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Abstract

The resultsof recentstudieson the possibility of spa-
tial localizationfrom panotamicimageshaveshowngood
prospectdor view-basedmethods. The major advantayes
ofthesamethodsre a widefield-of-view, capabilityof mod-
elling clutteredervironmentsandflexibility in thelearning
phase Theredundantnformationcapturedin similar views
is efficientlyhandledby theeigenspaceapproach. However,
the standad appmadesare sensitiveto noiseand occlu-
sion. In this paper we presenta methodof view-basedo-
calizationin a robustframevork that solvestheseproblems
to a large degree Experimentalresultson a large set of
real panomamicimagesdemonstate the effectivenessf the
appmoad andthelevel of achievedrobustness.

1. Introduction and motivation

When dealing with autonomoussystemsthat freely
move in space,an importantproblemto solwve is the esti-
mation of the instantaneougosition. In the caseof au-
tonomousrobot navigation, localization is necessaryfor
motion planning. In augmentedeality applications)ocal-
ization of the obsenreris crucialfor registrationthatallows
acombinationof virtual andrealervironments.

In our work we define the problem of localization as
the task of recognizinga panoramicview (seeFig. 1 for
anexampleof cylindrical panoramiadmages)rom a setof
panoramioviews acquiredn the learningphase.n thelast
decademary researcherbave shavn that feasiblemodels
of theworld canbe constructedvithout usingprecisegeo-
metricalinformation[2, 6, 7]. Namely amodelof theworld
canbeconstructecisa memorymap,built from adequately
compressedetsof images. Suchmethodshave beensuc-
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cesfulytestedn the areasof object[5, 7] recognition.The
main motivationfor applyingsuchanapproacho the prob-
lem of localizationis the analogybetweenrecognizingan
objectin the sceneand recognizingthe ervironment. In

contrastto objectrecognition,the targetto be recognized
in the caseof localizationis not only a part of the image
(onaclutteredbackground)but ratherthe completeémage.
If we usepanoramidmagesasrepresentationsf positions,
we canexpectthatviews taken from nearbypositionsand
orientedin the sameway tendto be stronglycorrelatedas
it is in the caseof looking at an object from two nearby
viewpoints (Fig. 1). This allows us not only to designan
efficient strat@y basedon correlation,but alsoto build a
compactepresentatiothateliminatesredundany.
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Figure 1. Two cylindrical panoramic

images
(labeled 50 and 53 in the path set) taken from
viewpoints 60 cm apart.

Anothermotivationcomesfrom the discoverieson navi-
gationstratgyiesof insectsthatare,althoughlimited in the
brain size, capableof amazinglyconfidentnavigation and
of self-localization. In fact, somestudies(see[4] andthe
referencesherein)imply, thatwood antsmay usea repre-
sentationof the ervironmentthatis built from wide-angle
snapshotof the scene. Localizationis then performed
by comparingthe instantaneousiew with the storedsnap-
shots.Accordingto thisandsomeotherstudiesthe patterns
are processedetinotopically i.e, the snapshois not seg-
mented but interpretedasawhole.

For building a compactmodel from a set of images,
the eigenspaceapproactproveditself asa viable one[3].
A similar work was done by Aihara et al. [1] who used
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row-autocorrelatetransformsof cylindrical panoramiam-
agesin orderto achieve invarianceto rotationof the sensor
aroundthe opticalaxis. The approactsuffersfrom lessac-
curateresultson novel positions,sinceby correlatingthe
imagessomeof the informationis lost. An alternatve ap-
proachwasproposedy PajdlaandHlavac [8] who usedan
appearance-preservingtational invariant representation,
i.e,the Zero PhaseRepresentatio(ZPR)
Themajorlimitation of theseapproachess the sensitv-
ity of the matchingstageto noiseandocclusion.lt is clear
thatonehasto copewith occlusionsin the scenesuchas,
for example,peoplewalking by, otherobjectsbeingmoved
aroundthe environmentetc. In this paper we proposea
methodfor robustlocalizationby applyinga robustproce-
durefor recovery of parameterfrom the eigenspacégb].
The paperis organizedasfollows. In section2 we first
discussthe major propertiesof panoramicdmagesandthe
distribution of their correlationover the sensederviron-
ment. In section3 we describethe procedureor building
the ervironmentmodelfrom panoramicviews andgive an
overview of therobustrecognitionof views. In sectiord we
presenthe resultson nonoccludedandoccludeddata. We
concludewith a summaryandanoutline of futurework.

2. Correlation of panoramic images

We have alreadyemphasizedhe analogybetweenlo-
calizationandobjectrecognition. Whenlooking at an ob-
jectfrom two nearbyviewpoints,thereis a high probability
that the two views are very similar to eachother If the
panoramicsensohasa fixed orientation,asif usinganex-
ternalcompassiwo imagestaken at nearbypositionsalso
tendto be stronglycorrelated.As it canbe seenin Fig. 2,
the distribution of correlationis far from a simply charac-
terizedfunction, however, it givesa goodindicationof the
currentlocation.

Of course,we cannotexpectthat an external compass
is always available. In sucha case,one hasto employ a
transformatiorthatmapscylindrical panoramigmagesnto
arepresentatiothatis invariantto therotationof thesensor
andalsopreseresthe propertiesof the correlationdistribu-
tion. As it wasshavnin [3], this canbeachievedby usinga
transformatiorthat preseresappearancesuchasthe ZPR
transform proposedn [8].

3. Panoramic eigenspace

As alreadystatedwe representhe ervironmentby a set
of panoramidmagesZ = {x; ...xy}, takenin thelearn-
ing phaseat arbitrary positions. We transformthe images
so that they are all orientedthe sameway. This enables
usto efficiently compresgshemby the eigenspacenethod.
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Figure 2. Correlation of panoramic images in
space. XY plane represents the coordinates
of the experimental environment. Measured
and then interpolated is the correlation with
image at X=440, Y=660.

The eigenspacenethod consistsof solving the Singular
Value Decompositioron the covariancematrix of the (nor-
malized)imagesin Z, to obtainan orthogonalsetof vec-
torses,es...,e,, usually referredto as eigenimages If
we thenchoosea subsetof p eigenimagesvith the largest
eigervalues we canapproximaten theleastsquaresense
eachimageparametricallyas a linear combinationof that
subsetto a desirabledegree of accurag. Namely every
modelimagex; thereforeprojectsinto somepointq; in the
eigenspacespannedy the selectectigenimage$7].

The major advantageof the eigenspacenethodis that
thecorrelationin theimagespacss relatedto theEuclidean
distancan theeigenspacsd,e., the strongerarethetwo im-
agescorrelated the closerwill their projectionslie in the
eigenspace.lt is thereforepossibleto denselyinterpolate
the setof pointsto obtain a spline that representsan ap-
proximationof an arbitrarily denseset of real-world im-
ageq[7]. Panoramicviews from intermediatepositionsare
in thatway approximatedy aspline.

3.1. Robust recognition

Oncethe modelis built, recognitionof a view is per
formedby recoveringthe coeficientvectorq of theinstan-
taneousmagey, or searchingfor the point on the spline
which is the nearesto the projectedpoint. As every point
q is associatedvith the positionparametersywe canmake
anestimationof the currentposition. The standardnethod
torecovertheparameterss to projecttheimagevectoronto



theeigenspac§r]:

gi(y) =<y,e; > j=1...p. 1)

However, this way of calculationof parameterds non-
robustandthusnotaccuratén thecaseof noisyor occluded
data. If we imaginea mobile robot roamingaroundwith
a model acquiredunder a set of stableconditions,every
changein the ervironment,suchasdisplacedobjects,peo-
plewalkingaroundetc.,canresultin severeocclusionswith
respecto theoriginal storedimages.

To overcomethis problem,we proposeto usethe robust
approach5], that,insteadf usingthewholeimagevectors,
generatesandevaluatesa setof hypotheses assubsetof
imagepointsr = (ry,r2,...,7). In fact, the coeficients
canberetrievedby solvingasetof linearequationon k =
n points:

n
Tro =Y qi(X)ejr, 1<i<n . @
j=1
Theprinciple of suchcomputatioris illustratedin Fig. 3.
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Figure 3. Calculating the coefficients from a
set of linear equations.

Figure 4. Image at 60% occlusion. Crosses
denote the points that contrib ute to the gen-
eration of a hypothesis.

By selectingonly p, p < n eigenimagessour basis,
we cannotusethe previous setof equationsput we rather
try to solve anover-constrainedgystemin a robustway, so
thatthe solutionsetof parametersninimizes

k P
B(r) = (or = 3 ti(0es)” - @)

i=1

We solve thesystemon k, k > p points,wherek is sig-
nificantly smallerthan the total numberof image points.
The setof pointsis randomlyselectedand dueto the ro-
bust solving of the equation,only the pointson which the
erroris arbitrarysmall contribute to the computatiorof the
parametersAs we canseein Fig. 4, at this stagemostof
the pointsin the occludedregions are excludedfrom the
computation.
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Figure 5. Localization on an imaginary path
of 100 images.

To increasethe probability of avoiding points that are
noiseor represenibcclusion,several different hypotheses
are generated.A hypothesisconsistsof a setof parame-
ters,an error vector e calculatedasthe squaredlifference
betweenthe dataand the reconstructionand the domain
of compatiblepointsthatsatisfyanerrormagin constraint.
Thesehypothesesirethensubjectto a selectionprocedure,
basedon the Minimal DescriptionLengthprinciple,asde-
scribedin [5].
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Figure 6. Mean error of localization for the
standar d and for the robust method.
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Figure 7. Localization on an imaginary path of
100 images at 60% occlusion. Left: standard
method; right: robust method.

4. Experimental results

To performthe experimentsve useda training setof 62
cylindrical panoramidmagestakenindoorsin alaboratory
with lots of occlusionand artificial lighting. The images
weretaken usinga sphericalmirror cameraandwarpedto
form cylindrical images. The imageswere taken at posi-
tions 60 cm apart. The experimentallayoutis depictedin
Fig. 5, with squaregienotingthe positionswheretraining
imagesweretaken. As atestingsetwe used100 images
taken at measuregositions,depictedin Fig. 5 asfull cir-
cles.

Fromthetraining setof imageswe constructeda 10 di-
mensionakigenspaceThe emptycirclesin Fig. 5 denote
therecoveredpathafter projectingall 100 original testim-
ages. The spline usedfor projectionwas interpolatedat
5 cmresolution.Sincethereis no significantocclusion(be-
sidessomechangéen theillumination of thewindows area),

the standardandthe robust methodof coeficient retrieval
performalmostequallywell regardingprecision.In fact,as
it canbeseernfrom thegraphin Fig. 6, themeanerrorof the
localizationis betweenl1 cmand13 cmfor 0% occlusion.
The performancef the robustestimatormay vary slightly
sincethe hypothesigieneratiorincludesa stochasticstep.

The performancef bothmethodsat higherlevelsof oc-
clusionnoiseis comparedn Fig. 6. We canseea significant
improvementin precisionasa resultof applyingthe robust
method.Evenin situationsof severeocclusionwhenmore
thanhalf of the surroundings invisible, the robust method
retrieves positionsthat are reasonablycloseto the correct
ones. This canbe clearly seenin Fig. 7. On the left we
can seethat the standardmethodbreaksunderambiguity
of the datawhile the resultsof the robust estimatoron the
right shav quiteregularlocalizationresultswith meanerror
under60 cm.

5. Conclusion

In this paperwe presenteca methodfor robust view-
basedocalizationusingpanoramidmages.As our experi-
mentsshow, we canperformrelatively accuratdocalization
by usinga pureview-basednodelof apre-learnedanviron-
ment. By applying a robust framework to the recognition
phasewe canalsoachiere asignificantimprovementf per
formancewhenocclusionsor noisearepresenin theinput
images. If we considera scenaricof a mobile robotin an
office ervironment,the expectedlevels of noise seemac-
ceptabldor thealgorithm.

We arecurrentlyexploring the problemof robustnessn
thelearningphaseandincrementabn-linebuilding of mod-
elsof theenvironment.
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