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Abstract

We present a new method for registration of range images, which
is based on the results we obtain from the segmentation process. We
need two range images segmented into regions, each of them modeled
by a paramteric model and the approximation of the transformation
between the two range images. Then two sets of corresponding points,
one from each range image, are chosen and the transformation be-
tween them is computed to further refine the initial approximation of
the transformation. The novelty is how we obtain the a corresponding
points for the original set of points from the range image. Namely, to
obtain them we project set of points from the first range image onto
geometric parametric models that were recovered in the second range
image and viceversa. This way we obtain two sets of corresponding
points. Then we compute the transformation between the two sets.
Few iterations are required to improve the initial approximation of
the transformation. The results have shown a significant improve-
ment in precision of the registration in comparison with traditional
approaches.
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1 Introduction and motivation

Registration of range images is considered an important part of any vision
system that requires data acquisition of parts that are not visible from a single
viewpoint. There is no 3D sensor system available on the market that would
obtain 3D data of the complete surface by a single scan. Thus, to extract
complete information about the surface of an object we need to scan it from
several viewpoints and then merge the data together. This requires that we
compute the transformation between data sets obtained from different view-
points. A rough approximation of the transformation can be obtained by
involvement of a human operator, from positioning devices, e.g., a turntable,
or automatically by detecting corresponding features in both sets. For some
tasks, like reverse engineering, the accuracy of this approximate transforma-
tion has to be further improved by one of the refinement methods. In this
paper we present a new refinement method which is based on segmented data,
i.e., descriptions obtained by Recover-and-Select paradigm [8, 9, 10, 11]. Re-
finement methods usually compute the transformation either between two
sets of points [1, 15] or between a set of points and a set of some surface
elements, e.g., triangles [14]. For each point from the first set, these methods
find a corresponding point or surface element in the second set. Transforma-
tion between two sets of corresponding points is then computed by methods
usually based on least squares. However, due to scanner sampling it is im-
possible to find the exact corresponding point or surface element for each
point in the first set. This situation is illustrated in Fig. 1, which clearly
shows that if the refinement is performed in this way, small errors will affect
the computed transformation. Therefore we propose a novel approach which
alleviates this problem.

Registration of all range images is achieved by repeatedly registering pairs
of range images. In each step, 3D points from both range images are first
segmented into descriptions by the Recover-and-Select paradigm. This gives
us geometric parametric models which approximate each segmented region.
Let us assume that we have an initial approximation of the transformation.
Then, instead of computing the transformation between the two sets of 3D
points scanned by the sensor, we can use one set of points and their corre-
sponding projections to geometric parametric models that were obtained for
the other set of points and viceversa. This process can be iterated until the
transformation error reaches a predefined value or just for some predefined
number of iterations. In this way we cancel the effect of scanner sampling



Figure 1: An example of two corresponding points. Gray point in the right
image is not captured by the scanner in the second view.

(since the projection of a point onto a geometric model really corresponds
with that point). Moreover, the point that corresponds to a particular point
from one set, does not need to be captured by the scanner since it is computed
from the segmented data.

The rest of the paper is organized as follows: in section 2 we introduce
Recover-and-Select segmentation process, in section 3 we present several al-
gorithms for improving the initial transformation, among them also our Pro-
jection Iterative Closest Point (PICP) algorithm. Sections 4 and 5 contain ex-
perimental results and discussion, respectively. Geometric parametric models
and projections of points onto the models are presented in the appendix.

2 Segmentation of range images

Our method for refinement of the transformation between two partially over-
lapping range images assumes that both of them are segmented. We use the
Recover-and-Select paradigm [8, 9, 10, 11], where the set of 3D points is seg-
mented into regions. Each region though has its own geometric parametric
model that fits best to the data in the region. The region and the model
fitted to it form a description. To express the fit quality of model M to the



region R, we use Eq. 1, known as description error,
1

Err =
R

> d(x, M). (1)
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Function d(x, M) calculates distance of point x to the model M.

The Recover-and-Select paradigm can currently use the following geomet-
ric models: planes, spheres, cylinders, cones, and tori. But it can be easily
extended in such a way that it recovers other geometric parametric models
as well.

Here we will briefly review the segmentation procedure. For details, the
reader is referred to [8, 9, 10, 11]. The Recover-and-Select paradigm starts
with placing seed descriptions with very small regions on the range data.
Then it performs few steps of description growing followed by description
selection. This is performed until all remaining descriptions are fully grown.
Description growing step consists of searching for compatible points in the
neighbourhood of description region, joining these points to the region and
fitting new description model. The compatibility criterion is usually based
on the euclidian distance of point to the current description model. The
description selection is performed since description regions start to overlap
and many of them become redundant. The Recover-and-Select paradigm
is based on principals of natural selection, which guarantees robustness in
segmentation. This is necessary, since our refinement method strongly relies
on segmentation and model fitting results.

An example of segmented data is shown in Fig. 2. Different gray levels
denote different regions. Geometric parametric models in descriptions shown
in Fig. 2 are planes (descriptions 2, 3, 4, 6, 7, 9 and 11), cylinder (description
1) and cone (description 5). In our transformation refinement method we use
these models to compute projections of points to their surfaces.

3 Transformation refinement algorithms

3.1 ICP algorithm

The most popular algorithm for refining the initial transformation approx-
imation between two sets of range data is so called ICP (Iterative Closest
Point) algorithm [1]. For each feature (usually a point) in the first data set it
finds the closest feature in the second data set under current transformation.



Figure 2: Generated intensity image of an object and its range image seg-
mentation. Each description is labeled with a number.

These feature pairs are then used to compute the transformation refinement
that minimizes the sum of distances between corresponding features.

The ICP algorithm in its simplest implementation computes the trans-
formation between two sets of points X and Y from different coordinate
systems. A point y € Y is the corresponding point to a point x € X if the
condition 2 is satisfied.

y = argmind(x, t). (2)

Function d represents a measure of distance between the two points. The
ICP algorithm then computes the transformation that minimizes the sum of
distances between transformed points from set X and their corresponding
points from the set Y. Several iterations of the ICP algorithm are usually
performed to satisfy some convergence criterion, which is usually the average
distance between the corresponding points or difference between this average
distance in two successive iterations.

3.2 Improvements of the standard ICP algorithm

The convergence of the ICP algorithm occurs only if one of the data sets is
the subset of the other data set. Otherwise incorrect correspondences occur
for the points in one set, that are not included in the other data set. The first
straightforward improvement is to introduce a threshold ¢4 on the distance



Figure 3: Two segmented range images. Corresponding descriptions have
same indices in both images.

between corresponding points [2, 16]. Two points x € X and y € Y now
correspond to each other if both conditions 2 and 3 are satisfied.

d(x,y) < tg. (3)

The condition 3 cuts out some incorrect correspondences generated by points
not present in both data sets, but requires that a threshold value is set. This
value primarily depends on the scanner resolution and the precision of the
initial transformation approximation.

Another improvement was presented in [15]. The authors introduced
additional condition 4 in order to reduce the number of incorrect correspon-
dences between points.

x = argmin d(t,y). (4)

This condition guarantees, that if points x € X and y € Y correspond to each
other, x is the closest point from X to y and viceversa. This approach was
called ICRP (Iterative Closest Reciprocal Point) algorithm. Another possible
improvement is described in [3]. Here from each point in the first data set a
line is constructed that is parallel to a normal vector at the point. The closest
point to this line in the second data set is then found and a tangent plane
through it is used as surface approximation. The projection of the point from
the first data set to the tangent plane is then used as the corresponding point.



This approach is similar to ours although it might be less robust to the noise
because its surface approximation is based on local features only. Other
improvements include modelling of sensor inaccuracies [4] and combining
point locations with surface normals in the distance metric d [5]. Principle
curvatures and other surface properties have also been used in determination
of closest point [6, 7] .

One of the drawbacks of the ICP algorithm is that it is time consuming.
Its time complexity is O(nins), where n; is the number of points in data set
1. Things do not change even if we use some of the improvements mentioned
before. Time required for the finding closest point among n points is O(n),
unless we use a special tree structure (k—d tree), which brings finding closest
point time complexity down to O(logn). This means that ICP algorithm
and its derivates have complexity O(n;logns) in the best case. On the
other hand, it will be shown that our PICP algorithm has time complexity
O(n1 + ny) without using any special data structures.

3.3 PICP algorithm

We call our new transformation refinement method Projection Iterative Clos-
est Point (PICP) algorithm, because it is similar to ICP algorithm in itera-
tions performed after the correspondence has been obtained. PICP algorithm
was developed to avoid the sampling effect. Using information obtained by
segmentation stage and the initial approximation of the transformation be-
tween viewpoints from which the point sets have been scanned, we are able
to determine pairs of corresponding descriptions. Description D; from the
first set of points, consisting of region R; and model M, corresponds to de-
scription Dy from the second set of points, consisting of region Ry and model
M, if conditions 5, 6 and 7 are satisfied.

1
LS M) < dos (5)
|R2‘ x€T(R2)
1
R— Z d(y,MQ) < dtT, (6)
‘ 1| YER)
Ix € Ry Ady € T(Ry) : d(x,y) < dy. (7)

T denotes the initial approximation of the transformation, function d denotes
a measure of distance between two points, or between a point and geometrical
parametrical model, while d;, represents a threshold value.
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We obtain the initial approximation of the transformation automatically,
so that each triple of descriptions from one set of points is matched to each
triple of descriptions from the other set and the transformation between the
two triples of descriptions is computed. The transformation that maximizes
number of pairs of corresponding descriptions is chosen as the initial approx-
imation. Characteristic features of each model, like normal vector of the
plane, axis of rotation of cylinder, cone and tori, and center of the sphere are
used to compute this initial approximation, which yields a good estimate of
the real transformation.

For each pair of corresponding descriptions conditions 5 and 6 assure that
points from the region of one description are close enough to the geometric
model of the other description after the initial approximation of transforma-
tion has been applied to one of the sets of points. Condition 7 requires that
points from regions of both descriptions are close enough, otherwise we have
no information if descriptions really describe the same surface. In Fig. 3 two
different segmented range images are shown.

When the pairs of corresponding descriptions are identified, PICP algo-
rithm starts to construct sets X and Y. It starts with X and Y both empty
sets. For each pair of the corresponding descriptions it adds points from the

o projections of points from the first set

onto description models from the second set
Ereneeees direction of projection

e pointsin the second data set

x pointsin thefirst data set
description models from the first data set
- — - description models from the second data set

Figure 4: Projection of points from the first set of data to geometric models
from the second set of data



region of description from the first range image to set X and projections
of these points onto geometric model of description from the second range
image to set Y. Also, points from the region of descriptions from the second
range image are added to Y and their projections onto geometric model of de-
scriptions from the first range image are added to X. We can always discard
points and their projections which are too far apart from each other. In this
way we can get rid of some noisy data and thus improve the precision of the
estimated transformation. Figure 4 shows how to obtain the projection of a
point from X to some geometric model of the description from second set of
data. After all pairs of corresponding descriptions have been taken into con-
sideration, sets X and Y are completed. PICP algorithm then uses a method
based on quaternions [13] to compute the parameters of the transformation.
The obtained transformation is used as the approximation of the transforma-
tion in the next iteration of PICP algorithm. Our experiments showed that
with 20 to 50 PICP iterations we obtain significant improvement over other
refinement methods in terms of accuracy. The whole method is outlined in
algorithm 1. We use the following notation in algorithm 1. R; and M; denote
the region and the model of description D;, while N is the number of PICP
iterations. In our experiments we used N = 50. We also use term list for X
and Y since it is important to have a point and its corresponding counterpart
in the same position in the list.

Since finding the closest (or corresponding) point on the surface of one
data set for one point from the other data set requires time O(1) (all we have
to do is to project a point from one data set to the corresponding description
in the other data set which provides the surface approximation), the overall
time complexity of one PICP iteration is O(n; + ns).

4 Experimental results

We used the PICP algorithm in a reverse engineering application [9]. We
scanned an object from four viewpoints and obtained four range images and
segmented them with the Recover-and-Select paradigm (images RI;, RI,,
RI3, RI, shown in Fig. 6, while the corresponding generated intensity images
are shown in Fig. 5.  We registered images RI; and RI, and merged them
together. In this way we obtained range image RI15. Then we registered
images RI;5 and RI3 and merged them to obtain the range image RI 3.
Finally we registered images RIi53 and RI, and merged them to obtain the



Algorithm 1 Outline of the PICP method
obtain initial approximation of the transformation T’
transform second range image and its descriptions using 7'
fori=1to N do
let X and Y be empty lists
for each description D; = (R, M;) from the first range image do
if there is corresponding description Dy = (Ry, M) from the second
range image for D; then
for each point p from R; do
find its projection p* onto M,
append p to X and p*to Y
end for
end if
end for
for each description Dy = (R, Ms) from the second range image do
if there is corresponding description D; = (Ry, M;) from the first
range image for Dy then
for each point p from R, do
find its projection p* onto M;
append p to Y and p* to X
end for
end if
end for
calculate new transformation 7" between X and Y
transform second range image and its descriptions using 7'
end for

final image Rl 23,. When merging two segmented range images to obtain a
new range image, we do the following:

1. if description D; from the first segmented range image does not have
a corresponding description in the second segmented range image, we
insert D; into the new range image,

2. if description D, from second segmented range image does not have a
corresponding description in the first segmented range image, we insert
D, into the new range image,

3. if descriptions D; and D, from different range images correspond and
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Figure 5: Generated intensity images of the same object taken from different
viewpoints

if R; is region of D; and R, is region of Dy, we form a new region
R = Ry{UR, and fit new model M to region R. We insert the new
description containing R and M into the new range image.

Let us consider for a moment the segmented range image which was gen-
erated by merging together two range images. If some description D was
formed by merging together two corresponding descriptions D; and Ds, it
is obvious that if the registration stage did not find a good transformation
between the two range images, description error (Eq. 1) of D is significantly
greater than description error of D; and D,. Similarly, if the transformation
found by the registration stage is accurate, description error of D should be
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C) .. d)
Figure 6: Segmented range images a) RI;, b) Rl,, ¢) RI3 and d) RI,

similar to description errors of D; and D,. Table 1 shows description errors
for three descriptions shown in Fig. 7. Table 2 shows description errors af-
ter registration and merging without any refinement, while Table 3 shows
description error after registration and merging with 50 PICP iterations per-
formed. Descriptions that were merged from two corresponding descriptions
when PICP algorithm was used, were not much worse in terms of description
errors. This means that PICP algorithm significantly improves the accuracy
of the registration. Note that when we used merged images Rl 53 and RI,
without PICP refinement, the application did not recognize cone descriptions
as corresponding (they did not match the conditions 5 and 6). This means
that in this way we obtained two descriptions for the same object surface
which is obviously a wrong result. This shows that refinement of the trans-
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Figure 7: Generated intensity image of an object and its range image seg-
mentation. Each description is labeled with a number.

Description RI, RI, RI; RI,

cylinder (index 1 in Fig. 7) | 0.1023 | 0.1048 | 0.0548 | 0.1133
cone (index 5 in Fig. 7) 0.1654 | 0.1421 / 0.1269
planar (index 3 in Fig. 7) | 0.0965 | 0.1172 / 0.1220

Table 1: Errors of three descriptions in four different viewpoints

formation is necessary in tasks which require precise estimation of object
surfaces.

We define the transformation error as the average sum of distance be-
tween points from description regions and their projections to the models
of corresponding descriptions. We analysed how the average distance of the
points from region of description from the first data set to the model of the
corresponding description from the second data set changes during PICP al-
gorithm iterations. We have also compared PICP algorithm against some of
the other refinement algorithms, mentioned in section 3.2, in terms of errors
of the estimated transformations. Transformation errors when using differ-
ent refinement algorithms on the data sets from Fig. 8 are summarized in
Table 4.

The results that we obtained during our experiments show, that the re-
finement of initial approximation of the transformation is necessary to obtain
more precise registration of range images. Our PICP algorithm proved to be
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Figure 8: Two segmented range images for our experiments. Corresponding
descriptions have same indices in both images.

DGSCI'iptiOIl RIlg R1123 R11234
cylinder (index 1 in Fig. 7) | 0.1739 | 0.3836 | 0.6636
cone (index 5 in Fig. 7) 0.2863 | 0.2863 | 0.2863
planar (index 3 in Fig. 7) | 0.4513 | 0.4513 | 0.6813

Table 2: Errors of three descriptions after merging without PICP refinement

more precise than any other refinement algorithm we have tested (an exam-
ple of comparison results is shown in Tab. 4). Moreover, PICP algorithm
is less time consuming, although the time performance wasn’t the primary
issue of our work.

In Figs. 9 we show two examples of creating CAD models of objects with
surfaces of regular geometry as possible application of our PICP algorithm.
The left image shows a generated intensity image of the object, while the
right one shows the computed boundary representation of the object. In
the first example where we had symmetric object with only planar surfaces,
sometimes the initial approximation of the transformation at registering had
to be obtained manually. The use of human operator or positioning devices
is often needed at registration of very simple and symmetric objects.
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Description RIs | Rlo3 | Rlioas
cylinder (index 1 in Fig. 7) | 0.1392 | 0.2793 | 0.2617
cone (index 5 in Fig. 7) | 0.1877 | 0.1877 | 0.1799
planar (index 3 in Fig. 7) | 0.1099 | 0.1099 | 0.1146

Table 3: Errors of three descriptions after merging with 50 PICP refinement
iterations

PICP ICP | ICRP | Algorithm in [3]
initial approximation | 0.7561 | 0.7561 | 0.7561 0.7561
after 10 iterations 0.2985 | 0.3498 | 0.3491 0.3378
after 20 iterations 0.2475 | 0.3510 | 0.3538 0.3308
after 30 iterations | 0.2243 | 0.3572 | 0.3585 0.3257
after 40 iterations 0.2111 | 0.3566 | 0.3550 0.3207
after 50 iterations 0.2018 | 0.3621 | 0.3612 0.3155

Table 4: Comparison of three refinement algorithms in terms of description
errors

5 Discussion

We presented a new method, PICP algorithm, for registering the range im-
ages. It is used to refine the initial approximation of the transformation
between range images that were previously segmented. PICP’s performance
is good in terms of accuracy and required computational time although re-
quired preprocessing in terms of segmentation can be time consuming. But in
tasks like reverse engineering, segmentation into object surfaces is a common
step, so it may not be appropriate to think of segmentation as a preprocess-
ing step for PICP algorithm. PICP has some drawbacks as well. The most
significant is, that it cannot be used directly for objects with arbitrary free-
form surfaces since our approach requires a segmentation into appropriate
models which is currently limited to planes, spheres, cylinders, cones, and
tori. One could use our PICP approach with arbitrary free-form surfaces for
projection of points onto local models in a similar way as in [3]. Our future
work will be directed towards including other types of models and automatic
creation of CAD models out of segmented and registered range data. We
are already able to create CAD models out of simple objects with planar,
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Figure 9: Generated intensity images of merged range data obtained from
several views on the left and corresponding boundary representations of CAD
model on the right

cylindrical and conical surfaces like the one used in our experimental results,
but we want to extend this approach to other types.

A Projections of points onto the geometric
parametric models

In this section we present geometric parametric models used in the Recover-
and-Select based segmentation stage. Also, we show how to compute the
coordinates of a point that has been projected onto a particular model. Our
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method requires that we have to be able to compute a projection of a point
onto each model type used.

A.1 Projection of a point onto a plane

Planes are represented by parameters a,b,c,d and consist of points t =
(z,vy, ) that satisfy equation ax + by + cz +d = 0. The projection (tpro;) of
a point onto a plane can be computed as shown in Eq. 8.

tproj = t—din, (8)
where di = nt+d,
n = (a,b,c) and
A+ +c = 1.

A.2 Projection of a point onto a sphere

Spheres are represented by parameters a,b,c,r and consist of points t =
(z,vy, z) that satisfy equation (z —a)? + (y — b)> + (2 —¢)? = r> = 0. The
projection (tproj) Of a point onto a sphere can be computed as shown in
Eq. 9.

tproj = t—da(t—c), 9)
where dy, = d d: T,
¢ = (a,b,c) and
dy = |[t—c|.

A.3 Projection of a point onto a cylinder

Cylinders are represented by parameters p, ¢, 6, o, k [12]. Parametrisation of
a cylinder is shown in Fig. 10. Values ¢ and 6 are used to compute vector n
(n = (cos ¢ sin b, sin ¢ sin 6, cos ) ), which is parallel to the normal vector of a
tangent plane to a cylinder surface and orthogonal to a vector on the cylinder
axis (a). The projection (tproj) of a point to a cylinder can be computed as
shown in Eq. 10.

toroj = t—(llt —v[—1/k)r, (10)
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where r =

t—v

and

It =l
v = (p+1/k)n+((t—(p+1/k)n)-a)a.

Figure 10: Parametrisation of a cylinder

A.4 Projection of a point onto a cone

Parametrisation of a cone is similar to the parametrisation of a cylinder.
A cone has parameters p,¢,0,0,7,k [12]. The parametrisation of a cone
is shown in Fig. 11. The difference is that here vectors n and a are not
necessarily orthogonal. Vector n is computed in the same way as for the
cylinder, while a has components (cos o sin7,sin o sin7,cos7)[12]. The pro-
jection (tproj) of a point to a cone can be computed as shown in Eq. 11.

tp!‘O.i
where ¢

z
o
d

]

t = (llc — zaf —d)r (11)
t—(p+1/k)n,

arccos(a - n),

—ztana and

ksin «v
c—za
lc — zal|.
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Figure 11: Parametrisation of a cone

A.5 Projection of a point onto a torus

A torus has parameters p,¢,0,0,7,k,s [12]. Parameters ¢, 6,0, 7 denote
vectors n and a, while both radii of a torus can be computed with 3 and <.
Parametrisation of a torus is shown on a torus cross-section in Fig. 12. The
projection (tproj) of a point to a torus can be computed as shown in Eq. 12.

toroj = t— ([t —c—v][-1/k)r, (12)

where ¢ = (p+1/s)n—|1/s—1/k|cos(a-n)a,
(ax(t—c))xa

p )
[(a x (t —c)) x al

v = |1/s—1/k|sin(a-n)p and
t—c—v

r = —.
[t —c—v]
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