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Summary

Self and kin discrimination are observed in most kingdoms
of life and are mediated by highly polymorphic plasma

membrane proteins [1–7]. Sequence polymorphism, which
is essential for effective recognition, is maintained by

balancing selection [8–10]. Dictyostelium discoideum are
social amoebas that propagate as unicellular organisms

but aggregate upon starvation and form fruiting bodies
with viable spores and dead stalk cells. Aggregative devel-

opment exposes Dictyostelium to the perils of chimerism,

including cheating, which raises questions about how the
victims survive in nature and how social cooperation

persists [11–13]. Dictyostelids can minimize the cost of
chimerism by preferential cooperation with kin [14–16], but

the mechanisms of kin discrimination are largely unknown.
Dictyostelium lag genes encode transmembrane proteins

with multiple immunoglobulin (Ig) repeats that participate
in cell adhesion and signaling [17–22]. Here, we describe

their role in kin discrimination. We show that lagB1 and
lagC1 are highly polymorphic in natural populations and

that their sequence dissimilarity correlates well with wild-
strain segregation. Deleting lagB1 and lagC1 results in strain

segregation in chimeras with wild-type cells, whereas elimi-
nation of the nearly invariant homolog lagD1 has no such

consequences. These findings reveal an early evolutionary
origin of kin discrimination and provide insight into the

mechanism of social recognition and immunity.

Results and Discussion

lagC1 and lagD1 encode similar proteins (59% identity) and
have similar developmental functions [19]. lagC1 resides
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next to lagB1, which encodes another predicted transmem-
brane protein with several Ig repeats, and lagD1 resides next
to lagE1—a close homolog of lagB1 (68% identity) [23]. In both
gene pairs, the ORFs face away from each other, separated by
a short intergenic sequence. To test whether these gene pairs
could be involved in kin discrimination, we measured their
polymorphism levels in wild isolates. We sequenced these
genes in wild isolates and found that lagB1 and lagC1 are poly-
morphic (Figure 1), whereas lagD1 and lagE1 are nearly
invariant (data not shown). The ratio between nonsynonymous
(dN) and synonymous (dS) substitutions is an indicator of
evolutionary processes, whereby dN/dS > 1 suggests positive
selection [24]. We found that lagB1 and lagC1 contain regions
with dN/dS ratios as high as 2 to 4 (Figure 1), which is compa-
rable with values found in mammalian MHC genes [9]. In lagD1
and lagE1, the ratios were smaller than 1 (data not shown).
Therefore, lagB1 and lagC1 are probably evolving under posi-
tive selection, possibly balancing selection considering the
high number of polymorphic alleles [8], and the homologs
lagD1 and lagE1 must be under purifying selection. Polymor-
phism is an essential feature of recognition proteins because
it provides the molecular basis for self identity. We therefore
conclude that lagB1 and lagC1 are more likely to be involved
in kin recognition than lagD1 and lagE1.

lagC1 and lagD1 mRNAs are developmentally regulated [19],
so we tested the regulation of the respective tandem genes,
lagB1 and lagE1. Figure 2A shows that the lagB1 and lagC1
expression patterns are nearly indistinguishable, with mRNA
levels peaking at 8–12 hr, corresponding to the transition
from loose aggregate to tight aggregate. Figure 2B shows
that lagD1 and lagE1 mRNA levels are also nearly indistin-
guishable with a peak at 16 hr, corresponding to the finger
stage of development. The tandem genes are therefore coordi-
nately regulated, probably as a result of common regulatory
elements that reside between their ORFs.

lagC1 is essential for aggregation and for subsequent
development [17–22], so we tested whether lagB1 was also
involved in development. We disrupted lagB1 and compared
the mutant to the parental AX4 strain and to lagC12 cells.
lagB12 cells failed to progress beyond the loose aggregate
stage after 12 and 17 hr of development, similar to lagC12

cells, whereas the wild-type formed tipped aggregates and
slugs at the respective times (Figure 2C). A few lagB12

mounds formed small, gnarled fruiting bodies after 40 hr
(Figure 2C). Neither mutant produced spores in the first 24 hr
of development (data not shown), but 2% of the lagB12 cells
formed spores after 30 hr (Figure 2D). Therefore, lagC1 and
lagB1 are essential for aggregation and for subsequent devel-
opment, suggesting common functions.

The proximity of lagC1 and lagB1 raised the possibility that
disrupting one gene might have inadvertently disrupted the
other. To test that possibility, we measured lagB1 mRNA in
lagC12 cells and vice versa. lagB1 mRNA was present in the
lagC12 cells, although the levels were lower and the mRNA
persisted relative to the wild-type (Figure 2E). lagC1 mRNA
was present in the lagB12 cells at levels similar those in the
wild-type (Figure 2F). These observations indicate that
deleting one gene did not directly inactivate the other. The
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Figure 1. Sequence Polymorphism

We amplified and sequenced genes from several

D. discoideum strains and aligned the sequences

of each gene separately. We determined the

position of variable nucleotides and determined

whether each variation corresponds to a synony-

mous (S) or a nonsynonymous (N) variation in the

protein sequence. The upper box of each panel

represents the synonymous variations as green

bars above the zero line and the nonsynonymous

variations as red bars below the line. The x axis

indicates the codon number in the ORF and the

y axis indicates the frequency of the variation in

each strain compared to all the other strains.

We used the nucleotide variation data to

compute the dN/dS ratio at each codon in

a sliding window of 31 codons along the entire

coding sequence. The data are plotted in the

lower box of each panel, the x axis indicates the

codon number in the ORF, and the y axis indi-

cates the dN/dS ratio. Data above the line (dN/

dS = 1) suggest that the region is under balancing

or positive selection.

(A) lagB1 exhibited a total of 266 polymorphic

codons with as many as eight variations per

codon (30 strains tested).

(B) lagC1 exhibited 319 polymorphic codons with

as many as seven variants per codon (29 strains tested). We also sequenced lagD1 and lagE1. lagD1 exhibited only nine polymorphic codons with no more

than two variants per codon (15 strains tested), and lagE1 exhibited ten polymorphic codons with only two variants per codon (six strains tested). The dN/dS

ratio was much lower than 1 in both cases (data not shown). Information about the strains and the genes we sequenced is provided in Table S1.
reduced levels and the persistence of lagB1 mRNA in lagC12

cells probably reflect the delayed development of the mutants,
but it is formally possible that they contributed directly to the
observed phenotypes.

The patterns of sequence polymorphism and gene expres-
sion and the phenotypes of the null mutants suggested that
lagB1 and lagC1 are likely to function together in kin discrimi-
nation. To test that possibility, we followed cells in chimeras
between differentially labeled strains. In control chimeras,
AX4-GFP and AX4-RFP cells exhibited equal mixing of green
and red fluorescent cells at the aggregation stage (10–12 hr)
and at the finger stage (16–19 hr), indicating that the fluores-
cent markers do not cause segregation (Figures 3Ai and 3Aii).
Mixing AX4-RFP with lagB12-GFP yielded a different pattern:
the red fluorescent wild-type and the green fluorescent mutant
co-aggregated at first, but then segregated into regions en-
riched in either red or green fluorescent cells during mound
formation (Figure 3Aiii). The mounds progressed into slugs
that contained cells from both strains, but the lagB12 cells
were enriched in the middle of the slugs (Figure 3Aiv). This
enrichment in the prespore region suggested that the mutant
may cheat on the wild-type [12], but a direct test did not
support this hypothesis (data not shown).

The results observed with lagC12 were even more dramatic.
Cells from the two strains coaggregated at first, but then
segregated within the loose aggregates (Figure 3Av). Several
hours later, the AX4-RFP cells formed migrating slugs that
contained a few lagC12-GFP cells and migrated away, leaving
behind mounds of mainly lagC12-GFP cells (Figure 3Avi).
These results suggest that lagC1 and lagB1 play a role in kin
discrimination, although lagB1 plays a lesser role than lagC1.

To test the kin-discrimination role of lagD1, we mixed
lagD12-GFP with AX4-RFP cells. The strains mixed well and
remained mixed throughout development (Figures 3Avii and
3Aviii). These results do not support a role for lagD1 in kin
discrimination, even though lagD1 shares many other proper-
ties with lagC1 [19], highlighting the difference between the
polymorphic lagC1 gene and the nearly invariant lagD1
homolog.

LagC1 is a cell-adhesion protein [20, 22], so we tested
whether other adhesion genes participate in kin discrimina-
tion. cadA [20, 25] and csaA [26] encode two thoroughly
studied cell-cell adhesion proteins [20]. We tested the respec-
tive null mutants in chimeras with AX4 cells and found no
evidence of segregation (Figures 3Aix–3Axii), arguing against
a general role for cell-adhesion genes in kin discrimination.
These results are not in conflict with work that described
csaA as a greenbeard gene [27, 28]. In those experiments,
csaA2 segregated from the wild-type during development on
soil but not on agar. Moreover, the sequence conservation of
csaA in wild strains (unpublished data) is inconsistent with
a direct role in kin discrimination.

The segregation of lagC12 from AX4 could have resulted
from differential adhesion. To test the adhesion properties of
the strains, we developed them in pure populations for 5 and
12 hr. We disaggregated the cells, mixed them, and allowed
them to reaggregate in liquid suspension [22]. We found mixed
aggregates in both cases (Figures 3Bi and 3Bii), indicating
mutual adherence and suggesting that differential adhesion
cannot account for the segregation observed in Figure 3A.
Moreover, the 12 hr cells became segregated within the mixed
aggregates (Figure 3Bii), consistent with the proposed role of
lagC1 in kin discrimination.

lagB1, lagC1, and lagD1 have similar developmental roles
because mutations in either one cause a developmental arrest
at the loose aggregate stage ([17, 19]; Figure 2C). We further
tested their roles in kin discrimination by testing chimeras
between lagC12 and other mutants (Figure 3C). The control
experiment showed that the differential labels did not cause
segregation (Figures 3Ci and 3Cii). To test whether lagB1 and
lagC1 participate in one kin-discrimination pathway, we mixed
differentially labeled cells of the respective mutants and
observed no segregation at any stage (Figures 3Ciii and 3Civ).
Conversely, lagC12 and lagD12 first coaggregated
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Figure 2. Developmental Regulation and Func-

tion of lag Genes

In (A) and (B), we used quantitative RT-PCR to

measure the mRNA levels of lag genes in samples

collected at 4 hr intervals from developing wild-

type AX4 cells. At 0 hr, the cells are at the vegeta-

tive stage, at 4 hr they are starving, at 8 hr they

begin to aggregate, at 12 hr they form tight aggre-

gates with differentiated prespore and prestalk

cells, at 16 hr they form fingers with prestalk cells

in the anterior end, at 20 hr they begin to culmi-

nate, and at 24 hr they form mature fruiting

bodies with a ball of spores aloft a cellular stalk.

The time (hours) is indicated on the x axis and

the mRNA level is indicated on the y axis in arbi-

trary units, relative to the maximal level of expres-

sion. The results are presented as averages and

standard deviations of three technical replica-

tions of each of two biological samples (a total

of six measurements).

(A) lagB1 mRNA (blue) and lagC1 mRNA (red).

(B) lagD1 mRNA (blue) and lagE1 mRNA (red).

In (C) and (D), we mutated the lagB1 gene, devel-

oped wild-type and mutant cells for the indicated

time (hours), and analyzed their development.

(C) Morphological analysis: growth and early

developmental properties of the three strains

were nearly indistinguishable (data not shown).

We show morphological differences between

cells developed on nonnutrient agar (12 hr,

17 hr) and on dark nitrocellulose filters (40 hr).

The genotypes are indicated on the left. Pictures

were taken from above the structure. The scale

bar represents 0.5 mm.

(D) Sporulation efficiency: we counted the

number of spores collected after 30 hr and

present the data as a fraction (%) of the number

of amoebas deposited for development. The

genotypes are indicated below the bars. Results

are the means and standard deviations of three

independent replications. For gene expression,

we used quantitative RT-PCR to measure

mRNA levels in samples collected at 4 hr intervals

from developing cells. The graphs are as above

and the results are presented as averages and

standard deviations of three technical replica-

tions of each of two biological samples (a total

of six measurements) except as indicated.

(E) lagB1 mRNA in wild-type cells (red) and in

lagC12 cells (blue).

(F) lagC1 mRNA in wild-type cells (red) and in lagB12 cells (blue). The lagB12 cells exhibited large differences between biological samples, probably because

the cells do not develop synchronously, so we show two biological experiments out of four that we have performed (solid and dashed blue lines). The data

are averages and standard deviations of three technical replications.
(Figure 3Cv) but then segregated into clusters consisting
mainly of one or the other strain (Figure 3Cvi). The latter obser-
vation suggests that segregation is not a result of differential
developmental progression because the strains segregate
even though both progress to the same developmental stage.

These results suggest that lagB1 and lagC1, but not lagD1,
function in one kin-discrimination pathway. This conclusion
is also supported by the finding that lagB1 and lagC1 are phys-
ically mapped near each other, so they are likely to be inherited
together in a syntenic block as seen in other kin-discrimination
genes [2], and by the observation of developmental coregula-
tion (Figure 2A), which provides the temporal opportunity for
common function.

We also tested the role of othercell-adhesiongenes by mixing
lagC12 with cadA2 or with csaA2. In both cases, the cells coag-
gregate initially but then segregated into structures that
consisted mainly of one strain or the other (Figures 3Cvii–3Cx).
These results suggest that the kin-discrimination roles of
lagB1 and lagC1 are specific to these genes rather than
a general property of cell-cell adhesion genes.

Mixing AX4 cells with genetically dissimilar cells results in
partial segregation, implying a kin-discrimination mechanism
[16]. The properties of lagB1 and lagC1 suggest they might
participate in that mechanism. To examine the correlation
between the lagB1 and lagC1 sequence polymorphism and
segregation, we computed the dissimilarities between the
AX4 LagB1 and LagC1 sequences and the respective
sequences in 11 wild isolates. We then computed the correla-
tion between these dissimilarities and the published strain
segregation data [16]. We observed a positive correlation
between sequence dissimilarity and segregation, although it
was weaker than the correlation with genetic distances in-
ferred from microsatellite length (Table S2 available online).
We then searched and found within LagB1 and LagC1 protein
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domains that exhibited better correlations between sequence
dissimilarity and strain segregation (Table S2). In LagB1, the
correlation was best between amino acids 239–259 and in
LagC1 it was between amino acids 180–197 (Figure S1). Both
regions reside near the first Ig-fold of the extracellular domain,
suggesting that specific extracellular domains may have
a function in segregation.

Because we tested many correlations, one or more could
have been strong just by chance. However, if these correla-
tions reflect a causative relationship, they should be predictive
of strain segregation, which would be less likely if they were
serendipitous. Ostrowski et al. mixed three wild strains,
QS32, QS33, and QS38, all of which segregated from AX4.
QS32 and QS33 are genetically close to each other and distant

Figure 3. Segregation of Cell-Cell Adhesion Mutants from Wild-Type and

from lagC12 Cells

(A) We mixed wild-type (AX4) cells labeled with RFP with different strains

labeled with GFP. We developed the cells on a solid substratum, photo-

graphed the aggregates after 10–12 hr and after 16–19 hr of development

with fluorescence microscopy at the appropriate wavelengths, and merged

the red and green images. The scale bar represents 0.5 mm.

(B) To test the adhesion properties of the cells, we developed separately

wild-type (AX4) cells labeled with RFP and lagC12 cells labeled with GFP.

We disaggregated the cells after 5 hr ([Bi], the scale bar represents

1.0 mm) and after 12 hr ([Bii], the scale bar represents 0.5 mm) of develop-

ment, as indicated, mixed the cells with unlabeled counterparts, and

allowed them to reaggregate in shaking suspension. We photographed

the mixed aggregates as above.

(C) To test interactions between pairs of mutant strains, we mixed lagC12

cells labeled with RFP with different strains labeled with GFP (Ci–Cvi)

and lagC12 cells labeled with GFP with different strains labeled with RFP

(Cvii–Cx), as indicated, developed them on a solid substrate, and photo-

graphed them as above. The scale bar represents 0.5 mm. The genotypes

are indicated on the left of each row.
from QS38. In that experiment, QS32 did not segregate from
itself or from QS33, but segregated from the genetically
dissimilar strain QS38 [16]. Table 1 shows that our sequence
data predict low segregation of QS32 from QS33 and high
segregation of QS38 from QS32. Therefore, the predictions
of the sequence-based segregation model correlate well with
the observations, supporting the hypothesis that LagB1 and
LagC1 play a direct role in kin discrimination.

Our data suggest that lagB1 and lagC1 participate in a
common self- or kin-recognition mechanism in D. discoideum.
In other organisms, genetic crosses between organisms with
polymorphic alleles have provided support for the role of such
genes in self/nonself recognition [3, 29]. Because D. discoideum
is not amenable to these types of studies, tests of the causative
relationships between lag genes and kin recognition would
have to be accomplished by other means. Nevertheless, our
findings suggest that the molecular mechanisms that regulate
kin recognition evolved before the evolutionary departure of
the amoebazoa from the evolutionary line leading to animals,
illustrating the critical role of these mechanisms in multicellu-
larity and in sociality.

Experimental Procedures

Cell Growth and Development

Cells were grown in shaking suspension, harvested at the logarithmic

growth phase and developed on filters [30] or on agar [31] as indicated.

Wild isolates (Table S1) were grown in association with bacteria. The

cadA2 strain TL97 [25] and the csaA2 strain T10 [32] were obtained from

the Dictyostelium stock center. The lagD12 strain was described before

[19]. Detailed information is provided in the Supplemental Data.

Construction of New Strains

We constructed and used vectors for deletion of lagB1 and lagC1 by homol-

ogous recombination (see Supplemental Data for detailed information). The

knockout plasmids were confirmed by sequencing, linearized, and trans-

formed into AX4 cells by electroporation. Clones were identified by PCR

analysis and confirmed by Southern blot analysis [30].

For labeling cells with fluorescent proteins, we constructed several new

vectors for expression of RFP and GFP under the actin15 promoter (see

Supplemental Data for complete detail). The vectors were transformed

into AX4 and into the various mutants.

Segregation Assays

Strains were grown in pure populations, washed and mixed at 1:1 ratios, and

deposited on nonnutrient agar (see Supplemental Data for detailed informa-

tion). Developmental structures were photographed with epi-fluorescence

microscopy at the appropriate wavelengths and images were overlaid

without further manipulation. The results are shown as color photographs.

Sporulation Efficiency

Cells were grown and then developed for 30 hr. Sporulation efficiency was

measured as described [33]. Each strain was tested in two independent

Table 1. Prediction of Strain Segregation from lagB1 and lagC1 Sequence

Dissimilarity

Strains

Reported

Segregationa Predicted Segregation

lagB1 Sequence lagC1 Sequence

QS32/QS32 0.9 0 0

QS33/QS32 2.5 0 0.3

QS38/QS32 201.5 61.3 257.4

Pearson’s

Correlation

0.9999 0.9999

p Value 0.0044 0.0038

a Recalculated from [16].
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biological replications. Each sample was developed on three filters and

samples from each filter were counted thrice. Sporulation efficiency was

calculated as the fraction (%) of spores recovered relative to the number

of cells that were developed.

RNA Extraction and Quantitative RT-PCR

For RNA production, vegetative cells (5 3 107 total) were resuspended in

500 ml Trizol reagent (Invitrogen). Developing cells were collected and resus-

pended in 500 ml Trizol, incubated at room temperature for 5 min, and stored

at –80�C. RNA was extracted according to the manufacturer’s recommen-

ded protocol. RNA concentration was calculated by absorbance at

260 nm. cDNA was produced by reverse transcription and quantified by

real-time PCR. Each strain was developed in two independent replicates

and each RNA sample was analyzed thrice by quantitative PCR. Data and

standard deviations were calculated across the six replicates (see Supple-

mental Data for detailed information).

Sequencing Genes from Wild Strains

Genomic DNA was extracted as described [30]. To sequence lagB1, lagC1,

lagD1, and lagE1, we used one set of primers to amplify the entire structural

gene from genomic DNA and another set of primers to amplify smaller frag-

ments from the initial PCR product. Each nested PCR primer pair contained

universal primer tags for sequencing. The PCR products were purified and

sequenced with an Applied Biosystems 3730xl automatic sequencer.

Detailed information and the sequences of all the oligonucleotides are

provided in the Supplemental Data.

Analysis of Polymorphic Sequences

The regions of the genes used for analysis are provided in Table S1. Multiple

sequence alignments were performed with the Clustal W algorithm in

MacVector 7.2.3. Intronic sequences were deleted manually and the align-

ments were adjusted accordingly. We used the Nei and Gojobori method

to calculate the number of synonymous (dS) and nonsynonymous (dN)

nucleotide substitutions per site for a given pair of homologous sequences

[34]. The gene coding sequences of a given pair of strains were scanned

with a sliding window spanning 101, 81, and 31 amino acids with essentially

identical results (31 amino acid windows shown), and the dN/dS ratio was

calculated at each position. The dN/dS ratios reported are an average

across all pairwise comparisons.

Correlation between Sequence Polymorphism and Segregation

We calculated the Spearman’s rank correlation between the calculated

protein sequence dissimilarity and the segregation variance values reported

by Ostrowski et al. [16] for 12 strains (AX4, NC4, QS32, QS33, QS34, QS36,

QS37, QS38, QS40, QS41, QS45, and QS113). Both the sequence similarity

and the segregation were measured against a common reference strain

(AX4). Sequence dissimilarity was calculated in all subintervals between

5 and 13 amino acids over each protein position. We used three protein simi-

larity matrixes (PAM250, BLOSSUM, and GONNET) to calculate similarity

and then negating it to obtain dissimilarity. We then fitted a linear model

relating sequence dissimilarity and segregation for each subinterval with

high positive Spearman’s rank correlation (r R 0.65 and p < 0.025). The final

model is a composite (ensemble) of linear models (140 for lagB1 and 24 for

lagC1), each represented by the coordinates of the identified subinterval,

sequence similarity matrix used, and coefficients for linear regression.

When the composite model was applied to a new sequence, each linear

model predicted the level of segregation on the basis of the sequence

similarity in its specific subinterval. The final prediction of the composite

model is an average of the predictions of all the linear models. We built

two composite models, one for each gene (lagB1 and lagC1) and present

the final prediction as the relative contribution of each model among all

models (y axis) that span each position (x axis) (Figure S1; see Supplemental

Data for additional details).

We also adapted the models built on the AX4 reference data and applied

them to predict the segregation of strains QS32, QS33, and QS38 from strain

QS32. In that case, the models were adjusted (shifted by a constant value) to

predict zero segregation when the reference strain was mixed with self.

Accession Numbers

GenBank accession numbers of all the sequences we used are provided in

Table S1.
Supplemental Data

Supplemental Data include Supplemental Experimental Procedures, one

figure, and two tables and can be found with this article online at http://

www.current-biology.com/supplemental/S0960-9822(09)00747-7.
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