ePrints.FRI - University of Ljubljana, Faculty of Computer and Information Science

Use of search engine optimization factors for Google page rank prediction

Barbara Tvrdi (2012) Use of search engine optimization factors for Google page rank prediction. EngD thesis.

[img]
Preview
PDF
Download (1466Kb)

    Abstract

    Over the years, search engines have become an important tool for finding information. It is known that users select the link on the first page of search results in 62% of the cases. Search engine optimization techniques enable website improvement and therefore a better ranking in search engines. The exact specification of the factors that affect website ranking is not disclosed by search engine owners. In this thesis we tried to choose some most frequently mentioned search engine optimization factors for Google search engine. Using the factors we tried to apply machine learning methods to build a model that predicts whether a site would be ranked among the top 10 search results (i.e. the first page of search engine results). The best results were achieved using a classification method called random forests, but the obtained AUC was below acceptable AUC estimates for such problems. We also tried to find statistically significant informative features. Only a few features matched the criteria, but had a very low information content. To achieve better results other features could be used and the number of training examples could be increased.

    Item Type: Thesis (EngD thesis)
    Keywords: search engines, search engine optimization, machine learning
    Number of Pages: 39
    Language of Content: Slovenian
    Mentor / Comentors:
    Name and SurnameIDFunction
    prof. dr. Blaž Zupan106Mentor
    Link to COBISS: http://www.cobiss.si/scripts/cobiss?command=search&base=50070&select=(ID=00009344340)
    Institution: University of Ljubljana
    Department: Faculty of Computer and Information Science
    Item ID: 1767
    Date Deposited: 06 Jul 2012 11:47
    Last Modified: 06 Sep 2012 14:26
    URI: http://eprints.fri.uni-lj.si/id/eprint/1767

    Actions (login required)

    View Item