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Abstract

The resultsof recentstudieson the possibility of spa-
tial localizationfrom panoramic imageshaveshowngood
prospectsfor view-basedmethods.Themajor advantages
of thesemethodsarea widefield-of-view, capabilityof mod-
elling clutteredenvironments,andflexibility in thelearning
phase. Theredundantinformationcapturedin similar views
is efficientlyhandledbytheeigenspaceapproach. However,
the standard approachesare sensitiveto noiseand occlu-
sion. In this paper, wepresenta methodof view-basedlo-
calizationin a robustframework that solvestheseproblems
to a large degree. Experimentalresultson a large set of
real panoramicimagesdemonstratetheeffectivenessof the
approach andthelevelof achievedrobustness.

1. Introduction and motivation

When dealing with autonomoussystemsthat freely
move in space,an importantproblemto solve is the esti-
mation of the instantaneousposition. In the caseof au-
tonomousrobot navigation, localization is necessaryfor
motionplanning. In augmentedreality applications,local-
izationof theobserver is crucialfor registrationthatallows
acombinationof virtual andrealenvironments.

In our work we define the problemof localizationas
the task of recognizinga panoramicview (seeFig. 1 for
anexampleof cylindrical panoramicimages)from a setof
panoramicviews acquiredin thelearningphase.In thelast
decademany researchershave shown that feasiblemodels
of theworld canbeconstructedwithout usingprecisegeo-
metricalinformation[2, 6,7]. Namely, amodelof theworld
canbeconstructedasamemorymap,built from adequately
compressedsetsof images.Suchmethodshave beensuc-
�
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cesfulytestedin theareasof object[5, 7] recognition.The
mainmotivationfor applyingsuchanapproachto theprob-
lem of localizationis the analogybetweenrecognizingan
object in the sceneand recognizingthe environment. In
contrastto object recognition,the target to be recognized
in the caseof localizationis not only a part of the image
(onaclutteredbackground),but ratherthecompleteimage.
If weusepanoramicimagesasrepresentationsof positions,
we canexpectthat views taken from nearbypositionsand
orientedin the sameway tendto be stronglycorrelatedas
it is in the caseof looking at an object from two nearby
viewpoints(Fig. 1). This allows us not only to designan
efficient strategy basedon correlation,but also to build a
compactrepresentationthateliminatesredundancy.

Figure 1. Two cylindrical panoramic images
(labeled 50 and 53 in the path set) taken from
viewpoints 60 cm apar t.

Anothermotivationcomesfrom thediscoverieson navi-
gationstrategiesof insects,thatare,althoughlimited in the
brain size,capableof amazinglyconfidentnavigation and
of self-localization. In fact, somestudies(see[4] andthe
referencestherein)imply, thatwoodantsmayusea repre-
sentationof the environmentthat is built from wide-angle
snapshotsof the scene. Localization is then performed
by comparingthe instantaneousview with thestoredsnap-
shots.Accordingto thisandsomeotherstudiesthepatterns
are processedretinotopically, i.e, the snapshotis not seg-
mented,but interpretedasa whole.

For building a compactmodel from a set of images,
the eigenspaceapproachproved itself asa viableone[3].
A similar work was doneby Aihara et al. [1] who used
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row-autocorrelatedtransformsof cylindrical panoramicim-
agesin orderto achieve invarianceto rotationof thesensor
aroundtheopticalaxis. Theapproachsuffersfrom lessac-
curateresultson novel positions,sinceby correlatingthe
imagessomeof the informationis lost. An alternative ap-
proachwasproposedby PajdlaandHlaváč [8] whousedan
appearance-preservingrotational invariant representation,
i.e, theZeroPhaseRepresentation(ZPR).

Themajor limitation of theseapproachesis thesensitiv-
ity of thematchingstageto noiseandocclusion.It is clear
thatonehasto copewith occlusionsin the scene,suchas,
for example,peoplewalking by, otherobjectsbeingmoved
aroundthe environmentetc. In this paper, we proposea
methodfor robust localizationby applyinga robustproce-
durefor recoveryof parametersfrom theeigenspace[5].

The paperis organizedasfollows. In section2 we first
discussthe major propertiesof panoramicimagesandthe
distribution of their correlationover the sensedenviron-
ment. In section3 we describethe procedurefor building
theenvironmentmodelfrom panoramicviews andgive an
overview of therobustrecognitionof views. In section4 we
presenttheresultson nonoccludedandoccludeddata.We
concludewith a summaryandanoutlineof futurework.

2. Correlation of panoramic images

We have alreadyemphasizedthe analogybetweenlo-
calizationandobjectrecognition.Whenlooking at an ob-
ject from two nearbyviewpoints,thereis a highprobability
that the two views are very similar to eachother. If the
panoramicsensorhasa fixedorientation,asif usinganex-
ternalcompass,two imagestaken at nearbypositionsalso
tendto be stronglycorrelated.As it canbe seenin Fig. 2,
the distribution of correlationis far from a simply charac-
terizedfunction,however, it givesa goodindicationof the
currentlocation.

Of course,we cannotexpect that an external compass
is always available. In sucha case,one hasto employ a
transformationthatmapscylindrical panoramicimagesinto
arepresentationthatis invariantto therotationof thesensor
andalsopreservesthepropertiesof thecorrelationdistribu-
tion. As it wasshown in [3], thiscanbeachievedby usinga
transformationthatpreservesappearance,suchastheZPR
transform,proposedin [8].

3. Panoramic eigenspace

As alreadystatedwe representtheenvironmentby a set
of panoramicimages�����
	���
�
�
�	���� , taken in the learn-
ing phaseat arbitrarypositions. We transformthe images
so that they are all orientedthe sameway. This enables
us to efficiently compressthemby the eigenspacemethod.
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Figure 2. Correlation of panoramic images in
space . XY plane represents the coor dinates
of the experimental envir onment. Measured
and then interpolated is the correlation with
image at X=440, Y=660.

The eigenspacemethodconsistsof solving the Singular
ValueDecompositionon thecovariancematrix of the(nor-
malized)imagesin � , to obtainan orthogonalsetof vec-
tors � ��� ����


�
 � ��� , usually referredto as eigenimages. If
we thenchoosea subsetof � eigenimageswith the largest
eigenvalues, we canapproximatein the leastsquaressense
eachimageparametricallyasa linear combinationof that
subsetto a desirabledegreeof accuracy. Namely, every
modelimage	�� thereforeprojectsinto somepoint ��� in the
eigenspace, spannedby theselectedeigenimages[7].

The major advantageof the eigenspacemethodis that
thecorrelationin theimagespaceis relatedto theEuclidean
distancein theeigenspace,i.e., thestrongerarethetwo im-
agescorrelated,the closerwill their projectionslie in the
eigenspace.It is thereforepossibleto denselyinterpolate
the set of points to obtain a spline that representsan ap-
proximationof an arbitrarily denseset of real-world im-
ages[7]. Panoramicviews from intermediatepositionsare
in thatway approximatedby aspline.

3.1. Robust recognition

Oncethe model is built, recognitionof a view is per-
formedby recoveringthecoefficient vector � of theinstan-
taneousimage  , or searchingfor the point on the spline
which is the nearestto the projectedpoint. As every point� is associatedwith the positionparameters,we canmake
anestimationof thecurrentposition.Thestandardmethod
to recovertheparametersis to projecttheimagevectoronto



theeigenspace[7]:
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However, this way of calculation of parametersis non-
robustandthusnotaccuratein thecaseof noisyor occluded
data. If we imaginea mobile robot roamingaroundwith
a model acquiredundera set of stableconditions,every
changein theenvironment,suchasdisplacedobjects,peo-
plewalkingaroundetc.,canresultin severeocclusionswith
respectto theoriginal storedimages.

To overcomethis problem,we proposeto usetherobust
approach[5], that,insteadof usingthewholeimagevectors,
generatesandevaluatesa setof hypotheses6 assubsetsof
imagepoints 67� $48 �9� 8 � � 


�
 � 8;: % . In fact, the coefficients
canberetrievedby solvinga setof linearequationson <=�> points:
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Theprincipleof suchcomputationis illustratedin Fig. 3.
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Figure 3. Calculating the coefficients from a
set of linear equations.

Figure 4. Image at 60% occ lusion. Crosses
denote the points that contrib ute to the gen-
eration of a hypothesis.

By selectingonly � � �KH > eigenimagesasour basis,
we cannotusethe previoussetof equations,but we rather
try to solve anover-constrainedsystemin a robustway, so
thatthesolutionsetof parametersminimizes
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We solve thesystemon < � < + � points,where < is sig-
nificantly smaller than the total numberof imagepoints.
The setof points is randomlyselectedanddue to the ro-
bust solving of the equation,only the pointson which the
erroris arbitrarysmallcontributeto thecomputationof the
parameters.As we canseein Fig. 4, at this stagemostof
the points in the occludedregions are excludedfrom the
computation.
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Figure 5. Localization on an imaginar y path
of 100 images.

To increasethe probability of avoiding points that are
noiseor representocclusion,several different hypotheses
are generated.A hypothesisconsistsof a set of parame-
ters,an error vector R calculatedasthe squareddifference
betweenthe dataand the reconstruction,and the domain
of compatiblepointsthatsatisfyanerrormargin constraint.
Thesehypothesesarethensubjectto a selectionprocedure,
basedon theMinimal DescriptionLengthprinciple,asde-
scribedin [5].
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Figure 6. Mean error of localization for the
standar d and for the robust method.
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Figure 7. Localization on an imaginar y path of
100 images at 60% occ lusion. Left: standar d
method; right: robust method.

4. Experimental results

To performtheexperimentswe useda trainingsetof 62
cylindrical panoramicimagestakenindoorsin a laboratory
with lots of occlusionand artificial lighting. The images
weretaken usinga sphericalmirror cameraandwarpedto
form cylindrical images. The imageswere taken at posi-
tions SUT cm apart. The experimentallayout is depictedin
Fig. 5, with squaresdenotingthe positionswheretraining
imageswere taken. As a testingsetwe used 1;TVT images
taken at measuredpositions,depictedin Fig. 5 asfull cir-
cles.

Fromthe trainingsetof imageswe constructeda 1;T di-
mensionaleigenspace.The emptycirclesin Fig. 5 denote
therecoveredpathafterprojectingall 100original testim-
ages. The spline usedfor projectionwas interpolatedatW

cmresolution.Sincethereis nosignificantocclusion(be-
sidessomechangein theilluminationof thewindowsarea),

the standardandthe robust methodof coefficient retrieval
performalmostequallywell regardingprecision.In fact,as
it canbeseenfrom thegraphin Fig. 6, themeanerrorof the
localizationis between1U1 cm and 1;X cm for T�Y occlusion.
Theperformanceof the robustestimatormayvary slightly
sincethehypothesisgenerationincludesastochasticstep.

Theperformanceof bothmethodsathigherlevelsof oc-
clusionnoiseis comparedin Fig.6. Wecanseeasignificant
improvementin precisionasa resultof applyingtherobust
method.Evenin situationsof severeocclusionwhenmore
thanhalf of thesurroundingis invisible, therobustmethod
retrievespositionsthat are reasonablycloseto the correct
ones. This can be clearly seenin Fig. 7. On the left we
can seethat the standardmethodbreaksunderambiguity
of the datawhile the resultsof the robustestimatoron the
right show quiteregularlocalizationresultswith meanerror
under SVT cm.

5. Conclusion

In this paperwe presenteda methodfor robust view-
basedlocalizationusingpanoramicimages.As our experi-
mentsshow, wecanperformrelatively accuratelocalization
by usingapureview-basedmodelof apre-learnedenviron-
ment. By applyinga robust framework to the recognition
phasewecanalsoachieveasignificantimprovementof per-
formancewhenocclusionsor noisearepresentin theinput
images.If we considera scenarioof a mobile robot in an
office environment,the expectedlevels of noiseseemac-
ceptablefor thealgorithm.

We arecurrentlyexploring theproblemof robustnessin
thelearningphaseandincrementalon-linebuilding of mod-
elsof theenvironment.
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