation
that the two single mutant profiles would be similar, only that the
double mutant would be different from both (Fig. 5c). We therefore
propose that pufA and pkaC may have parallel functions in addition to
their expected epistatic relationship.

That idea is also supported by the developmental attenuation of the
pufA� strain16. After 24 h of development, pufA� cells were at the
finger stage of development, whereas wild-type cells had developed
mature fruiting bodies (Fig. 5d). Inactivation of pufA leads to
hyperactivation of PkaC16. Therefore, if things were simple, pufA�

cells should have developed precociously, like pkaR�, pkaCO/E and
regA� cells. The finger-stage attenuation is suggestive of a pufA-
dependent developmental process that is independent of pkaC, con-
sistent with the idea of a parallel pathway. For example, PufA may
suppress YakA translation late in development16. Our data (Fig. 5)
show that relationships between genes are dependent on the measured
phenotype, that microarray data provide a comprehensive phenotype
in one experiment and that microarray-based epistasis provides
insight into the biological function of genes.

DISCUSSION
Our data show that microarray profiles can be used as phenotypes in
epistasis analysis. This approach has several advantages over classical
methods. First, existing knowledge of the phenotype is not needed,
whereas in classical genetics, investigators must decide which pheno-
types to measure. In our case, one would measure aggregation,
culmination, sporulation, etc., and data from the different assays
might not be compatible or consistent. Second, our approach allows
derivation of epistatic relationships without knowledge of the pheno-
type. This characteristic provides an enormous advantage for muta-
tions in certain genes that do not result in a readily measurable
phenotype. The third advantage is quantification: classical genetics
does not define how similar two mutants must be for epistasis to be
determined, because it is based on many different assays1,2. We used
Euclidian distance in this report, but other distance metrics could be
used as well (we obtained qualitatively identical results using Pearson’s
correlation instead of Euclidian distance calculations; data not shown).
Therefore, the microarray profile provides a quantitative and uniform
measurement that could be used to compare all possible mutants in a
given genome. Microarray profiling of mutant strains could be used in

the analysis of large-scale mutant collections3–5 and in conjunction
with methods for automated experimental design and analysis2,25.

We also found that transcriptional profiles may be more sensitive
than morphology or biochemistry. We found that the distance between
the phenotypes of the epistatic mutation and the respective double
mutation was never zero. Part of this distance must be due to
experimental noise, but the case of pufA and pkaC shows that it may
also be biologically relevant. The idea that pufA and pkaC may have
independent roles in addition to their epistatic relationship during
aggregation was first suggested by the morphological attenuation of the
pufA� mutants at the finger stage16. Most of the microarray data
supports the early developmental relationship between pufA and pkaC,
but hundreds of gene trajectories suggest that pufA may have an
independent role later in development. These findings may explain
why pufA� cells, which have high PkaC activity, do not sporulate
precociously like regA� and pkaR� cells, which also have high PkaC
activity16,20–22. D. discoideum PufA belongs to the PUF family of highly
conserved RNA binding proteins. PUFs are characterized by an RNA-
binding domain that recognizes and binds specific 3¢ UTRs of mRNA
sequences26. The fly homolog of PufA, Pumilio, acts together with
Nanos to bind the 3¢ UTR of hunchback mRNA, specifying the
abdomen in fly embryos27–30. The interaction between the two proteins
also controls cell division in the fly germ line by binding the 3¢ UTR of
cyclin B mRNA31. Our finding that hundreds of genes are not in
agreement with the idea that pkaC is epistatic to pufA suggests that
PufA might bind mRNA targets other than the pkaC transcript. This
idea is supported by findings in Saccharomyces cerevisiae that each of
the five yeast Puf proteins binds dozens of functionally related
mRNAs32. Hence, an advantage of determining epistatic relationships
between genes based on the transcriptional profiles of mutants is that
one assay can show the complexity of the relationships between genes,
which is impossible with less-detailed assays.

Another demonstration of the high resolution provided by the
microarray phenotype is the relationship between regA and pkaR.
Knockout mutations in either gene result in precocious develop-
ment20,33. Determining the epistatic relationship between such
mutants is nearly impossible with classical genetics because two
mutations must have different, preferably opposite, phenotypes1,2.
The microarray analysis allowed us to determine that pkaR is epistatic
to regA using two knockout mutations that result in similar pheno-
types. The finding was statistically significant and robust because the
relationship between every two single-mutation strains and the
corresponding double-mutation strain remained the same even in
the context of seven other strains.

Although microarray phenotypes provide many advantages, they
also have a distinct disadvantage. In classical genetics, the influence of
one gene on another or of a gene on a phenotype can be described as
excitatory or inhibitory, depending on the effects of the mutation1,2.
For example, if knocking out yakA leads to lack of aggregation, yakA is
said to excite aggregation. The microarray phenotype can also be
interpreted in that way, but the interpretation requires knowledge of
the relationship between the microarray profile and the biology of the
organism. This type of interpretation is not possible for every mutation.

Epistasis analysis with microarray data also suffers from the con-
ceptual problems that plague classical epistasis analysis. For example,
we assume that the genes function in a signaling pathway, where the
epistatic mutation is the downstream one, assuming a linear pathway2.
In biochemical or developmental pathways, the situation is reversed,
and there is no simple way to decide which rules to apply to a given
problem. The assumption of linearity may also be incorrect, resulting
in situations where the epistatic mutation is upstream, even in a
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signaling pathway1. Because the microarray data do not offer solutions
to these problems, detailed analysis of individual pathways is still
required after general pathways are described by microarray profiling.

We previously showed that epistasis analysis with classical, qualita-
tive genetic data could be automated2,34. We are currently working on
automating the task of epistasis analysis with quantitative microarray
data as well. Automated genetic analysis of uniform, quantitative
microarray phenotypes should be useful for constructing genetic
networks on a genome scale.

METHODS
Strains and transformation. The following D. discoideum strains were pre-

viously described: yakA� (ref. 35), pufA� (ref. 16), yakA� pufA� (ref. 16), pkaC�

(ref. 36), regA� (ref. 37), t108d2 [AX4 pkaR�]38 and acaA� and acaA� pkaCO/E

(acaA� act15/pkaC), in which pkaC is overexpressed under regulation of the

actin 15 promoter in acaA� cells24. Gene functions are described in Table 1.

We used gene disruption by homologous recombination and selection for

Blasticidin S resistance to generate the double mutants regA� pkaR� and pufA�

pkaC�. We used the knockout vector for regA described previously37 to

transform strain AK0636 (AX4 pkaR�)38. We transformed pufA� cells with

the knockout vector for pkaC, p292 (provided by H. K. MacWilliams; Ludwig-

Maximilians-Universität München). We confirmed gene disruptions by South-

ern-blot analysis with gene-specific probes (data not shown).

Growth, development and RNA preparation. We grew mutant D. discoideum

strains in HL5 liquid broth39. We washed exponentially growing cells free

of nutrients, deposited them on nitrocellulose filters at 3 � 106 cells cm�2

and developed them at 22 1C (ref. 40). We collected samples (1 � 108 cells

each) at 2-h intervals for 24 h, resuspended cells in 1 ml of TRIZOL

reagent (Life Technologies) and extracted total RNA in accordance with

the manufacturer’s recommended protocol. In addition, for each time

point collected, we determined the proportion of spores as described41. We

repeated filter development experiments of each mutant strain at least twice

(biological replications).

For documentation of morphology, we plated single cells on SM-nutrient

agar plates in association with bacteria (Klebsiella aerogenes)39 and photo-

graphed the emerging plaques. We documented aggregation morphology by

depositing HL5-grown cells on non-nutrient agar and following their devel-

opment by time-lapse video microscopy with transmitted light as described42.

Microarray experiments, normalization and multi-array scaling. We carried

out microarray experiments as described19. We analyzed each sample by a two-

color assay where the common reference was a total RNA sample made from

several time points of developing wild-type (AX4) cells and the hybridization

targets consisted mainly of cDNA. We applied a single-chip normalization

procedure to the quantified data to correct for spatial effects, to reject

irreproducible data based on the variability of replicate log-ratios and to bring

the data to a common measurement scale to allow for multiarray comparisons

as described19,43.

For each mutant, we carried out the experiment with three kinds of

replication. First, we printed each hybridization target twice on the array,

allowing for single-chip normalization (Supplementary Note online). In

addition, we carried out at least two hybridization experiments from each

RNA extraction to allow correction for hybridization variation (technical

replication). Finally, we carried out most of the assays with two biological

replications. We averaged both the technical and biological replicates to form

normalized time course data.

When comparing time courses of different mutants, we brought the data to

a common measurement scale to allow for multiarray comparisons. We scaled

the averaged time course data sets for the different mutants to multiple arrays

by dividing the log(ratio) of each gene by the median log(ratio) of all the genes

at a given time point. We also analyzed all data with the Bioconductor

software44 (Supplementary Figs. 1–5 online) and found that it was qualita-

tively indistinguishable from the data shown here (Figs. 1–5), indicating that

our conclusions are independent of the normalization procedure. Data analysis

with the Bioconductor software is described in Supplementary Note online.

Detection of epistatic relationships. To detect epistatic relationships, we

centered the mutant time course data to the wild-type time course19: for each

gene, we created an expression vector consisting of the log2 ratios of that gene at

the 13 time points. We scaled each 13-element gene vector by subtracting the

median log2 ratio of the gene in the wild-type time course. This operation is

equivalent to comparing all the gene expression values in the mutants to their

respective values in the wild-type.

To calculate dissimilarities between mutant time-course experiments, we

calculated Euclidean distances both between the wild-type–centered time

courses and between the smooth fit coefficients. To calculate the Euclidean

distances, we converted the 5,624-row � 13-column matrix of each mutant

time course to a 5,624 � 13 vector. We used the dist() function in the statistical

software package R to calculate pairwise Euclidean distances. We imported

the resulting distance matrix into the hclust() function in R using complete-

linkage clustering to connect the nodes of the trees. We visualized the results

as hierarchical trees (dendrograms). We calculated confidence levels by

10,000 rounds of bootstrapping17,18 with randomly selected (with replacement)

5,624 genes.

Because dendrograms obscure some distances between mutants, we also

calculated and presented the results as triangles where the nodes represent

strains and the edges represent the Euclidean distances between the microarray

profiles of the respective strains. We also used the w2 statistic to test the

distribution of microarray targets supporting each possible genetic relationship

against the null hypothesis of uniform distribution.

Detection of genes that violate epistatic relationships. To identify genes that

were not consistent with the idea that pkaC is epistatic to pufA, we calculated

Euclidean distances between the 13-element gene expression vectors of the

pufA�, pkaC� and pufA� pkaC� mutants and divided the 5,624 genes into

three groups. In one group, the distance between the gene expression vectors of

pufA� and pkaC� was the smallest, supporting the idea that pufA is parallel to

pkaC. In the second group, the distance between the expression vectors of

pufA� and pufA� pkaC� was the smallest, supporting the idea that pufA is

epistatic to pkaC. The last group of genes supported the idea that pkaC is

epistatic to pufA. We carried out hierarchical clustering of the three groups of

genes as described above and plotted the results as dendrograms.

ArrayExpress accession numbers. Array, A-MEXP-161; experiment, E-

TABM-6.

Note: Supplementary information is available on the Nature Genetics website.
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