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Abstract. Recent biological evidence suggests that position and orien-
tation can be estimated from an adequately compressed set of environ-
ment snapshots and their relationships. In this paper we present a pure
appearance-based localisation method using an eigenspace representa-
tion of panoramic images. We first review several types of rotational
invariant representation of panoramic images in terms of their efficiency
for an eigenspace-based localisation problem. Then, for each set of im-
ages an eigenspace from 25 location snapshots is built and analyzed. We
evaluated simple localisation of images not included in the training set.
The results show good prospects for the panoramic eigenspace approach.

1 Introduction

It is well known that a large number of animal species uses predominantly vi-
sual information to navigate in space. Most animals use visual information in
combination with odometry, but in special cases, such as moving in the air or
underwater, this is not possible. Several methods have therefore been imple-
mented that use only vision to navigate. Nelson and Aloimonos [13] proposed
that omnidirectional views could ease the task of estimating motion parameters
and facilitate orientation. It seems reasonable to use omnidirectional views also
for the localisation problem. Examples of using such an input can be found in
the works of Yagi et al. [18] or Aihara et al. [1]. Simplified line-scan panoramic
representations were proposed by Franz et al. [7], Francheschini et al. [6] and
Chahl, Weber, Venkatesh and Shrinivasan [19, 3].

In pure appearance-based methods for navigation, which use simplified re-
presentations of views such as line-scan intensity rings [7, 19, 3], appearance
cues are stored in memory to represent the explored space. Localisation is then
performed by matching current views with those stored in the memory.

Recently, more evidence has been gathered which shows that, at some level,
biological systems also perform appearance matching. Judd and Colett [9] re-
ported that ants use multiple stored snapshots to learn a path from start to
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goal. Dill, Wolf, and Heisenberg [4] also reported that bees try to match retino-
topically the incoming visual pattern with previously stored images. Appearance
cues are found to serve either for matching or to be organized in higher cogni-
tive schemes such as maps, as it is presumed for the hippo-campus brain area of
mammals (e.g. Epstain [5]).

If we take instead of an intensity ring an iconic representation of the world,
as in the case of snapshots taken with a wide visual field, it would be cumber-
some to densely scan the environment and then perform matching operations
to search for the most similar snapshot in the memory. In fact, because of the
computational complexity and the amount of memory needed, this is not feasible
even for a biological vision system. It is therefore obvious that the data must
be compressed. An efficient method is the Singular Value Decomposition (SVD),
which can be used to find a low-dimensional representation of a set of images
in terms of linear combinations (points) in eigenspace, spanned by orthogonal
eigenvectors (eigenimages). If the data set distribution can be encompassed with
a small number of eigenvectors, we can achieve significant dimensionality reduc-
tion. We can assume that two equally oriented images taken at close positions
appear very similar, therefore we expect that (a) we can achieve a significant
compression and (b) points in the eigenspace, representing neighboring positions,
will also be close to each other. The SVD and similar methods have been widely
used in appearance-based recognition problems [14, 17, 12, 2, 11].

The most straightforward application of eigenspaces therefore requires a re-
presentation of the visual input that would be easily aligned for matching. One
way is to estimate the orientation from other sources such as light polarization,
gyrocompass etc. We can also find a representation that would be rotation-
invariant, such as row-correlation [1], but we loose the orientation specific in-
formation. An approach called Zero Phase Representation (ZPR) was recently
proposed by Pajdla [15] which can be used to find a transformation that projects
differently oriented but otherwise identical panoramic images into one represen-
tative image.

This paper is organized as follows. In section 2 we first review various rota-
tionally invariant representations and evaluate them on our image set. In sec-
tion 3 we describe the procedure of building eigenspaces with the SVD method
and, finally, we present the results of localisation experiments in section 4. We
conclude with a summary and outline future work.

2 Shift-invariant representations of panoramic images

2.1 Evaluation of panoramic images

Fig. 1 shows the map of the CMP Laboratory? with some examples of panoramic
images taken at positions 1, 5, 12, and 15. From the original images, taken at
random orientations, four sets of rotational independent images were generated.

2 All panoramic images used in this paper were kindly provided by T.Pajdla and
J.Cernik from the Czech Technical University at Prague.
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Fig. 1. Left: Map of the CMP lab with positions where the snapshots were taken.
Right: Snapshots taken at positions 1, 5, 12, and 15. The center of each snapshot
points towards West.

As our intention is to compress the image set by estimating the most significant
eigenvectors and then present the training set as points in the eigenspace, we
need a criterion to evaluate the image sets. A suitable criterion is the distance
in the eigenspace. It has been shown [12, 14] that by estimating the correlation
iLi, of two images the distance between their projections in the eigenspace can

p
be evaluated.

2.2 Manually aligned images

Manually aligned images represent the case in which the orientation of the sensor
at the time of taking the snapshot is known and therefore the images can be
shifted so that they are all oriented in the same direction. Since the orientation
is the same, it is expected that images taken at small distances apart are strongly
correlated, i.e., their correlation coefficient being higher than for images taken
far apart. In Fig. 2 we can see how the correlation with the image obtained at
position 30 varies with position for aligned images.
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Fig. 2. Correlation with the snapshot taken at position 30 for manually aligned images.
Darker areas indicate a higher level of correlation.



2.3 Autocorrelated images

Another way of achieving rotational invariance is by autocorrelating the images.
We have two options. The first option is to perform autocorrelation by row
and column directions, which results in not only rotational but also vertical
invariance. It can be seen in Fig. 4(left) that the proximity of images based
on the correlation of autocorrelated images seems weaker, compared with the
performance of aligned sets. The second option is to correlate images just by
row direction, which appeared in a similar context in [1]. It can be seen from
Fig. 4(right) that the correlation values of row autocorrelated images can be
compared to that of the fully autocorrelated ones.

Fig. 3. Left: fully autocorrelated transform of the snapshot taken at position 1; Right:
row autocorrelated transform of the same snapshot.
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Fig. 4. Left: Correlation with snapshot taken at position 30 for fully autocorrelated
images. Right: correlation with same snapshot for row autocorrelated images.

2.4 ZPR images

Zero Phase Representation (ZPR) images are obtained from original randomly
oriented images by shifting the image so that its first harmonic in the Discrete
Fourier Transform has a phase equal to zero [15]. This transformation pro-
duces one representative image for an equivalence class which, in our case, is
the set of panoramic images taken under stable conditions at the same place



but with possibly different orientations. If a panoramic image is represented
as a 2-dimensional discrete function I(row,col), then its ZPR representation
Izpr(row,col) = I(row,col — ¢) can be determined as

Izpr(row,col) = f‘l{f{I(row,col)}e_j‘P[F(O’l)]l} , 1)

where F(k,1) = F{I(row,col)} is a Fourier transform of I and $[F'(0,1)] denotes
the shift ¢ of the image necessary to obtain an image whose first harmonic has
a phase equal to zero [15].

Problems may arise due to the uneven resolution of the cylindrical panoramic
image caused by the transformation process from the original panoramic image
and because of possible self-occlusion of image content on the top and bottom of
the images. Thus one needs to robustify the method by weighting the images [16],
as it can be seen in Fig. 6(left). In Fig. 5 we can see how the ZPR performs on
panoramic images taken at positions 6 and 7. It is expected that representative
images of equivalence classes taken not far apart would be strongly correlated
and thus close in the parametric eigenspace. Our tests show that this expectation
is correct since our set of 35 images, when transformed by ZPR, results in a set of
very similarly oriented images. In Fig. 6(right) one can see that the correlation
distribution can be compared with that of the manually oriented set.

Fig. 5. Left: original snapshots taken at positions 6 and 7 in random orientation. Right:
ZPR transforms of the images on the left.

3 Panoramic eigenspaces

3.1 Construction

Eigenspaces were constructed from 25 panoramic snapshots taken from the po-
sitions on the rectangular grid, labeled 1-25, resprectively. For testing, we used
the remaining images.
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Fig. 6. Left: Weighted image taken at position 30. Right: Correlation with the snapshot
taken at position 30 for weighted ZPR images. Darker areas indicate a higher level of
correlation.

To reduce the computational complexity, eigenspaces were built with an al-
gorithm that estimates the SVD of the smaller covariance matrix, that is, if A,,,,
is the matrix of n image vectors (normalized so that mean is in the origin), then
the SVD of @, is calculated:

The eigenvectors obtained with further processing of the matrix U,, are then
sorted according to their corresponding eigenvalues from the diagonal of V,,,,.

3.2 Comparison of eigenspaces

We can define the energy of an eigenvector as proportional to the magnitude
of its eigenvalue. Then we can estimate the energy of an eigenspace as the cu-
mulative sum of the energies of the eigenvectors included. If we then take an
eigenspace of dimension p, p < mn, we can relate the compression rate to the
energy of the eigenspace.
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Fig. 7. Cumulative energy distribution for: manually aligned and ZPR of weighted
image set (left); autocorrelated sets (right).



From the cumulative energy plots in Fig. 7, we can see the difference of
energy distribution for eigenspaces based on manual and ZPR sets. ZPR performs
slightly worse in terms of compactness of representation, which is mostly due
to a greater dissimilarity between images taken from neighbor positions since
orientation is not exactly uniform through the set.

Next, we compare the plots Fig. 7(left) with Fig. 7(right) and observe that
we can for the correlated sets more energy can be captured in the first few eigen-
vectors. This would be favorable if our goal was to achieve a high compression
rate, however when discrimination between the images is the primary objective,
this is not necessarily the case. As it was previously stated, in the case of the
autocorrelated image set similarity between images is not in strong relationship
with proximity of the locations where the snapshots have been taken.

4 Experimental results of localisation

After the eigenspaces were built and analyzed we tested their performance in
the localisation task. The test images were projected onto the eigenspace. As the
correlation in Hilbert space equals the Euclidean distance in eigenspace [14, 12],
the nearest neighbor can be used to estimate the most similar snapshot. We
defined four criteria to measure the success rate:

I The first criterion tells whether the image from the training set rep-
resenting the position nearest to that of the test image was successfully
recognized as the nearest one.

II The second criterion tells whether the first and the second nearest
positions were successfully recognized.

IIT The third criterion tells whether the three nearest positions were suc-
cessfully recognized.

IV The fourth criterion is the weakest of all and tells whether at least one
of the four nearest positions was recognized as the nearest one.

The first three conditions happen to be very strict since we use for the testing
the images that were not included in the training set and are therefore taken
at different (intermediate) positions. As we can see from Fig. 1(left), these posi-
tions, except for those numbered 26 and 27, lie on the diagonal line and comprise
positions numbered from 28 to 35. In our case, there are some positions that lie
near the middle of the quadrant and the difference of lengths to the nearest
neighbors is small. It is obvious that if the first criterion fails, so do the sec-
ond and the third. The fourth criterion however, checks only if one of the four
positions surrounding the test position appears as the nearest.

In Fig. 8 we compare the performance on the manually aligned and the
ZPR set of weighted images. The results for the manually aligned set seem
good enough for approximate localisation. If we operate with a six-dimensional
eigenspace, we correctly determine the three nearest positions (ordered) in 50%
of the cases and the nearest position in 100% of the cases. An exact position
estimation would of course require further processing and will not be discussed
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Fig. 8. Success rate for manually aligned (left) and ZPR of weighted image set (right).
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Fig. 9. Success rate for fully autocorrelated (left) and row autocorrelated image set
(right).

in this paper. In Fig. 8(right) we can see that basically the same performance
can be achieved by using ZPR transformed weighted images. As we can observe,
eigenspaces of dimension less than 10 perform well enough and any further in-
crease in the dimension leads to higher cost/performance rate.

In Fig. 9 we can see the same graphs for the fully autocorrelated and row
autocorrelated images. As we can observe, the performance is not nearly as good
as in the previous cases and it does not improve even with full dimensionality of
the eigenspace.

In Fig. 10(left) we can see the result of position estimation for the snapshot
number 30 from the manually aligned set of images. In Fig. 10(right) we can see
how the method behaves while localising a snapshot taken at position 30 for the
ZPR transformed weighted images. In this case, the result is as good as in the
case of the manually aligned set.
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Fig. 10. Left: Localisation of snapshot 30 for the manually aligned set of images. Right:
Localisation of snapshot 30 for the ZPR transformed weighted set of images. Darker
shades denote smaller distance in the eigenspace.

5 Summary

In this paper we discussed the problem of appearance-based localisation. The
eigenspace approach proves itself as a very viable one. Our tests show that the
nearest positions can be estimated with significant certainty if we rely on simi-
larity of equally oriented neighboring images. To achieve similar orientation of
images taken with random orientation of the sensor, we tested the Zero Phase
Representation which performed well enough for our limited image set without
occlusions. It is however a matter of future research to analyze how it performs
on larger sets and under unpredictable circumstances. We also tested the au-
tocorrelated rotational invariant representations which do not preserve overall
appearance. Our results show that the performance of such representations is
inferior, mostly due to the fact that the relationship between the image correla-
tion and distance of positions where the images are taken is not so explicit, as
in the case oriented images. Note that, as opposed to [1], tests were performed
only on the snapshots that were not in the training set, i.e., they were taken at
slightly different positions.

In future work we plan to test additional sets of images, some with occlusions
and under different illumination. On a wider set of images, multiple eigenspaces
will be built and analyzed. On more densely sampled images, points in eigenspace
will be interpolated to form a hypersurface and its characteristics will be ana-
lyzed. Strategies for calculating the exact position from localisation scores will
be developed.
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